
Listings and Logics

Yijia Chen
Shanghai Jiaotong University

June, 2011

(Joint work with Jörg Flum, Freiburg)

This is a follow-up to

Theorem (Kraj́ıc̆ek and Pudlák, 1989; Sadowski, 2002; C. and Flum,
2010)

The following are all equivalent.

I List(P,TAUT,P).

I LFPinv captures P.

I TAUT has a polynomial optimal proof system.

I TAUT has an almost optimal algorithm.

Contents

Background

Listings

Logics

Optimality

Logics for P

There is an effective enumeration of all polynomial time computable subsets of
graphs in terms of corresponding polynomial time machines

M1,M2,

For two isomorphic graphs G and H, the machine Mi might accept G but
reject H. I.e., Mi does not necessarily decide a class of graphs that are closed
under isomorphism, or a graph property.

Question (Chandra and Harel, 1982)

Is there an effective enumeration of polynomial time computable graph
properties in terms of corresponding polynomial time machines?

Question (Gurevich, 1988)

Is there a logic capturing P?

Logics for P

There is an effective enumeration of all polynomial time computable subsets of
graphs in terms of corresponding polynomial time machines

M1,M2,

For two isomorphic graphs G and H, the machine Mi might accept G but
reject H. I.e., Mi does not necessarily decide a class of graphs that are closed
under isomorphism, or a graph property.

Question (Chandra and Harel, 1982)

Is there an effective enumeration of polynomial time computable graph
properties in terms of corresponding polynomial time machines?

Question (Gurevich, 1988)

Is there a logic capturing P?

Logics for P

There is an effective enumeration of all polynomial time computable subsets of
graphs in terms of corresponding polynomial time machines

M1,M2,

For two isomorphic graphs G and H, the machine Mi might accept G but
reject H. I.e., Mi does not necessarily decide a class of graphs that are closed
under isomorphism, or a graph property.

Question (Chandra and Harel, 1982)

Is there an effective enumeration of polynomial time computable graph
properties in terms of corresponding polynomial time machines?

Question (Gurevich, 1988)

Is there a logic capturing P?

Logics for P

There is an effective enumeration of all polynomial time computable subsets of
graphs in terms of corresponding polynomial time machines

M1,M2,

For two isomorphic graphs G and H, the machine Mi might accept G but
reject H. I.e., Mi does not necessarily decide a class of graphs that are closed
under isomorphism, or a graph property.

Question (Chandra and Harel, 1982)

Is there an effective enumeration of polynomial time computable graph
properties in terms of corresponding polynomial time machines?

Question (Gurevich, 1988)

Is there a logic capturing P?

Logics for P

There is an effective enumeration of all polynomial time computable subsets of
graphs in terms of corresponding polynomial time machines

M1,M2,

For two isomorphic graphs G and H, the machine Mi might accept G but
reject H. I.e., Mi does not necessarily decide a class of graphs that are closed
under isomorphism, or a graph property.

Question (Chandra and Harel, 1982)

Is there an effective enumeration of polynomial time computable graph
properties in terms of corresponding polynomial time machines?

Question (Gurevich, 1988)

Is there a logic capturing P?

Logics for any complexity class C

We can replace P by any complexity class.

Theorem (Fagin, 1974)

Existential second-order logic captures NP. Therefore, we have an effective
enumeration of nondeterministic polynomial time computable graph properties
in terms of corresponding nondeterministic polynomial time machines.

But for any natural complexity class C ⊆ P it not known whether there is a
logic capturing C , which is equivalent to the question:

Is there an effective enumeration of graph properties in C in terms of
corresponding machines with resource bound according to C, or
C-machines?

Logics for any complexity class C

We can replace P by any complexity class.

Theorem (Fagin, 1974)

Existential second-order logic captures NP. Therefore, we have an effective
enumeration of nondeterministic polynomial time computable graph properties
in terms of corresponding nondeterministic polynomial time machines.

But for any natural complexity class C ⊆ P it not known whether there is a
logic capturing C , which is equivalent to the question:

Is there an effective enumeration of graph properties in C in terms of
corresponding machines with resource bound according to C, or
C-machines?

Logics for any complexity class C

We can replace P by any complexity class.

Theorem (Fagin, 1974)

Existential second-order logic captures NP. Therefore, we have an effective
enumeration of nondeterministic polynomial time computable graph properties
in terms of corresponding nondeterministic polynomial time machines.

But for any natural complexity class C ⊆ P it not known whether there is a
logic capturing C , which is equivalent to the question:

Is there an effective enumeration of graph properties in C in terms of
corresponding machines with resource bound according to C, or
C-machines?

Logics for any complexity class C

We can replace P by any complexity class.

Theorem (Fagin, 1974)

Existential second-order logic captures NP. Therefore, we have an effective
enumeration of nondeterministic polynomial time computable graph properties
in terms of corresponding nondeterministic polynomial time machines.

But for any natural complexity class C ⊆ P it not known whether there is a
logic capturing C , which is equivalent to the question:

Is there an effective enumeration of graph properties in C in terms of
corresponding machines with resource bound according to C, or
C-machines?

Immerman and Vardi’s Theorems

Theorem
For C = L,NL,P we have an effective enumeration of ordered graph properties
in C in terms of corresponding C-machines.

I DTC, deterministic transitive closure logic, captures L on ordered
structures.

I TC, transitive closure logic, captures NL on ordered structures.

I LFP, least fixed-point logic, captures P on ordered structures.

Immerman and Vardi’s Theorems

Theorem
For C = L,NL,P we have an effective enumeration of ordered graph properties
in C in terms of corresponding C-machines.

I DTC, deterministic transitive closure logic, captures L on ordered
structures.

I TC, transitive closure logic, captures NL on ordered structures.

I LFP, least fixed-point logic, captures P on ordered structures.

Immerman and Vardi’s Theorems

Theorem
For C = L,NL,P we have an effective enumeration of ordered graph properties
in C in terms of corresponding C-machines.

I DTC, deterministic transitive closure logic, captures L on ordered
structures.

I TC, transitive closure logic, captures NL on ordered structures.

