Decidability of Definability

Manuel Bodirsky

CNRS / LIX, École Polytechnique

Joint work with Michael Pinsker and Todor Tsankov

June 2011

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ .

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ .

Goal: want to understand which relations are definable in Γ .

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ .

Goal: want to understand which relations are definable in Γ .

Important notions of definability:

First-order definability

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ .

Goal: want to understand which relations are definable in Γ .

Important notions of definability:

- First-order definability
- Existential definability

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ .

Goal: want to understand which relations are definable in Γ .

Important notions of definability:

- First-order definability
- Existential definability
- 3 Existential positive definability

Let Γ be a fixed (finite or infinite) structure with a finite relational signature τ .

Goal: want to understand which relations are definable in Γ .

Important notions of definability:

- First-order definability
- Existential definability
- 3 Existential positive definability
- 4 Primitive positive definability $(\forall, \lor, \neg \text{ forbidden})$: formulas of the form

$$\exists x_1,\ldots,x_n.\,\psi_1\wedge\cdots\wedge\psi_m$$

where ψ_1, \dots, ψ_m are atomic τ -formulas

Decidability of Definability

Definition (CSP(Γ))

Definition (CSP(Γ))

Input: a primitive positive sentence Φ .

Question: Is Φ true in Γ ?

Definition (CSP(Γ))

Input: a primitive positive sentence Φ .

Question: Is Φ true in Γ ?

Example 1: $CSP(K_3)$ is 3-colorability

Definition (CSP(Γ))

Input: a primitive positive sentence Φ .

Question: Is Φ true in Γ ?

Example 1: $CSP(K_3)$ is 3-colorability

Example 2: Directed Graph Acyclicity is $CSP((\mathbb{Q};<))$

Definition (CSP(Γ))

Input: a primitive positive sentence Φ .

Question: Is Φ true in Γ ?

Example 1: $CSP(K_3)$ is 3-colorability

Example 2: Directed Graph Acyclicity is $CSP((\mathbb{Q};<))$

Finite Γ: many examples in Boolean satisfiability and Graph theory.

Definition (CSP(Γ))

Input: a primitive positive sentence Φ .

Question: Is Φ true in Γ ?

Example 1: $CSP(K_3)$ is 3-colorability

Example 2: Directed Graph Acyclicity is $CSP((\mathbb{Q};<))$

Finite Γ: many examples in Boolean satisfiability and Graph theory.

Infinite Γ : many additional examples in artificial intelligence, computer algebra, computational linguistics, computational biology, scheduling, ...

4 D > 4 A > 4 B > 4 B > B

Lemma (Jeavons et al.,1997).

Let $\Gamma = (D; R_1, \dots, R_k)$ be a relational structure, and

let R be a relation that has a primitive positive definition in Γ .

Then $CSP(\Gamma)$ and $CSP(D; R, R_1, ..., R_k)$ are polynomial-time equivalent.

Lemma (Jeavons et al.,1997).

Let $\Gamma = (D; R_1, \dots, R_k)$ be a relational structure, and let R be a relation that has a primitive positive definition in Γ . Then $\mathsf{CSP}(\Gamma)$ and $\mathsf{CSP}(D; R, R_1, \dots, R_k)$ are polynomial-time equivalent.

Example. Claim: $CSP(C_5)$ is NP-hard.

Decidability of Definability

Lemma (Jeavons et al., 1997).

Let $\Gamma = (D; R_1, \dots, R_k)$ be a relational structure, and

let R be a relation that has a primitive positive definition in Γ .

Then $CSP(\Gamma)$ and $CSP(D; R, R_1, \dots, R_k)$ are polynomial-time equivalent.

Example. Claim: $CSP(C_5)$ is NP-hard.

Proof: $K_5 = (V; E')$ has a primitive positive definition in $C_5 = (V; E)$

Lemma (Jeavons et al.,1997).

Let $\Gamma = (D; R_1, \dots, R_k)$ be a relational structure, and let R be a relation that has a primitive positive definition in Γ .

Then $CSP(\Gamma)$ and $CSP(D; R, R_1, ..., R_k)$ are polynomial-time equivalent.

Example. Claim: $CSP(C_5)$ is NP-hard.

