
Temporal Specification
with

Accumulative Values

Udi Boker

Joint work with
Krishnendu Chatterjee, Thomas Henzinger and Orna Kupferman

LICS 2011

2

The Current Paradigm

Model Checking (Bool-System, Bool-Spec)

Boolean Systems

E.g. Kripke structure:
p,q

qp
Boolean Specifications

E.g. LTL formula: G(p → Fq)

CTL formula: EF(q ∧ AX(p))

Good, But Not Enough
• Verifying finite-state systems and temporal

specifications is very useful.

• Yet, it has a significant limitation of only handling
Boolean systems and specifications.

• There is a growing demand for handling
quantitative systems and specifications.

3

4

Partial Answer: Automata Specifications

• Currently, specific quantitative objectives are
handled by means of acceptance conditions
to weighted automata:
� Energy

� Mean payoff (Limit average)

� Discounted sum

• The Cons:
� Specific objectives.

� No integration within a specification language.

� Automata are less friendly as specifications.

5

Our Goal: Quantitative Specifications

We want to enrich
temporal-logic specifications
with quantitative assertions....

E.g. “The total energy is always positive
and the average income is
eventually above 10,000 or …”

Model Checking (Bool -System, Bool -Spec)Quan Quan

6

Quantitative Systems

• Having numeric variables instead of Boolean
ones.

u=3
v=5

u=0
v=7

u=1
v=2

7

Quantitative/Boolean Systems

• Systems usually use rich variables including numbers.

• For Boolean specifications the numeric variables are
represented by Boolean variables.

“Eventually v<7” by “Eventually ¬r ∨ ¬s ∨ ¬t”

u=3
v=5

p,q
r,t

u by p,q
v by r,s,t

u=0
v=7

r,s,tu=1
v=2

q
s

8

Quantitative Kripke Structures

• Local numeric properties, as “v<7”, are easily
captured by the ω-regular paradigm.

• However, “The total sum of v < 7”
is no longer ω-regular-definable.

� It is based on an accumulative property.

� It relates to an unbounded number of values.

� It refers to the “numerical meaning” of v.

• Quantitative-specification relates, in general,
to quantitative Kripke structures.

9

Accumulative Properties - Motivation

• Accumulation lies in the heart of quantitative
objectives.

� Summation (energy):

� Average (mean payoff):

� Discounted-sum:

• Summarizes entire computation-prefix.

• Highly interesting for high-level specifications.

1

 i

n

i

x

=
∑

1

1
 i

n

i
n

x

=
∑

1

 i

n

i

nxλ
=
∑

Sum/Avg Semantics
• We consider the computation tree of a quantitative Kripke

structure.

• The value of Sum(v) at a tree node is the summation of v
along the route to the node.

• The value of Avg(v) is Sum(v) divided by the route’s length.

v=3
s1

v=1
s3

v=-5
s2

s1
Sum(v) = 3
Avg(v) = 3

s3s2
Sum(v) = 4
Avg(v) = 2

Sum(v) = -2
Avg(v) = -1

s1
Sum(v) = 1

Avg(v) = 1/3
s2

s3

10

.

.

.

11

A Specific Goal

• Enrich linear/branching temporal logic with the
following atomic assertions (c is a constant):

� Sum(v) ≥ c ; Sum(v) ≥ Sum(u)

� Avg(v) ≥ c ; Avg(v) ≥ Avg(u)

• Examples:

� Linear: G(p → (q ∨ Sum(u)=5 ∧ Avg(v)<3))

� Branching: EF(Avg(u)<Avg(v) ∧ AG(p→q))

12

Avg ⇔ Sum

• We can express Avg propositions with Sum
propositions and vice versa:

� Avg(v) ≥ c iff Avg(v’) ≥ 0
for a new variable v’= v-c in all states.

� Avg(v’) ≥ 0 iff Sum(v’) ≥ 0

• Comparing between accumulative variables is
reduced to comparing against a constant:

� Sum(u) ≥ Sum(v) iff Sum(d)≥0
for a new variable d=u-v in all states.

13

A Specific Question

• Which linear/branching temporal logic can be
enriched with Sum(v) ≥ 0, while allowing for a
decidable model-checking procedure?
� CTL* ?

� LTL ?

� CTL ?

� Any standard temporal logic ?