I LFP, least fixed-point logic, captures P on ordered structures.

Logics for any complexity class C (cont’d)

For two complexity classes C ⊆ C ′:

Is there an effective enumeration of graph properties in C in terms of
corresponding C ′-machines?

Theorem (C. and Flum, 2009)

We have an effective enumeration of graph properties in P in terms of
corresponding NP-machines.

Logics for any complexity class C (cont’d)

For two complexity classes C ⊆ C ′:

Is there an effective enumeration of graph properties in C in terms of
corresponding C ′-machines?

Theorem (C. and Flum, 2009)

We have an effective enumeration of graph properties in P in terms of
corresponding NP-machines.

Logics for any complexity class C (cont’d)

For two complexity classes C ⊆ C ′:

Is there an effective enumeration of graph properties in C in terms of
corresponding C ′-machines?

Theorem (C. and Flum, 2009)

We have an effective enumeration of graph properties in P in terms of
corresponding NP-machines.

Listings

Definition
Let C and C ′ be complexity classes, and Q ⊆ Σ∗. A listing of the C -subsets of
Q by C ′-machines is an algorithm L that outputs Turing machines M1,M2, . . .
of type C ′ such that{

L(Mi) | i ≥ 1
}

=
{

X ⊆ Q | X ∈ C
}
,

where L(Mi) is the language accepted by Mi ,

We write List(C ,Q,C ′) if there is a listing of the C -subsets of Q by
C ′-machines.

Listings

Definition
Let C and C ′ be complexity classes, and Q ⊆ Σ∗. A listing of the C -subsets of
Q by C ′-machines is an algorithm L that outputs Turing machines M1,M2, . . .
of type C ′ such that{

L(Mi) | i ≥ 1
}

=
{

X ⊆ Q | X ∈ C
}
,

where L(Mi) is the language accepted by Mi ,

We write List(C ,Q,C ′) if there is a listing of the C -subsets of Q by
C ′-machines.

Listings

Definition
Let C and C ′ be complexity classes, and Q ⊆ Σ∗. A listing of the C -subsets of
Q by C ′-machines is an algorithm L that outputs Turing machines M1,M2, . . .
of type C ′ such that{

L(Mi) | i ≥ 1
}

=
{

X ⊆ Q | X ∈ C
}
,

where L(Mi) is the language accepted by Mi ,

We write List(C ,Q,C ′) if there is a listing of the C -subsets of Q by
C ′-machines.

Our previous results

Theorem (C. and Flum, 2010)

If List(P,TAUT,P), then there is a logic for P.

List(P,TAUT,P) if and only if the logic LFPinv, the “order-invariant least
fixed-point logic LFP,” [Blass and Gurevich, 1988] captures P.

What if we replace P by L or NL?

Our previous results

Theorem (C. and Flum, 2010)

If List(P,TAUT,P), then there is a logic for P.

List(P,TAUT,P) if and only if the logic LFPinv, the “order-invariant least
fixed-point logic LFP,” [Blass and Gurevich, 1988] captures P.

What if we replace P by L or NL?

Our previous results

Theorem (C. and Flum, 2010)

If List(P,TAUT,P), then there is a logic for P.

List(P,TAUT,P) if and only if the logic LFPinv, the “order-invariant least
fixed-point logic LFP,” [Blass and Gurevich, 1988] captures P.

What if we replace P by L or NL?

Our previous results

Theorem (C. and Flum, 2010)

If List(P,TAUT,P), then there is a logic for P.

List(P,TAUT,P) if and only if the logic LFPinv, the “order-invariant least
fixed-point logic LFP,” [Blass and Gurevich, 1988] captures P.

What if we replace P by L or NL?

List(L,TAUT,L)

Theorem
Assume List(L,TAUT,L). Then List(P,TAUT,P). Hence, LFPinv captures
P.

We will need the following fact:

Lemma
TAUT has padding: there is a function pad : Σ∗ × Σ∗ → Σ∗ such that:

(i) It is computable in logarithmic space.

(ii) For any x , y ∈ Σ∗,
(
pad(x , y) ∈ TAUT ⇐⇒ x ∈ TAUT

)
.

(iii) For any x , y ∈ Σ∗, |pad(x , y)| > |x |+ |y |.
(iv) There is a logspace algorithm which, given pad(x , y) recovers y .

Remark
In all the following results, the only properties we need for TAUT: 1) it’s
coNP-completeness; 2) it has padding.

List(L,TAUT,L)

Theorem
Assume List(L,TAUT,L). Then List(P,TAUT,P). Hence, LFPinv captures
P.

We will need the following fact:

Lemma
TAUT has padding: there is a function pad : Σ∗ × Σ∗ → Σ∗ such that:

(i) It is computable in logarithmic space.

(ii) For any x , y ∈ Σ∗,
(
pad(x , y) ∈ TAUT ⇐⇒ x ∈ TAUT

)
.

(iii) For any x , y ∈ Σ∗, |pad(x , y)| > |x |+ |y |.
(iv) There is a logspace algorithm which, given pad(x , y) recovers y .

Remark
In all the following results, the only properties we need for TAUT: 1) it’s
coNP-completeness; 2) it has padding.

List(L,TAUT,L)

Theorem
Assume List(L,TAUT,L). Then List(P,TAUT,P). Hence, LFPinv captures
P.

We will need the following fact:

Lemma
TAUT has padding: there is a function pad : Σ∗ × Σ∗ → Σ∗ such that:

(i) It is computable in logarithmic space.

(ii) For any x , y ∈ Σ∗,
(
pad(x , y) ∈ TAUT ⇐⇒ x ∈ TAUT

)
.

(iii) For any x , y ∈ Σ∗, |pad(x , y)| > |x |+ |y |.
(iv) There is a logspace algorithm which, given pad(x , y) recovers y .

Remark
In all the following results, the only properties we need for TAUT: 1) it’s
coNP-completeness; 2) it has padding.

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P)

Let M be a machine. We set

Comp(M) :=
{

pad(x ,〈x , c〉)
| x ∈ Σ∗ and c is a computation of M accepting x

}
.

