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Topic

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ.

Goal: want to understand which relations are definable in Γ .

Important notions of definability:

1 First-order definability

2 Existential definability

3 Existential positive definability

4 Primitive positive definability (∀,∨,¬ forbidden): formulas of the form

∃x1, . . . , xn. ψ1 ∧ · · ·∧ψm

where ψ1, . . . , ψm are atomic τ-formulas
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Application: CSPs

Definition (CSP(Γ))

Input: a primitive positive sentence Φ.

Question: Is Φ true in Γ?

Example 1: CSP(K3) is 3-colorability

≠

≠

≠

≠

≠

≠ ≠ K3

Example 2: Directed Graph Acyclicity is CSP
(
(Q;<)

)
Finite Γ : many examples in Boolean satisfiability and Graph theory.

Infinite Γ : many additional examples in artificial intelligence, computer
algebra, computational linguistics, computational biology, scheduling, . . .
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Primitive Positive Definability

Lemma (Jeavons et al.,1997).

Let Γ = (D;R1, . . . ,Rk ) be a relational structure, and
let R be a relation that has a primitive positive definition in Γ .
Then CSP(Γ) and CSP(D;R,R1, . . . ,Rk ) are polynomial-time equivalent.

Example. Claim: CSP(C5) is NP-hard.
C5

Proof: K5 = (V ;E ′) has a primitive positive definition in C5 = (V ;E)

E ′(x , y) ≡ ∃p1,p2,p3,q1,q2.
(
E(x ,p1)∧ E(p1,p2)∧ E(p2,p3)∧ E(p3, y)

∧ E(x ,q1)∧ E(q1,q2)∧ E(q2, y)
)
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Systematic Complexity Classification for CSPs

(Schaefer’78) Let Γ be a structure with domain {0,1}.
Then CSP(Γ) is in P, or the following relation is primitive positive definable
in Γ , and CSP(Γ) is NP-complete:

{0,1}3 \ {(0,0,0), (1,1,1)}

(B.+Kara’08) Let Γ be a structure with a first-order definition in (Q;<).
Then CSP(Γ) is in P, or one of the following relations is primitive positive
definable in Γ and CSP(Γ) is NP-complete:

{(x , y , z) | (x < y < z)∨ (z < y < x)}

{(x , y , z) | (x < y < z)∨ (y < z < x)∨ (z < x < y)}

. . . (4 more relations)

(B.+Pinsker’11) Let Γ be first-order definable in the Rado graph.
Then CSP(Γ) is in P, or one out of four relations is primitive positive
definable in Γ and CSP(Γ) is NP-complete.
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The Problem

Γ : fixed structure with domain D and finite relational signature τ.

Definition 1.
Input: quantifier-free τ-formulas φ0, φ1, . . . , φn,

defining relations R0,R1, . . . ,Rn over Γ .

Question: Is R0 primitive positive definable in (D;R1, . . . ,Rn)?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input)
is co-NEXPTIME-complete (Willard’10).

Observation: If Expr(Γ) is decidable, then Expr(∆) is decidable for all
structures ∆ that are definable in Γ .

Decidability of Definability Manuel Bodirsky 6



The Problem

Γ : fixed structure with domain D and finite relational signature τ.

Definition 1.
Input: quantifier-free τ-formulas φ0, φ1, . . . , φn,

defining relations R0,R1, . . . ,Rn over Γ .

Question: Is R0 primitive positive definable in (D;R1, . . . ,Rn)?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input)
is co-NEXPTIME-complete (Willard’10).

Observation: If Expr(Γ) is decidable, then Expr(∆) is decidable for all
structures ∆ that are definable in Γ .

Decidability of Definability Manuel Bodirsky 6



The Problem

Γ : fixed structure with domain D and finite relational signature τ.

Definition 1.
Input: quantifier-free τ-formulas φ0, φ1, . . . , φn,

defining relations R0,R1, . . . ,Rn over Γ .

Question: Is R0 primitive positive definable in (D;R1, . . . ,Rn)?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input)
is co-NEXPTIME-complete (Willard’10).

Observation: If Expr(Γ) is decidable, then Expr(∆) is decidable for all
structures ∆ that are definable in Γ .

Decidability of Definability Manuel Bodirsky 6



The Problem

Γ : fixed structure with domain D and finite relational signature τ.

Definition 1.
Input: quantifier-free τ-formulas φ0, φ1, . . . , φn,

defining relations R0,R1, . . . ,Rn over Γ .