• The question may also refer to a Boolean Kripke
structure, adding to the logic the atomic
assertion Avg(p)≥½.

14

Some Hints (or not…)

• Kripke structures with accumulative sums take us
from the comfort finite-system zone to the
hazardous inifinite-system zone.

� They are almost like counter machines, with the
crucial difference of not branching by the sum-values.

� They are almost like Petri-nets, with the difference
that the latter must always have positive sums.

• Basic questions on multiple-counter machines are
undecidable [Minsky 67].

• Model checking Petri-nets is undeciable with respect
to all relevant temporal logics [Esparza 95].

Energy objective

AG(Sum(v)≥0)

Combined energies

AG(V≥0 ∨ U≥0)

EF (UB–) [81’]

EX, EF, ¬, ∧

RTL [80’]
LTL without Until

CTL [82’] LTL [77’]

CTL* [86’]

A single variable;
A stand alone query.

Enriches the expresiveness.

EG [81’]

EX, EG, ¬, ∧

UB [81’]
CTL without Until

STL [99’]

EX, EF, EU, ¬, ∧

V stands for Sum(v).

15

Still not a logic.

Energy objective

AG(Sum(v)≥0)

Combined energies

AG(V≥0 ∨ U≥0)

EF (UB–) [81’]

EX, EF, ¬, ∧

RTL [80’]
LTL without Until

CTL [82’] LTL [77’]

CTL* [86’]

EG [81’]

EX, EG, ¬, ∧

UB [81’]
CTL without Until

STL [99’]

EX, EF, EU, ¬, ∧

16

17

Maximal Decidable Temporal Logic

• The EF logic (EX, EF, ¬, ∧) characterizes
the temporal logic allowing for a decidable
model checking of accumulative properties.

• A logic with any of the other standard
temporal operators, EG, EU, ER or EW,
is undecidable.

18

Controlled Accumulation

• One may wish to control the accumulation.

� Taking the average value of some variable v only
within “transactions”.

� Relating to the average response time between a
“request” and a “grant”.

• In general:

for numeric variables u and v, regular
expressions r1 and r2, and constant c.

• This is decidable with the enriched EF logic !!!!

Sum (v | r1)

Sum (u | r2)
≥ c

19

Part I - Summary

• Specifications with accumulative propositions
are decidable with the EF logic.

• It significantly enriches the currently handled
energy objectives and controlled accumulation.

� AG(p → (q ∨ Sum(u)=5 ∧ Avg(v)<3))

� EF(Avg(u)<Avg(v) ∧ AG(p→q))

� Average response time ≤ 5

• All other temporal operators are undecidable.

� In particular, EF does not capture the LimAvg
(mean-payoff) objectives.

20

Part I - Sum(v)≥c and Avg(v)≥c
as atomic assertions.

- Proofs

Part II - A different approach,
handling LimAvg.

- Proofs

Agenda

21

Part II

Temporal logic with LimAvg

22

Mean Payoff / LimAvg

What is LimAvg(x) or mean-payoff?

• Intuitively, it is the long-run average of x in an
infinite run.

• That is, the limit of Avg(x) along the run prefixes.

However, such a limit need not exist.

23

LimAvg Need Not Converge

The run r:
1 visit in q, 2 visits in q’, 4 visits in q, 8 visits in q’, …

x=3
q

x=5
q’

24

LimInfAvg and LimSupAvg

• A possible approach is to use Inf and Sup [CDH08]:

[CDH08] “Quantitative Languages” by Chatterjee, Doyen and Henzinger

1

1
 i

n

i
n

x

=
∑� Avg

n
(x) =

� LimInfAvg(x) = lim inf {Avg
n
(x) | n ≥ m }

m→ ∞

� LimSupAvg(x) = lim sup {Avg
n
(x) | n ≥ m }

m→ ∞

• We shall write LimAvg when speaking of both
LimInfAvg and LimSupAvg.

25

LimAvg In LTL

• LimAvg is a path property.

• Hence, it fits well into an LTL formula.

• We would have liked to add LimAvg(x)≥c
as an atomic assertion in LTL.

• Example:

� F(p)→LimAvg(x)=5 ∨ G(q) ∧ LimAvg(y)< 2

Is it decidable?

Yes!