Note from pad(x , 〈x , c〉) we can recover both x and c in logarithmic space.

- comp(M) is in L.

- comp(M) ⊆ TAUT if and only if L(M) is a subset of TAUT.

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P)

Let M be a machine. We set

Comp(M) :=
{

pad(x ,〈x , c〉)
| x ∈ Σ∗ and c is a computation of M accepting x

}
.

Note from pad(x , 〈x , c〉) we can recover both x and c in logarithmic space.

- comp(M) is in L.

- comp(M) ⊆ TAUT if and only if L(M) is a subset of TAUT.

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P)

Let M be a machine. We set

Comp(M) :=
{

pad(x ,〈x , c〉)
| x ∈ Σ∗ and c is a computation of M accepting x

}
.

Note from pad(x , 〈x , c〉) we can recover both x and c in logarithmic space.

- comp(M) is in L.

- comp(M) ⊆ TAUT if and only if L(M) is a subset of TAUT.

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P)

Let M be a machine. We set

Comp(M) :=
{

pad(x ,〈x , c〉)
| x ∈ Σ∗ and c is a computation of M accepting x

}
.

Note from pad(x , 〈x , c〉) we can recover both x and c in logarithmic space.

- comp(M) is in L.

- comp(M) ⊆ TAUT if and only if L(M) is a subset of TAUT.

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P) (cont’d)

For two machines D and D′ let D′(D) be a machine that on every input x

1. simulates D on x and let c be the corresponding computation;

2. simulates D′ on pad(x , 〈x , c〉).

Let D be a P-machine that accepts a subset of TAUT. Then comp(D) is
accepted by an L-machine D′. It is easy to see

L(D′(D)) = L(D).

If D′ accepts a subset of TAUT, then so does D′(D) for every D.

Then the following enumeration witnesses List(P,TAUT,P):(
D′j(Di)

)
i,j≥1

,

where (Di)i≥1 is an enumeration of P-clocked machines and (D′j)j≥1 witnesses
List(L,TAUT,L).

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P) (cont’d)

For two machines D and D′ let D′(D) be a machine that on every input x

1. simulates D on x and let c be the corresponding computation;

2. simulates D′ on pad(x , 〈x , c〉).

Let D be a P-machine that accepts a subset of TAUT. Then comp(D) is
accepted by an L-machine D′. It is easy to see

L(D′(D)) = L(D).

If D′ accepts a subset of TAUT, then so does D′(D) for every D.

Then the following enumeration witnesses List(P,TAUT,P):(
D′j(Di)

)
i,j≥1

,

where (Di)i≥1 is an enumeration of P-clocked machines and (D′j)j≥1 witnesses
List(L,TAUT,L).

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P) (cont’d)

For two machines D and D′ let D′(D) be a machine that on every input x

1. simulates D on x and let c be the corresponding computation;

2. simulates D′ on pad(x , 〈x , c〉).

Let D be a P-machine that accepts a subset of TAUT. Then comp(D) is
accepted by an L-machine D′. It is easy to see

L(D′(D)) = L(D).

If D′ accepts a subset of TAUT, then so does D′(D) for every D.

Then the following enumeration witnesses List(P,TAUT,P):(
D′j(Di)

)
i,j≥1

,

where (Di)i≥1 is an enumeration of P-clocked machines and (D′j)j≥1 witnesses
List(L,TAUT,L).

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P) (cont’d)

For two machines D and D′ let D′(D) be a machine that on every input x

1. simulates D on x and let c be the corresponding computation;

2. simulates D′ on pad(x , 〈x , c〉).

Let D be a P-machine that accepts a subset of TAUT. Then comp(D) is
accepted by an L-machine D′. It is easy to see

L(D′(D)) = L(D).

If D′ accepts a subset of TAUT, then so does D′(D) for every D.

Then the following enumeration witnesses List(P,TAUT,P):(
D′j(Di)

)
i,j≥1

,

where (Di)i≥1 is an enumeration of P-clocked machines and (D′j)j≥1 witnesses
List(L,TAUT,L).

Proof of List(L,TAUT,L) ⇒ List(P,TAUT,P) (cont’d)

For two machines D and D′ let D′(D) be a machine that on every input x

1. simulates D on x and let c be the corresponding computation;

2. simulates D′ on pad(x , 〈x , c〉).

Let D be a P-machine that accepts a subset of TAUT. Then comp(D) is
accepted by an L-machine D′. It is easy to see

L(D′(D)) = L(D).

If D′ accepts a subset of TAUT, then so does D′(D) for every D.

Then the following enumeration witnesses List(P,TAUT,P):(
D′j(Di)

)
i,j≥1

,

where (Di)i≥1 is an enumeration of P-clocked machines and (D′j)j≥1 witnesses
List(L,TAUT,L).

Order invariance

Let L be one of DTC, TC and LFP.

For every vocabulary τ we let

τ< := τ ∪̇ {<}.

Let ϕ be an L[τ<]-sentence and n ≥ 1. ϕ is ≤ n-invariant if for all τ -structures
A with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L ϕ ⇐⇒ (A, <2) |=L ϕ.

We define

L-Inv :=
{

(ϕ, n) | ϕ L-sentence, n ≥ 1, and ϕ ≤ n-invariant
}
.

Order invariance

Let L be one of DTC, TC and LFP.

For every vocabulary τ we let

τ< := τ ∪̇ {<}.

Let ϕ be an L[τ<]-sentence and n ≥ 1. ϕ is ≤ n-invariant if for all τ -structures
A with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L ϕ ⇐⇒ (A, <2) |=L ϕ.

We define

L-Inv :=
{

(ϕ, n) | ϕ L-sentence, n ≥ 1, and ϕ ≤ n-invariant
}
.

Order invariance

Let L be one of DTC, TC and LFP.

For every vocabulary τ we let

τ< := τ ∪̇ {<}.

Let ϕ be an L[τ<]-sentence and n ≥ 1. ϕ is ≤ n-invariant if for all τ -structures
A with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L ϕ ⇐⇒ (A, <2) |=L ϕ.

