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Topic

Let I be a fixed (finite or infinite) structure with a finite relational signature .

| Goal: want to understand which relations are definable in T |

Important notions of definability:
E First-order definability
A Existential definability
H Existential positive definability
A Primitive positive definability (v, VV, — forbidden): formulas of the form

3X1‘...,Xn.ll)1 /\"‘/\I.l)m

where V1, ...,y are atomic t-formulas
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Application: CSPs

Definition (CSP(T"))
Input: a primitive positive sentence @.
Question: Is @ true in I'?

Example 1: CSP(Kj3) is 3-colorability

sta 3

3

Example 2: Directed Graph Acyclicity is CSP((Q; <))
Finite I': many examples in Boolean satisfiability and Graph theory.

Infinite I': many additional examples in artificial intelligence, computer
algebra, computational linguistics, computational biology, scheduling, ...
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Primitive Positive Definability

Lemma (Jeavons et al.,1997).

LetT"'= (D;Ry,..., Rx) be a relational structure, and
let R be a relation that has a primitive positive definition in T.
Then CSP(T") and CSP(D; R, Ry, ..., Rx) are polynomial-time equivalent.
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Primitive Positive Definability

Lemma (Jeavons et al.,1997).

LetT"=(D; Ry,..., Ry) be a relational structure, and
let R be a relation that has a primitive positive definition in T.
Then CSP(T") and CSP(D; R, Ry, ..., Rx) are polynomial-time equivalent.

c K
Example. Claim: CSP(Cs) is NP-hard. ’ ’
Proof: Ks = (V; E’) has a primitive positive definition in Cs = (V; E)

E'(x,y) = 3p1,P2,P3, G, Q2. (E(x,p1) N E(p1,p2) A\ E(p2,p3) /N E(ps, y)
NEX,qi) NE(gr,q) NE(g2, )
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m (Schaefer'78) Let I" be a structure with domain {0, 1}.
Then CSP(T") is in P, or the following relation is primitive positive definable
in ', and CSP(T") is NP-complete:

{0,1)*\{(0,0,0), (1,1,1)}
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Systematic Complexity Classification for CSPs

m (Schaefer'78) Let I" be a structure with domain {0, 1}.
Then CSP(T") is in P, or the following relation is primitive positive definable
in ', and CSP(T") is NP-complete:

{0,1)*\{(0,0,0), (1,1,1)}

m (B.+Kara'08) Let I' be a structure with a first-order definition in (Q; <).
Then CSP(T) is in P, or one of the following relations is primitive positive
definable in I and CSP(T") is NP-complete:

{(x,y,2) | (x<y<z)V(z<y<x)}
{x,y,2) [ (x<y<2z2)V(y<z<x)V(z<x<y)}
(4 more relations)

m (B.+Pinsker'11) Let I be first-order definable in the Rado graph.
Then CSP(T") is in P, or one out of four relations is primitive positive
definable in I and CSP(TI") is NP-complete.
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The Problem

I': fixed structure with domain D and finite relational signature .

Definition 1.

Input: quantifier-free t-formulas ¢o, ¢1,..., dn,
defining relations Ro, Ry, ..., R, overT.

Question: Is Ry primitive positive definable in (D; Ry,..., R,)?

Known: For finite I', Expr(T") is in co-NEXPTIME.

The uniform version of the problem (T is finite and part of the input)
is co-NEXPTIME-complete (Willard'10).

Observation: If Expr(I") is decidable, then Expr(A) is decidable for all
structures A that are definable in T.
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The Result

Let I' be homogeneous, Ramsey, and finitely bounded.
Then Expr(T") is decidable.

A structure T is called homogeneous if every iso-
morphism between finite substructures of I" can be
extended to an automorphism of T".
Examples of homogeneous structures:
m (Q<),
m the Rado graph (the countably infinite Random graph),
m the universal homogeneous poset, and many more (‘Fraissé-limits’)

A homogeneous T is w-categorical, i.e., their first-order theory has precisely
one countable model up to isomorphism
An w-categorical I" is homogeneous if and only if I' has quantifier elimination
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The Ramsey Property

Write (?) for the set of all induced substructures of S that are isomorphic to T.

Definition
For structures G, H, P, write
G— (H)f

if for all x : (§) — [k] there exists H’ € (%) such that x is constant on ().

A homogeneous structure T is called Ramsey if
I — (H)Z for all finite substructures H, P of T

Curious phenomenon:

Observation (B.,Foniok,Nesetfil,Pinsker, Todorcevic, Tsankov)

All known homogeneous structures T can be expanded to a homogeneous
Ramsey structure.

Decidability of Definability Manuel Bodirsky



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

Decidability of Definability Manuel Bodirsky



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

There are homogeneous Ramsey structures where Expr(TI") is undecidable.

Decidability of Definability Manuel Bodirsky 9



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

There are homogeneous Ramsey structures where Expr(TI") is undecidable.

Proof.

Decidability of Definability Manuel Bodirsky 9



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

There are homogeneous Ramsey structures where Expr(TI") is undecidable.

Proof. Use the following result of Henson:
there are 2® many non-isomorphic homogeneous graphs.