Proofs

Technical

details

27

Proofs of Part I

Energy objective

AG(Sum(v)≥0)

Combined energies

AG(V≥0 ∨ U≥0)

EF (UB–) [81’]

EX, EF, ¬, ∧

RTL [80’]
LTL without Until

CTL [82’] LTL [77’]

CTL* [86’]

EG [81’]

EX, EG, ¬, ∧

UB [81’]
CTL without Until

STL [99’]

EX, EF, EU, ¬, ∧

28

29

Part I - Proofs

• Udecidability proof

� Reduction of the counter-machine halting problem.

� Small adaptations to a Petri-net proof [Esparza 95].

� Nice and simple.

• Decidability proof

� Formulating the model checking problem in
Presburger arithmetic.

� Nice, … less simple.

30

Counter Machines

• A sequence of uniquely-labeled commands.

• Five command types, as in the following example.

L1. if x=0 then goto l5 else goto l2

L2. x := x-1

L3. y := y+1

L4. goto l1

L5. halt

� The above counter machine uses two counters, x and y.
It adds the value of x to y and nullifies x.

31

Counter Machines → Kripke Structure

• Straightforward, … except for the conditional jump.

x=-1
s2

halt
s5

L1. if x=0 then l5 else l2

L2. x := x-1

L3. y := y+1

L4. goto l1

L5. halt
y=1
s3

s1

• A state for every line;
a variable for each counter.

s4

32

Conditional Jump ≠ Nondeterminism

• A naïve try would be to use nondeterminism.

x=-1
s2

halt
s5

L1. if x=0 then l5 else l2

L2. x := x-1

L3. y := y+1

L4. goto l1

L5. halt
y=1
s3

s1

• Which is, of course, wrong. s4

33

Conditional Jump = Nondet. + Check

• We only need a specification for a run that always
makes the proper choices.

x=-1
s2

halt
s5

y=1
s3

s1� Proper: ¬xz ∨ Sum(x)=0

∧ ¬xp ∨ Sum(x)≠0

� Spec: EG(Proper ∧ ¬halt)

s4

xz
s’

xP
s’’

• The Kripke structure satisfies
the specification iff the
counter machine does not halt.

34

Other Temporal Operators

• [R]elease and [W]eak-until directly imply [G]lobally.
� EG(p) = p EW False

= False ER p

x=-1
s2

halt
s5

y=1
s3

s1

� proper: ¬xz ∨ Sum(x)=0

∧ ¬xp ∨ Sum(x)≠0

� Spec: proper EU halt
s4

xz
s’

xP
s’’

• EU does not imply EG.
Yet, it is undecidable by
the following specification.

• The Kripke structure satisfies
the specification iff the
counter machine halts.

T h a n k

s

GF(Talks end)

36

Decidability of the EF Logic
(EX, EF, ¬, ∧)

37

Presburger Arithmetic (PA)

• The first-order theory of natural numbers with addition.
It has constants 0 and 1 and a binary function +.

Axioms:
� ¬(0 = x + 1)

� (x + 1 = y + 1) → x = y

� x + 0 = x

� (x + y) + 1 = x + (y + 1)

Induction scheme:

� For every formula P(x): (P(0) ∧ ∧x(P(x)→ P(x + 1)))→ P(y)

• The theory is consistent, complete and decidable
[Presburger 1929].

38

Model Checking by PA-Formulation

1. Move the Kripke-structure values to the edges.

2. Define a PA-variable xi for every edge ei.
It will stand for the number of times that this edge
is taken in a (finite) run that satisfies EF(p).

3. Naïvely formulate the specification in PA.

4. Formulate the “segments” of the Kripke structure.

5. Top to bottom, split the formula into a
disjunction of sub-formulas, each w.r.t. a specific

segment.

39

Proofs of Part II

40

Model-Checking LTL with LimAvg

• Negate the specification, and solve “exists a run s.t.”

• A LimAvg proposition relates to the run’s suffix.
Hence, it has the same truth value in all positions.

• Therefore, we can split the specification into a
disjunction of formulas, each having a specific truth
value assignments to the LimAvg propositions.

• Solve the conjunction of LTL and LimAvg
propositions, by solving the emptiness problem of a
fair quan. Kripke structure with LimAvg objectives.

• For the latter, use convex-hull manipulations, along
the lines of [ADMW09].

[ADMW09] “On Omega-Languages Defined by Mean-Payoff Conditions”
by Alur, Degorre, Maler and Weiss

T h a n k

s

GF(Talks end)