We define

L-Inv :=
{

(ϕ, n) | ϕ L-sentence, n ≥ 1, and ϕ ≤ n-invariant
}
.

Order invariance

Let L be one of DTC, TC and LFP.

For every vocabulary τ we let

τ< := τ ∪̇ {<}.

Let ϕ be an L[τ<]-sentence and n ≥ 1. ϕ is ≤ n-invariant if for all τ -structures
A with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L ϕ ⇐⇒ (A, <2) |=L ϕ.

We define

L-Inv :=
{

(ϕ, n) | ϕ L-sentence, n ≥ 1, and ϕ ≤ n-invariant
}
.

Order invariance

Let L be one of DTC, TC and LFP.

For every vocabulary τ we let

τ< := τ ∪̇ {<}.

Let ϕ be an L[τ<]-sentence and n ≥ 1. ϕ is ≤ n-invariant if for all τ -structures
A with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L ϕ ⇐⇒ (A, <2) |=L ϕ.

We define

L-Inv :=
{

(ϕ, n) | ϕ L-sentence, n ≥ 1, and ϕ ≤ n-invariant
}
.

The invariant logics Linv

For every vocabulary τ we set

Linv[τ] := L[τ<]

For every ϕ ∈ Linv[τ] and every τ -structure A

A |=Linv ϕ

⇐⇒
(

(ϕ, |A|) ∈ L-Inv and (A, <) |=L ϕ for some/all orderings < on A
)
.

The invariant logics Linv

For every vocabulary τ we set

Linv[τ] := L[τ<]

For every ϕ ∈ Linv[τ] and every τ -structure A

A |=Linv ϕ

⇐⇒
(

(ϕ, |A|) ∈ L-Inv and (A, <) |=L ϕ for some/all orderings < on A
)
.

The invariant logics Linv

For every vocabulary τ we set

Linv[τ] := L[τ<]

For every ϕ ∈ Linv[τ] and every τ -structure A

A |=Linv ϕ

⇐⇒
(

(ϕ, |A|) ∈ L-Inv and (A, <) |=L ϕ for some/all orderings < on A
)
.

The invariant logics Linv (cont’d)

Question
Does LFPinv/TCinv/DTCinv capture P/NL/L?

Lemma
Let K be a class of structures.

K is in P/NL/L ⇐⇒ for some ϕ ∈ LFPinv/TCinv/DTCinv

K =
{
A | A |=LFPinv/TCinv/DTCinv

ϕ
}
.

Question
Is there an algorithm A deciding (ϕ, |A|) ∈ L-Inv in such a way that for every
fixed ϕ ∈ L:

I if L = LFP, then A runs in time ‖A‖O(1);

I if L = TC, then A runs in nondeterministic space O(log ‖A‖);

I if L = DTC, then A runs in deterministic space O(log ‖A‖)?

The invariant logics Linv (cont’d)

Question
Does LFPinv/TCinv/DTCinv capture P/NL/L?

Lemma
Let K be a class of structures.

K is in P/NL/L ⇐⇒ for some ϕ ∈ LFPinv/TCinv/DTCinv

K =
{
A | A |=LFPinv/TCinv/DTCinv

ϕ
}
.

Question
Is there an algorithm A deciding (ϕ, |A|) ∈ L-Inv in such a way that for every
fixed ϕ ∈ L:

I if L = LFP, then A runs in time ‖A‖O(1);

I if L = TC, then A runs in nondeterministic space O(log ‖A‖);

I if L = DTC, then A runs in deterministic space O(log ‖A‖)?

The invariant logics Linv (cont’d)

Question
Does LFPinv/TCinv/DTCinv capture P/NL/L?

Lemma
Let K be a class of structures.

K is in P/NL/L ⇐⇒ for some ϕ ∈ LFPinv/TCinv/DTCinv

K =
{
A | A |=LFPinv/TCinv/DTCinv

ϕ
}
.

Question
Is there an algorithm A deciding (ϕ, |A|) ∈ L-Inv in such a way that for every
fixed ϕ ∈ L:

I if L = LFP, then A runs in time ‖A‖O(1);

I if L = TC, then A runs in nondeterministic space O(log ‖A‖);

I if L = DTC, then A runs in deterministic space O(log ‖A‖)?

The invariant logics Linv (cont’d)

Question
Does LFPinv/TCinv/DTCinv capture P/NL/L?

Lemma
Let K be a class of structures.

K is in P/NL/L ⇐⇒ for some ϕ ∈ LFPinv/TCinv/DTCinv

K =
{
A | A |=LFPinv/TCinv/DTCinv

ϕ
}
.

Question
Is there an algorithm A deciding (ϕ, |A|) ∈ L-Inv in such a way that for every
fixed ϕ ∈ L:

I if L = LFP, then A runs in time ‖A‖O(1);

I if L = TC, then A runs in nondeterministic space O(log ‖A‖);

I if L = DTC, then A runs in deterministic space O(log ‖A‖)?

Linking Listings to Linv

Recall:

Theorem (C. and Flum, 2010)

List(P,TAUT,P) if and only if LFPinv captures P.

Theorem

I List(NL,TAUT,NL) if and only if TCinv captures NL.

I List(L,TAUT,L) if and only if DTCinv captures L.

Corollary

DTCinv captures L =⇒ TCinv captures NL =⇒ LFPinv captures P.

Remark
It is not known whether the existence of a logic capturing P is implied by the
existence of a logic capturing L.

Linking Listings to Linv

Recall:

Theorem (C. and Flum, 2010)

List(P,TAUT,P) if and only if LFPinv captures P.

Theorem

I List(NL,TAUT,NL) if and only if TCinv captures NL.

I List(L,TAUT,L) if and only if DTCinv captures L.

Corollary

DTCinv captures L =⇒ TCinv captures NL =⇒ LFPinv captures P.

Remark
It is not known whether the existence of a logic capturing P is implied by the
existence of a logic capturing L.

Linking Listings to Linv

Recall:

Theorem (C. and Flum, 2010)

List(P,TAUT,P) if and only if LFPinv captures P.