Decidability of Definability Manuel Bodirsky 9



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

There are homogeneous Ramsey structures where Expr(TI") is undecidable.

Proof. Use the following result of Henson:
there are 2® many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs I and A are not
isomorphic, then Expr(I") and Expr(A) are distinct.

Decidability of Definability Manuel Bodirsky 9



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

There are homogeneous Ramsey structures where Expr(TI") is undecidable.

Proof. Use the following result of Henson:
there are 2® many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs I and A are not
isomorphic, then Expr(I") and Expr(A) are distinct.

Conclusion: since there are only countably many algorithms,
there exists a I such that Expr(T") is undecidable.

Decidability of Definability Manuel Bodirsky 9



Undecidability of Definability

Is Expr(T") decidable for all homogeneous Ramsey structures I'’?

There are homogeneous Ramsey structures where Expr(TI") is undecidable.

Proof. Use the following result of Henson:
there are 2® many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs I and A are not
isomorphic, then Expr(I") and Expr(A) are distinct.

Conclusion: since there are only countably many algorithms,
there exists a I such that Expr(T") is undecidable.

Theorem 4 (NeSetril+RddI'83).
All Henson digraphs can be expanded to homogeneous Ramsey structures.
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Finitely Bounded Structures

Let F be a set of finite t-structures.
Forb(F): class of all T-structures that do not embed a structure from F.
Age(I"): class of all structures that embed into T.

Definition

A homogeneous structure is called finitely bounded if there exists a finite set
of finite structures F such that Age(T") = Forb(F).

Examples: (Q; <), the Rado graph, the universal homogeneous poset, . ..
Remark: T finitely bounded = CSP(T') is in NP

Want to prove:

Let ' be homogeneous, Ramsey, and finitely bounded.
Then Expr(T") is decidable.
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Tool: Preservation Theorems
A function f: DX — D preserves R C D™ if
(f(al,...,a),...,f(ah,...,ak)) € Rwhenever (&,,...,a),) € Rforall i < m.

We say that f is a polymorphism of T if it preserves all relations of T..

Theorem 6.
In finite or w-categorical structures T, a relation R is

m primitively positively definable if and only if R is preserved by all
polymorphisms of ' (MB+NeSetfil'03);

m existentially positively definable in T" if and only if R is preserved by all
endomorphisms of " (Lyndon and Los-Tarski combined);

m existentially definable in T if and only if R is preserved by all
self-embeddings of T" into I" (Los-Tarski);

m first-order definable in T if and only if R is preserved by all
automorphisms of I" (Ryll-Nardzewski).
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Canonical Mappings

Definition (Canonical Unary Operations)

An operation f: " — A is canonical if for all k-types t; in T" there exists a
k-type t in A such that f maps every tuple of type t; to a tuple of type f.
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Canonical Mappings

Definition (Canonical Unary Operations)

An operation f: " — A is canonical if for all k-types t; in T" there exists a
k-type t in A such that f maps every tuple of type t; to a tuple of type f.

Example: 3 ‘behaviors’ of canonical operations from (Q; <) — (Q;<):
m the constant operation
m the operation x — —x
m the identity

Can be generalized to higher-ary operations
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Canonizing

Let I' be Ramsey and homogeneous, and let R be a k-ary relation.
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Canonizing

Let I' be Ramsey and homogeneous, and let R be a k-ary relation.

Suppose that R does not have an existential-positive definition in T.
Then there exists an endomorphism e of I' and a k-tuple a € R such that

meaée¢nR

B e is canonical as a map from (T} ai,...,ax) toT.

For this we need:
if ' is Ramsey, and ay, ..., ax are elements of I',
then (T, a4, ..., ax) is Ramsey as well.
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Topological Dynamics

Problem: If I" is Ramsey, is (T c1, ..., c,) also Ramsey?
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Topological Dynamics

Problem: If I" is Ramsey, is (T c1, ..., c,) also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic’05).

An ordered homogeneous I" is Ramsey if and only if G = Aut(T") is extremely
amenable, i.e., if every G-action on a compact space has a fixed point.

(G viewed as abstract group with topology of pointwise convergence.)
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Topological Dynamics

Problem: If I" is Ramsey, is (T c1, ..., c,) also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic’05).

An ordered homogeneous I" is Ramsey if and only if G = Aut(T") is extremely
amenable, i.e., if every G-action on a compact space has a fixed point.

(G viewed as abstract group with topology of pointwise convergence.)
Fact 1:
Open subgroups of extremely amenable groups are extremely amenable.

Proposition 9.

If T" is ordered homogeneous Ramsey, then sois (T; ¢y, ..., Cp).

Fact 2:
Every homogeneous Ramsey structure I" can be expanded to an ordered
homogeneous Ramsey structure (Todorcevic, Van Thé).
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m Many consequences: e.g., can also decide whether every existential
formula is over I" equivalent to an existential positive formula

Still open:
m Do not get decidability of the analogous problem for first-order definability

m Approach is non-constructive: we can decide primitive positive
definability, but we cannot construct the primitive positive definition

m Every homogeneous structure can be expanded to a homogeneous
Ramsey structure?
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