Question: Is R0 primitive positive definable in (D;R1, . . . ,Rn)?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input)
is co-NEXPTIME-complete (Willard’10).

Observation: If Expr(Γ) is decidable, then Expr(∆) is decidable for all
structures ∆ that are definable in Γ .

Decidability of Definability Manuel Bodirsky 6



The Problem

Γ : fixed structure with domain D and finite relational signature τ.

Definition 1.
Input: quantifier-free τ-formulas φ0, φ1, . . . , φn,

defining relations R0,R1, . . . ,Rn over Γ .

Question: Is R0 primitive positive definable in (D;R1, . . . ,Rn)?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input)
is co-NEXPTIME-complete (Willard’10).

Observation: If Expr(Γ) is decidable, then Expr(∆) is decidable for all
structures ∆ that are definable in Γ .

Decidability of Definability Manuel Bodirsky 6



The Result

Theorem.
Let Γ be homogeneous, Ramsey, and finitely bounded.
Then Expr(Γ) is decidable.

A structure Γ is called homogeneous if every iso-
morphism between finite substructures of Γ can be
extended to an automorphism of Γ .

Examples of homogeneous structures:

(Q;<),

the Rado graph (the countably infinite Random graph),

the universal homogeneous poset, and many more (‘Fraı̈ssé-limits’)

A homogeneous Γ is ω-categorical, i.e., their first-order theory has precisely
one countable model up to isomorphism
An ω-categorical Γ is homogeneous if and only if Γ has quantifier elimination
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The Ramsey Property

Write
(S

T

)
for the set of all induced substructures of S that are isomorphic to T .

Definition
For structures G,H,P, write

G → (H)P
k

if for all χ :
(G

P

) → [k ] there exists H ′ ∈
(G

H

)
such that χ is constant on

(H ′

P

)
.

A homogeneous structure Γ is called Ramsey if
Γ → (H)P

2 for all finite substructures H,P of Γ .

Curious phenomenon:

Observation (B.,Foniok,Nešetřil,Pinsker,Todorcevic,Tsankov)

All known homogeneous structures Γ can be expanded to a homogeneous
Ramsey structure.
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Observation (B.,Foniok,Nešetřil,Pinsker,Todorcevic,Tsankov)

All known homogeneous structures Γ can be expanded to a homogeneous
Ramsey structure.

Decidability of Definability Manuel Bodirsky 8



The Ramsey Property

Write
(S

T

)
for the set of all induced substructures of S that are isomorphic to T .

Definition
For structures G,H,P, write

G → (H)P
k

if for all χ :
(G

P

) → [k ] there exists H ′ ∈
(G

H

)
such that χ is constant on

(H ′

P

)
.

A homogeneous structure Γ is called Ramsey if
Γ → (H)P

2 for all finite substructures H,P of Γ .

Curious phenomenon:
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All known homogeneous structures Γ can be expanded to a homogeneous
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Undecidability of Definability

Is Expr(Γ) decidable for all homogeneous Ramsey structures Γ?

Theorem.

There are homogeneous Ramsey structures where Expr(Γ) is undecidable.

Proof. Use the following result of Henson:
there are 2ω many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs Γ and ∆ are not
isomorphic, then Expr(Γ) and Expr(∆) are distinct.
Conclusion: since there are only countably many algorithms,
there exists a Γ such that Expr(Γ) is undecidable.

Theorem 4 (Nešetřil+Rödl’83).

All Henson digraphs can be expanded to homogeneous Ramsey structures.
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Finitely Bounded Structures

Let F be a set of finite τ-structures.
Forb(F): class of all τ-structures that do not embed a structure from F .
Age(Γ): class of all structures that embed into Γ .

Definition
A homogeneous structure is called finitely bounded if there exists a finite set
of finite structures F such that Age(Γ) = Forb(F).

Examples: (Q;<), the Rado graph, the universal homogeneous poset, . . .
Remark: Γ finitely bounded ⇒ CSP(Γ) is in NP

Want to prove:

Theorem.
Let Γ be homogeneous, Ramsey, and finitely bounded.
Then Expr(Γ) is decidable.
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Tool: Preservation Theorems

A function f : Dk → D preserves R ⊆ Dm if(
f (a1

1, . . . ,a
k
1), . . . , f (a

1
m, . . . ,ak

m)
)
∈ R whenever (ai

1, . . . ,a
i
m) ∈ R for all i ≤ m.