Theorem

I List(NL,TAUT,NL) if and only if TCinv captures NL.

I List(L,TAUT,L) if and only if DTCinv captures L.

Corollary

DTCinv captures L =⇒ TCinv captures NL =⇒ LFPinv captures P.

Remark
It is not known whether the existence of a logic capturing P is implied by the
existence of a logic capturing L.

Linking Listings to Linv

Recall:

Theorem (C. and Flum, 2010)

List(P,TAUT,P) if and only if LFPinv captures P.

Theorem

I List(NL,TAUT,NL) if and only if TCinv captures NL.

I List(L,TAUT,L) if and only if DTCinv captures L.

Corollary

DTCinv captures L =⇒ TCinv captures NL =⇒ LFPinv captures P.

Remark
It is not known whether the existence of a logic capturing P is implied by the
existence of a logic capturing L.

List(L,TAUT,L) implies that DTCinv captures L

Recall for every ϕ ∈ DTCinv[τ] and every τ -structure A

A |=DTCinv ϕ

⇐⇒
(

(ϕ, |A|) ∈ L-Inv and (A, <) |=L ϕ for some < on A
)
.

So our goal is to construct an algorithm A deciding (ϕ, |A|) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log ‖A‖) = O(log |A|).

List(L,TAUT,L) implies that DTCinv captures L

Recall for every ϕ ∈ DTCinv[τ] and every τ -structure A

A |=DTCinv ϕ

⇐⇒
(

(ϕ, |A|) ∈ L-Inv and (A, <) |=L ϕ for some < on A
)
.

So our goal is to construct an algorithm A deciding (ϕ, |A|) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log ‖A‖) = O(log |A|).

List(L,TAUT,L) implies that DTCinv captures L

Recall for every ϕ ∈ DTCinv[τ] and every τ -structure A

A |=DTCinv ϕ

⇐⇒
(

(ϕ, |A|) ∈ L-Inv and (A, <) |=L ϕ for some < on A
)
.

So our goal is to construct an algorithm A deciding (ϕ, |A|) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log ‖A‖) = O(log |A|).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall that (ϕ, n) ∈ DTC-Inv, i.e., ϕ is ≤ n-invariant, if for all τ -structures A
with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=DTC ϕ ⇐⇒ (A, <2) |=DTC ϕ.

Therefore the following padded version of DTC-Inv is in coNP:

Q :=
{(
ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣ (ϕ, n) ∈ DTC-Inv
}
.

Hence, there is a logspace reduction α from Q to TAUT:

(ϕ, n, . . .) 7→ α(ϕ, n, . . .).

Since TAUT is paddable, we can assume that ϕ and n can be recovered from
α(ϕ, n, . . .).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall that (ϕ, n) ∈ DTC-Inv, i.e., ϕ is ≤ n-invariant, if for all τ -structures A
with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=DTC ϕ ⇐⇒ (A, <2) |=DTC ϕ.

Therefore the following padded version of DTC-Inv is in coNP:

Q :=
{(
ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣ (ϕ, n) ∈ DTC-Inv
}
.

Hence, there is a logspace reduction α from Q to TAUT:

(ϕ, n, . . .) 7→ α(ϕ, n, . . .).

Since TAUT is paddable, we can assume that ϕ and n can be recovered from
α(ϕ, n, . . .).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall that (ϕ, n) ∈ DTC-Inv, i.e., ϕ is ≤ n-invariant, if for all τ -structures A
with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=DTC ϕ ⇐⇒ (A, <2) |=DTC ϕ.

Therefore the following padded version of DTC-Inv is in coNP:

Q :=
{(
ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣ (ϕ, n) ∈ DTC-Inv
}
.

Hence, there is a logspace reduction α from Q to TAUT:

(ϕ, n, . . .) 7→ α(ϕ, n, . . .).

Since TAUT is paddable, we can assume that ϕ and n can be recovered from
α(ϕ, n, . . .).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall that (ϕ, n) ∈ DTC-Inv, i.e., ϕ is ≤ n-invariant, if for all τ -structures A
with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=DTC ϕ ⇐⇒ (A, <2) |=DTC ϕ.

Therefore the following padded version of DTC-Inv is in coNP:

Q :=
{(
ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣ (ϕ, n) ∈ DTC-Inv
}
.

Hence, there is a logspace reduction α from Q to TAUT:

(ϕ, n, . . .) 7→ α(ϕ, n, . . .).

Since TAUT is paddable, we can assume that ϕ and n can be recovered from
α(ϕ, n, . . .).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Let ϕ ∈ DTC. We consider the set

Q(ϕ) :=
{
α(ϕ, n, . . .)

∣∣ n ∈ N and (ϕ, n) ∈ DTC-Inv
}
.

Assume that (ϕ, n) ∈ DTC-Inv for all n ∈ N. Recall we can recover ϕ and n
from α(ϕ, n, . . .) in logspace. So Q(ϕ) is infinite and in L.

Then List(L,TAUT,L) implies that Q(ϕ) is one of the L(Mi) in the
corresponding listing:

M1,M2, . . . ,

say Miϕ .

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Let ϕ ∈ DTC.

We consider the set

Q(ϕ) :=
{
α(ϕ, n, . . .)

∣∣ n ∈ N and (ϕ, n) ∈ DTC-Inv
}
.

Assume that (ϕ, n) ∈ DTC-Inv for all n ∈ N. Recall we can recover ϕ and n
from α(ϕ, n, . . .) in logspace. So Q(ϕ) is infinite and in L.

Then List(L,TAUT,L) implies that Q(ϕ) is one of the L(Mi) in the
corresponding listing:

M1,M2, . . . ,

say Miϕ .

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Let ϕ ∈ DTC. We consider the set

Q(ϕ) :=
{
α(ϕ, n, . . .)

∣∣ n ∈ N and (ϕ, n) ∈ DTC-Inv
}
.

Assume that (ϕ, n) ∈ DTC-Inv for all n ∈ N. Recall we can recover ϕ and n
from α(ϕ, n, . . .) in logspace. So Q(ϕ) is infinite and in L.