Proof: $K_5 = (V; E')$ has a primitive positive definition in $C_5 = (V; E)$

$$E'(x,y) \equiv \exists p_1, p_2, p_3, q_1, q_2. \ (E(x,p_1) \land E(p_1,p_2) \land E(p_2,p_3) \land E(p_3,y) \\ \land E(x,q_1) \land E(q_1,q_2) \land E(q_2,y))$$

Decidability of Definability Manuel Bodirsky

■ (Schaefer'78) Let Γ be a structure with domain {0, 1}.

Then CSP(Γ) is in P, or the following relation is primitive positive definable in Γ, and CSP(Γ) is NP-complete:

$$\{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$$

■ (Schaefer'78) Let Γ be a structure with domain {0, 1}.

Then CSP(Γ) is in P, or the following relation is primitive positive definable in Γ, and CSP(Γ) is NP-complete:

$$\{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$$

■ (B.+Kara'08) Let Γ be a structure with a first-order definition in $(\mathbb{Q}; <)$.

■ (Schaefer'78) Let Γ be a structure with domain {0, 1}.

Then CSP(Γ) is in P, or the following relation is primitive positive definable in Γ, and CSP(Γ) is NP-complete:

$$\{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$$

■ (B.+Kara'08) Let Γ be a structure with a first-order definition in (\mathbb{Q} ;<). Then CSP(Γ) is in P, or one of the following relations is primitive positive definable in Γ and CSP(Γ) is NP-complete:

$$\{(x, y, z) \mid (x < y < z) \lor (z < y < x)\}$$

$$\{(x, y, z) \mid (x < y < z) \lor (y < z < x) \lor (z < x < y)\}$$
... (4 more relations)

■ (Schaefer'78) Let Γ be a structure with domain {0, 1}.

Then CSP(Γ) is in P, or the following relation is primitive positive definable in Γ, and CSP(Γ) is NP-complete:

$$\{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$$

■ (B.+Kara'08) Let Γ be a structure with a first-order definition in (\mathbb{Q} ;<). Then CSP(Γ) is in P, or one of the following relations is primitive positive definable in Γ and CSP(Γ) is NP-complete:

$$\{(x, y, z) \mid (x < y < z) \lor (z < y < x)\}$$

$$\{(x, y, z) \mid (x < y < z) \lor (y < z < x) \lor (z < x < y)\}$$
... (4 more relations)

■ (B.+Pinsker'11) Let Γ be first-order definable in the Rado graph. Then $\mathsf{CSP}(\Gamma)$ is in P, or one out of four relations is primitive positive definable in Γ and $\mathsf{CSP}(\Gamma)$ is NP-complete.

 Γ : fixed structure with domain D and finite relational signature τ .

 Γ : fixed structure with domain D and finite relational signature τ .

Definition 1.

Input: quantifier-free τ -formulas $\phi_0, \phi_1, \dots, \phi_n$, defining relations R_0, R_1, \dots, R_n over Γ .

Question: Is R_0 primitive positive definable in $(D; R_1, \ldots, R_n)$?

 Γ : fixed structure with domain D and finite relational signature τ .

Definition 1.

Input: quantifier-free τ -formulas $\phi_0, \phi_1, \dots, \phi_n$, defining relations R_0, R_1, \dots, R_n over Γ .

Question: Is R_0 primitive positive definable in $(D; R_1, \ldots, R_n)$?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

 Γ : fixed structure with domain D and finite relational signature τ .

Definition 1.

Input: quantifier-free τ -formulas $\phi_0, \phi_1, \dots, \phi_n$, defining relations R_0, R_1, \dots, R_n over Γ .

Question: Is R_0 primitive positive definable in $(D; R_1, \ldots, R_n)$?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input) is co-NEXPTIME-complete (Willard'10).

 Γ : fixed structure with domain D and finite relational signature τ .

Definition 1.

Input: quantifier-free τ -formulas $\phi_0, \phi_1, \dots, \phi_n$, defining relations R_0, R_1, \dots, R_n over Γ .

Question: Is R_0 primitive positive definable in $(D; R_1, \ldots, R_n)$?

Known: For finite Γ , Expr(Γ) is in co-NEXPTIME.