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

Theorem 6.
In finite or ω-categorical structures Γ , a relation R is

primitively positively definable if and only if R is preserved by all
polymorphisms of Γ (MB+Nešetřil’03);

existentially positively definable in Γ if and only if R is preserved by all
endomorphisms of Γ (Lyndon and Los-Tarski combined);

existentially definable in Γ if and only if R is preserved by all
self-embeddings of Γ into Γ (Los-Tarski);

first-order definable in Γ if and only if R is preserved by all
automorphisms of Γ (Ryll-Nardzewski).
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existentially positively definable in Γ if and only if R is preserved by all
endomorphisms of Γ (Lyndon and Los-Tarski combined);

existentially definable in Γ if and only if R is preserved by all
self-embeddings of Γ into Γ (Los-Tarski);

first-order definable in Γ if and only if R is preserved by all
automorphisms of Γ (Ryll-Nardzewski).

Decidability of Definability Manuel Bodirsky 11



Tool: Preservation Theorems

A function f : Dk → D preserves R ⊆ Dm if(
f (a1

1, . . . ,a
k
1), . . . , f (a

1
m, . . . ,ak

m)
)
∈ R whenever (ai

1, . . . ,a
i
m) ∈ R for all i ≤ m.

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

Theorem 6.
In finite or ω-categorical structures Γ , a relation R is

primitively positively definable if and only if R is preserved by all
polymorphisms of Γ (MB+Nešetřil’03);
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Canonical Mappings

Definition (Canonical Unary Operations)

An operation f : Γ → ∆ is canonical if for all k -types t1 in Γ there exists a
k -type t2 in ∆ such that f maps every tuple of type t1 to a tuple of type t2.

Example: 3 ‘behaviors’ of canonical operations from (Q;<) → (Q;<):

the constant operation

the operation x 7→ −x

the identity

Can be generalized to higher-ary operations
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Canonizing

Let Γ be Ramsey and homogeneous, and let R be a k -ary relation.

Theorem 7.
Suppose that R does not have an existential-positive definition in Γ .
Then there exists an endomorphism e of Γ and a k -tuple �a ∈ R such that

e(�a) /∈ R

e is canonical as a map from (Γ,a1, . . . ,ak ) to Γ .

For this we need:
if Γ is Ramsey, and a1, . . . ,ak are elements of Γ ,
then (Γ,a1, . . . ,ak ) is Ramsey as well.
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Topological Dynamics

Problem: If Γ is Ramsey, is (Γ, c1, . . . , cn) also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic’05).

An ordered homogeneous Γ is Ramsey if and only if G = Aut(Γ) is extremely
amenable, i.e., if every G-action on a compact space has a fixed point.

(G viewed as abstract group with topology of pointwise convergence.)
Fact 1:
Open subgroups of extremely amenable groups are extremely amenable.

Proposition 9.

If Γ is ordered homogeneous Ramsey, then so is (Γ, c1, . . . , cn).

Fact 2:
Every homogeneous Ramsey structure Γ can be expanded to an ordered
homogeneous Ramsey structure (Todorcevic, Van Thé).
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Decidability of Definability Manuel Bodirsky 14



Topological Dynamics

Problem: If Γ is Ramsey, is (Γ, c1, . . . , cn) also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic’05).

An ordered homogeneous Γ is Ramsey if and only if G = Aut(Γ) is extremely
amenable, i.e., if every G-action on a compact space has a fixed point.

(G viewed as abstract group with topology of pointwise convergence.)
Fact 1:
Open subgroups of extremely amenable groups are extremely amenable.

Proposition 9.

If Γ is ordered homogeneous Ramsey, then so is (Γ, c1, . . . , cn).

Fact 2:
Every homogeneous Ramsey structure Γ can be expanded to an ordered
homogeneous Ramsey structure (Todorcevic, Van Thé).
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Concluding Remarks, Open Problems

Contributions:

Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey

Analogous problems for existential or existential-positive definability also
decidable

Many consequences: e.g., can also decide whether every existential
formula is over Γ equivalent to an existential positive formula

Still open:

Do not get decidability of the analogous problem for first-order definability

Approach is non-constructive: we can decide primitive positive
definability, but we cannot construct the primitive positive definition

Every homogeneous structure can be expanded to a homogeneous
Ramsey structure?
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