Then List(L,TAUT,L) implies that Q(ϕ) is one of the L(Mi) in the
corresponding listing:

M1,M2, . . . ,

say Miϕ .

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Let ϕ ∈ DTC. We consider the set

Q(ϕ) :=
{
α(ϕ, n, . . .)

∣∣ n ∈ N and (ϕ, n) ∈ DTC-Inv
}
.

Assume that (ϕ, n) ∈ DTC-Inv for all n ∈ N.

Recall we can recover ϕ and n
from α(ϕ, n, . . .) in logspace. So Q(ϕ) is infinite and in L.

Then List(L,TAUT,L) implies that Q(ϕ) is one of the L(Mi) in the
corresponding listing:

M1,M2, . . . ,

say Miϕ .

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Let ϕ ∈ DTC. We consider the set

Q(ϕ) :=
{
α(ϕ, n, . . .)

∣∣ n ∈ N and (ϕ, n) ∈ DTC-Inv
}
.

Assume that (ϕ, n) ∈ DTC-Inv for all n ∈ N. Recall we can recover ϕ and n
from α(ϕ, n, . . .) in logspace. So Q(ϕ) is infinite and in L.

Then List(L,TAUT,L) implies that Q(ϕ) is one of the L(Mi) in the
corresponding listing:

M1,M2, . . . ,

say Miϕ .

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Let ϕ ∈ DTC. We consider the set

Q(ϕ) :=
{
α(ϕ, n, . . .)

∣∣ n ∈ N and (ϕ, n) ∈ DTC-Inv
}
.

Assume that (ϕ, n) ∈ DTC-Inv for all n ∈ N. Recall we can recover ϕ and n
from α(ϕ, n, . . .) in logspace. So Q(ϕ) is infinite and in L.

Then List(L,TAUT,L) implies that Q(ϕ) is one of the L(Mi) in the
corresponding listing:

M1,M2, . . . ,

say Miϕ .

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Now we consider a first algorithm I which on every instance (ϕ, n) of DTC-Inv

1. k ← 1;

2. generates the machine Mk in the listing List(L,TAUT,L);

3. simulates all M1, . . . ,Mk on input (ϕ, n, 1 · · · 1) using space k · log n;

4. if one Mi accepts α(ϕ, n, . . .), then accepts;

5. k ← k + 1 and goes to 2.

If (ϕ, n) ∈ DTC-Inv for all n ∈ N, recall Miϕ decides
{
α(ϕ, n, . . .)

∣∣ n ∈ N
}

in
logspace, i.e.,

O

log
∣∣∣(ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣
 = O(|ϕ| · log n) = O(log n),

where the second equality is by that ϕ is fixed. Hence, the algorithm I also
uses space O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Now we consider a first algorithm I which on every instance (ϕ, n) of DTC-Inv

1. k ← 1;

2. generates the machine Mk in the listing List(L,TAUT,L);

3. simulates all M1, . . . ,Mk on input (ϕ, n, 1 · · · 1) using space k · log n;

4. if one Mi accepts α(ϕ, n, . . .), then accepts;

5. k ← k + 1 and goes to 2.

If (ϕ, n) ∈ DTC-Inv for all n ∈ N, recall Miϕ decides
{
α(ϕ, n, . . .)

∣∣ n ∈ N
}

in
logspace, i.e.,

O

log
∣∣∣(ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣
 = O(|ϕ| · log n) = O(log n),

where the second equality is by that ϕ is fixed. Hence, the algorithm I also
uses space O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Now we consider a first algorithm I which on every instance (ϕ, n) of DTC-Inv

1. k ← 1;

2. generates the machine Mk in the listing List(L,TAUT,L);

3. simulates all M1, . . . ,Mk on input (ϕ, n, 1 · · · 1) using space k · log n;

4. if one Mi accepts α(ϕ, n, . . .), then accepts;

5. k ← k + 1 and goes to 2.

If (ϕ, n) ∈ DTC-Inv for all n ∈ N, recall Miϕ decides
{
α(ϕ, n, . . .)

∣∣ n ∈ N
}

in
logspace,

i.e.,

O

log
∣∣∣(ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣
 = O(|ϕ| · log n) = O(log n),

where the second equality is by that ϕ is fixed. Hence, the algorithm I also
uses space O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Now we consider a first algorithm I which on every instance (ϕ, n) of DTC-Inv

1. k ← 1;

2. generates the machine Mk in the listing List(L,TAUT,L);

3. simulates all M1, . . . ,Mk on input (ϕ, n, 1 · · · 1) using space k · log n;

4. if one Mi accepts α(ϕ, n, . . .), then accepts;

5. k ← k + 1 and goes to 2.

If (ϕ, n) ∈ DTC-Inv for all n ∈ N, recall Miϕ decides
{
α(ϕ, n, . . .)

∣∣ n ∈ N
}

in
logspace, i.e.,

O

log
∣∣∣(ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣
 = O(|ϕ| · log n) = O(log n),

where the second equality is by that ϕ is fixed.

Hence, the algorithm I also
uses space O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Now we consider a first algorithm I which on every instance (ϕ, n) of DTC-Inv

1. k ← 1;

2. generates the machine Mk in the listing List(L,TAUT,L);

3. simulates all M1, . . . ,Mk on input (ϕ, n, 1 · · · 1) using space k · log n;

4. if one Mi accepts α(ϕ, n, . . .), then accepts;

5. k ← k + 1 and goes to 2.

If (ϕ, n) ∈ DTC-Inv for all n ∈ N, recall Miϕ decides
{
α(ϕ, n, . . .)

∣∣ n ∈ N
}

in
logspace, i.e.,

O

log
∣∣∣(ϕ, n, 1 · · · 1︸ ︷︷ ︸

n|ϕ| times

)∣∣∣
 = O(|ϕ| · log n) = O(log n),

where the second equality is by that ϕ is fixed. Hence, the algorithm I also
uses space O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

We consider a second algorithm B which on every instance (ϕ, n):

1. for every i = 1, 2, 3, . . ., every A and every two orderings <1 and <2

checks whether
(

(A, <1) |=DTC ϕ ⇐⇒ (A, <1) |=DTC ϕ
)

; stops once

the equivalence does not hold;

2. if n < i , then accepts else rejects.