The uniform version of the problem (Γ is finite and part of the input) is co-NEXPTIME-complete (Willard'10).

Observation: If $\mathsf{Expr}(\Gamma)$ is decidable, then $\mathsf{Expr}(\Delta)$ is decidable for all structures Δ that are definable in Γ .

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded.

Then $Expr(\Gamma)$ is decidable.

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded. Then $\mathsf{Expr}(\Gamma)$ is decidable.

A structure Γ is called homogeneous if every isomorphism between finite substructures of Γ can be extended to an automorphism of Γ .

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded. Then $\mathsf{Expr}(\Gamma)$ is decidable.

A structure Γ is called homogeneous if every isomorphism between finite substructures of Γ can be extended to an automorphism of Γ .

Examples of homogeneous structures:

 \blacksquare (\mathbb{Q} ;<),

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded. Then $\mathsf{Expr}(\Gamma)$ is decidable.

A structure Γ is called homogeneous if every isomorphism between finite substructures of Γ can be extended to an automorphism of Γ .

Examples of homogeneous structures:

- \blacksquare (\mathbb{Q} ;<),
- the Rado graph (the countably infinite Random graph),

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded. Then $\mathsf{Expr}(\Gamma)$ is decidable.

A structure Γ is called homogeneous if every isomorphism between finite substructures of Γ can be extended to an automorphism of Γ .

Examples of homogeneous structures:

- \blacksquare (\mathbb{Q} ;<),
- the Rado graph (the countably infinite Random graph),
- the universal homogeneous poset, and many more ('Fraïssé-limits')

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded. Then $\mathsf{Expr}(\Gamma)$ is decidable.

A structure Γ is called homogeneous if every isomorphism between finite substructures of Γ can be extended to an automorphism of Γ .

Examples of homogeneous structures:

- \blacksquare (\mathbb{Q} ;<),
- the Rado graph (the countably infinite Random graph),
- the universal homogeneous poset, and many more ('Fraïssé-limits')

A homogeneous Γ is ω -categorical, i.e., their first-order theory has precisely one countable model up to isomorphism

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded. Then $\mathsf{Expr}(\Gamma)$ is decidable.

A structure Γ is called homogeneous if every isomorphism between finite substructures of Γ can be extended to an automorphism of Γ .

4 D > 4 A > 4 B > 4 B >

Examples of homogeneous structures:

- \blacksquare (\mathbb{Q} ;<),
- the Rado graph (the countably infinite Random graph),
- the universal homogeneous poset, and many more ('Fraïssé-limits')

A homogeneous Γ is $\omega\text{-categorical},$ i.e., their first-order theory has precisely one countable model up to isomorphism

An ω -categorical Γ is homogeneous if and only if Γ has quantifier elimination

Write $\binom{S}{T}$ for the set of all induced substructures of S that are isomorphic to T.

Write $\binom{S}{T}$ for the set of all induced substructures of S that are isomorphic to T.

Definition

For structures G, H, P, write

$$G \rightarrow (H)_k^P$$

if for all $\chi:\binom{G}{P}\to [k]$ there exists $H'\in\binom{G}{H}$ such that χ is constant on $\binom{H'}{P}$.

Write $\binom{S}{T}$ for the set of all induced substructures of S that are isomorphic to T.

Definition

For structures G, H, P, write

$$G \rightarrow (H)_k^P$$

if for all $\chi:\binom{G}{P} \to [k]$ there exists $H' \in \binom{G}{H}$ such that χ is constant on $\binom{H'}{P}$.

A homogeneous structure Γ is called Ramsey if

 $\Gamma \to (H)_2^P$ for all finite substructures H, P of Γ .

Write $\binom{S}{T}$ for the set of all induced substructures of S that are isomorphic to T.

Definition

For structures G, H, P, write

$$G \rightarrow (H)_k^P$$

if for all $\chi:\binom{G}{P}\to [k]$ there exists $H'\in\binom{G}{H}$ such that χ is constant on $\binom{H'}{P}$.

A homogeneous structure Γ is called Ramsey if

 $\Gamma \to (H)_2^P$ for all finite substructures H, P of Γ .