If (ϕ, n) /∈ DTC-Inv for some n ∈ N, then Step 1 eventually halts with the
minimum i with (ϕ, i) /∈ DTC-Inv. Thus Step 2 answers correctly.

The space used by B in the first step only depends on ϕ, hence by fixing ϕ the
total space that B needs is

O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

We consider a second algorithm B which on every instance (ϕ, n):

1. for every i = 1, 2, 3, . . ., every A and every two orderings <1 and <2

checks whether
(

(A, <1) |=DTC ϕ ⇐⇒ (A, <1) |=DTC ϕ
)

; stops once

the equivalence does not hold;

2. if n < i , then accepts else rejects.

If (ϕ, n) /∈ DTC-Inv for some n ∈ N, then Step 1 eventually halts with the
minimum i with (ϕ, i) /∈ DTC-Inv. Thus Step 2 answers correctly.

The space used by B in the first step only depends on ϕ, hence by fixing ϕ the
total space that B needs is

O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

We consider a second algorithm B which on every instance (ϕ, n):

1. for every i = 1, 2, 3, . . ., every A and every two orderings <1 and <2

checks whether
(

(A, <1) |=DTC ϕ ⇐⇒ (A, <1) |=DTC ϕ
)

; stops once

the equivalence does not hold;

2. if n < i , then accepts else rejects.

If (ϕ, n) /∈ DTC-Inv for some n ∈ N, then Step 1 eventually halts with the
minimum i with (ϕ, i) /∈ DTC-Inv. Thus Step 2 answers correctly.

The space used by B in the first step only depends on ϕ, hence by fixing ϕ the
total space that B needs is

O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

We consider a second algorithm B which on every instance (ϕ, n):

1. for every i = 1, 2, 3, . . ., every A and every two orderings <1 and <2

checks whether
(

(A, <1) |=DTC ϕ ⇐⇒ (A, <1) |=DTC ϕ
)

; stops once

the equivalence does not hold;

2. if n < i , then accepts else rejects.

If (ϕ, n) /∈ DTC-Inv for some n ∈ N, then Step 1 eventually halts with the
minimum i with (ϕ, i) /∈ DTC-Inv.

Thus Step 2 answers correctly.

The space used by B in the first step only depends on ϕ, hence by fixing ϕ the
total space that B needs is

O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

We consider a second algorithm B which on every instance (ϕ, n):

1. for every i = 1, 2, 3, . . ., every A and every two orderings <1 and <2

checks whether
(

(A, <1) |=DTC ϕ ⇐⇒ (A, <1) |=DTC ϕ
)

; stops once

the equivalence does not hold;

2. if n < i , then accepts else rejects.

If (ϕ, n) /∈ DTC-Inv for some n ∈ N, then Step 1 eventually halts with the
minimum i with (ϕ, i) /∈ DTC-Inv. Thus Step 2 answers correctly.

The space used by B in the first step only depends on ϕ, hence by fixing ϕ the
total space that B needs is

O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

We consider a second algorithm B which on every instance (ϕ, n):

1. for every i = 1, 2, 3, . . ., every A and every two orderings <1 and <2

checks whether
(

(A, <1) |=DTC ϕ ⇐⇒ (A, <1) |=DTC ϕ
)

; stops once

the equivalence does not hold;

2. if n < i , then accepts else rejects.

If (ϕ, n) /∈ DTC-Inv for some n ∈ N, then Step 1 eventually halts with the
minimum i with (ϕ, i) /∈ DTC-Inv. Thus Step 2 answers correctly.

The space used by B in the first step only depends on ϕ, hence by fixing ϕ the
total space that B needs is

O(log n).

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall our goal is to construct an algorithm A deciding (ϕ, n) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log n).

The desired algorithm A on every instance (ϕ, n)

1. `← 1;

2. simulates both I and B using space at most `;

3. if one of the simulation halts, then accepts or rejects accordingly;

4. otherwise `← `+ 1 and goes to 1.

Then for every fixed ϕ ∈ DTC

I if (ϕ, n) ∈ DTC-Inv for all n ∈ N, then I uses space O(log n), and so does
A;

I if (ϕ, n) /∈ DTC-Inv for some n ∈ N, then B uses space O(log n), and so
does A.

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall our goal is to construct an algorithm A deciding (ϕ, n) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log n).

The desired algorithm A on every instance (ϕ, n)

1. `← 1;

2. simulates both I and B using space at most `;

3. if one of the simulation halts, then accepts or rejects accordingly;

4. otherwise `← `+ 1 and goes to 1.

Then for every fixed ϕ ∈ DTC

I if (ϕ, n) ∈ DTC-Inv for all n ∈ N, then I uses space O(log n), and so does
A;

I if (ϕ, n) /∈ DTC-Inv for some n ∈ N, then B uses space O(log n), and so
does A.

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall our goal is to construct an algorithm A deciding (ϕ, n) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log n).

The desired algorithm A on every instance (ϕ, n)

1. `← 1;

2. simulates both I and B using space at most `;

3. if one of the simulation halts, then accepts or rejects accordingly;

4. otherwise `← `+ 1 and goes to 1.

Then for every fixed ϕ ∈ DTC

I if (ϕ, n) ∈ DTC-Inv for all n ∈ N, then I uses space O(log n), and so does
A;

I if (ϕ, n) /∈ DTC-Inv for some n ∈ N, then B uses space O(log n), and so
does A.

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall our goal is to construct an algorithm A deciding (ϕ, n) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log n).

The desired algorithm A on every instance (ϕ, n)

1. `← 1;

2. simulates both I and B using space at most `;

3. if one of the simulation halts, then accepts or rejects accordingly;

4. otherwise `← `+ 1 and goes to 1.

Then for every fixed ϕ ∈ DTC

I if (ϕ, n) ∈ DTC-Inv for all n ∈ N, then I uses space O(log n), and so does
A;

I if (ϕ, n) /∈ DTC-Inv for some n ∈ N, then B uses space O(log n), and so
does A.

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall our goal is to construct an algorithm A deciding (ϕ, n) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log n).

The desired algorithm A on every instance (ϕ, n)

1. `← 1;

2. simulates both I and B using space at most `;

3. if one of the simulation halts, then accepts or rejects accordingly;

4. otherwise `← `+ 1 and goes to 1.

Then for every fixed ϕ ∈ DTC

I if (ϕ, n) ∈ DTC-Inv for all n ∈ N, then I uses space O(log n), and so does
A;

I if (ϕ, n) /∈ DTC-Inv for some n ∈ N, then B uses space O(log n), and so
does A.

List(L,TAUT,L) implies that DTCinv captures L (cont’d)

Recall our goal is to construct an algorithm A deciding (ϕ, n) ∈ DTC-Inv in
such a way that for every fixed ϕ ∈ DTC the algorithm A runs in deterministic
space O(log n).

The desired algorithm A on every instance (ϕ, n)

1. `← 1;

2. simulates both I and B using space at most `;

3. if one of the simulation halts, then accepts or rejects accordingly;

4. otherwise `← `+ 1 and goes to 1.

Then for every fixed ϕ ∈ DTC

I if (ϕ, n) ∈ DTC-Inv for all n ∈ N, then I uses space O(log n), and so does
A;

I if (ϕ, n) /∈ DTC-Inv for some n ∈ N, then B uses space O(log n), and so
does A.

Optimality

Theorem (Kraj́ıc̆ek and Pudlák, 1989; Sadowski, 2002; C. and Flum,
2010)

The following are all equivalent.

I List(P,TAUT,P).

I LFPinv captures P.

I TAUT has a polynomial optimal proof system.

I TAUT has an almost optimal algorithm.

Space optimality

Theorem
The following are all equivalent.

I List(L,TAUT,L).

I DTCinv captures L.

I TAUT has a space optimal logspace proof system.

I TAUT has an almost space optimal algorithm.

Logspace proof systems

Definition

1. A logspace proof system for TAUT is a surjective function
P : Σ∗ → TAUT computable in logarithmic space.

2. Let P,P ′ : Σ∗ → TAUT be logspace proof systems for TAUT. We say
that P logspace simulates P ′ if there exists a logspace computable
function g : Σ∗ → Σ∗ such that P(g(w)) = P ′(w) for every w ∈ Σ∗.

3. A logspace proof system for TAUT is space optimal if it logspace simulates
every logspace proof system for TAUT.

Logspace proof systems

Definition

1. A logspace proof system for TAUT is a surjective function
P : Σ∗ → TAUT computable in logarithmic space.

2. Let P,P ′ : Σ∗ → TAUT be logspace proof systems for TAUT. We say
that P logspace simulates P ′ if there exists a logspace computable
function g : Σ∗ → Σ∗ such that P(g(w)) = P ′(w) for every w ∈ Σ∗.

3. A logspace proof system for TAUT is space optimal if it logspace simulates
every logspace proof system for TAUT.

Logspace proof systems

Definition

1. A logspace proof system for TAUT is a surjective function
P : Σ∗ → TAUT computable in logarithmic space.

2. Let P,P ′ : Σ∗ → TAUT be logspace proof systems for TAUT. We say
that P logspace simulates P ′ if there exists a logspace computable
function g : Σ∗ → Σ∗ such that P(g(w)) = P ′(w) for every w ∈ Σ∗.

3. A logspace proof system for TAUT is space optimal if it logspace simulates
every logspace proof system for TAUT.

Logspace proof systems

Definition

1. A logspace proof system for TAUT is a surjective function
P : Σ∗ → TAUT computable in logarithmic space.

2. Let P,P ′ : Σ∗ → TAUT be logspace proof systems for TAUT. We say
that P logspace simulates P ′ if there exists a logspace computable
function g : Σ∗ → Σ∗ such that P(g(w)) = P ′(w) for every w ∈ Σ∗.

3. A logspace proof system for TAUT is space optimal if it logspace simulates
every logspace proof system for TAUT.

Almost space optimal algorithms

Definition
A deterministic algorithm A deciding TAUT is almost space optimal for TAUT
if for every deterministic algorithm B which decides TAUT there is a d ∈ N
such that for all x ∈ TAUT

sA(x) ≤ d · (sB(x) + log |x |),

where sA(x) is the space required by A on x , and similarly for sB(x).

Almost space optimal algorithms

Definition
A deterministic algorithm A deciding TAUT is almost space optimal for TAUT
if for every deterministic algorithm B which decides TAUT there is a d ∈ N
such that for all x ∈ TAUT

sA(x) ≤ d · (sB(x) + log |x |),

where sA(x) is the space required by A on x , and similarly for sB(x).

Space optimality implies time optimality

Corollary

If TAUT has an almost space algorithm, then TAUT has an almost (time)
optimal algorithm.

Definition
A deterministic algorithm A deciding TAUT is (time) optimal for TAUT if for
every deterministic algorithm B which decides TAUT and for all x ∈ TAUT

tA(x) ≤ (tB(x) + |x |)O(1),

where tA(x) is the time required by A on x , and similarly for tB(x).

Space optimality implies time optimality

Corollary

If TAUT has an almost space algorithm, then TAUT has an almost (time)
optimal algorithm.

Definition
A deterministic algorithm A deciding TAUT is (time) optimal for TAUT if for
every deterministic algorithm B which decides TAUT and for all x ∈ TAUT

tA(x) ≤ (tB(x) + |x |)O(1),

where tA(x) is the time required by A on x , and similarly for tB(x).

Space optimality implies time optimality

Corollary

If TAUT has an almost space algorithm, then TAUT has an almost (time)
optimal algorithm.

Definition
A deterministic algorithm A deciding TAUT is (time) optimal for TAUT if for
every deterministic algorithm B which decides TAUT and for all x ∈ TAUT

tA(x) ≤ (tB(x) + |x |)O(1),

where tA(x) is the time required by A on x , and similarly for tB(x).

Thank You!

	Background
	Listings
	Logics
	Optimality