Curious phenomenon:

Observation (B.,Foniok,Nešetřil,Pinsker,Todorcevic,Tsankov)

All known homogeneous structures Γ can be expanded to a homogeneous Ramsey structure.

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

Is $\mathsf{Expr}(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Is $Expr(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Theorem.

There are homogeneous Ramsey structures where $Expr(\Gamma)$ is undecidable.

Is $Expr(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Theorem.

There are homogeneous Ramsey structures where $\mathsf{Expr}(\Gamma)$ is undecidable.

Proof.

Is $\mathsf{Expr}(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Theorem.

There are homogeneous Ramsey structures where $\mathsf{Expr}(\Gamma)$ is undecidable.

Proof. Use the following result of Henson: there are 2^{ω} many non-isomorphic homogeneous graphs.

Is $Expr(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Theorem.

There are homogeneous Ramsey structures where $\mathsf{Expr}(\Gamma)$ is undecidable.

Proof. Use the following result of Henson: there are 2^{ω} many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs Γ and Δ are not isomorphic, then $\mathsf{Expr}(\Gamma)$ and $\mathsf{Expr}(\Delta)$ are distinct.

Is $Expr(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Theorem.

There are homogeneous Ramsey structures where $\mathsf{Expr}(\Gamma)$ is undecidable.

Proof. Use the following result of Henson:

there are 2^{ω} many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs Γ and Δ are not

isomorphic, then $\text{Expr}(\Gamma)$ and $\text{Expr}(\Delta)$ are distinct.

Conclusion: since there are only countably many algorithms,

there exists a Γ such that $\mathsf{Expr}(\Gamma)$ is undecidable.

Is $Expr(\Gamma)$ decidable for all homogeneous Ramsey structures Γ ?

Theorem.

There are homogeneous Ramsey structures where $\mathsf{Expr}(\Gamma)$ is undecidable.

Proof. Use the following result of Henson:

there are 2^{ω} many non-isomorphic homogeneous graphs.

Observation: if two homogeneous directed graphs Γ and Δ are not

isomorphic, then $\mathsf{Expr}(\Gamma)$ and $\mathsf{Expr}(\Delta)$ are distinct.

Conclusion: since there are only countably many algorithms,

there exists a Γ such that $\mathsf{Expr}(\Gamma)$ is undecidable.

Theorem 4 (Nešetřil+Rödl'83).

All Henson digraphs can be expanded to homogeneous Ramsey structures.

Let \mathcal{F} be a set of finite τ -structures.

Let \mathcal{F} be a set of finite τ -structures.

Forb(\mathcal{F}): class of all τ -structures that do not embed a structure from \mathcal{F} .

Let \mathcal{F} be a set of finite τ -structures.

Forb(\mathcal{F}): class of all τ -structures that do not embed a structure from \mathcal{F} .

Age(Γ): class of all structures that embed into Γ .

Let \mathcal{F} be a set of finite τ -structures.

Forb(\mathcal{F}): class of all τ -structures that do not embed a structure from \mathcal{F} .

Age(Γ): class of all structures that embed into Γ .

Definition

A homogeneous structure is called finitely bounded if there exists a finite set of finite structures \mathcal{F} such that $Age(\Gamma) = Forb(\mathcal{F})$.

Let \mathcal{F} be a set of finite τ -structures.

Forb(\mathcal{F}): class of all τ -structures that do not embed a structure from \mathcal{F} .

Age(Γ): class of all structures that embed into Γ .

Definition

A homogeneous structure is called finitely bounded if there exists a finite set of finite structures \mathcal{F} such that $Age(\Gamma) = Forb(\mathcal{F})$.

Examples: $(\mathbb{Q}; <)$, the Rado graph, the universal homogeneous poset, ...

Let \mathcal{F} be a set of finite τ -structures.

Forb(\mathcal{F}): class of all τ -structures that do not embed a structure from \mathcal{F} .

Age(Γ): class of all structures that embed into Γ .

Definition

A homogeneous structure is called finitely bounded if there exists a finite set of finite structures \mathcal{F} such that $Age(\Gamma) = Forb(\mathcal{F})$.

Examples: $(\mathbb{Q}; <)$, the Rado graph, the universal homogeneous poset, ...

Remark: Γ finitely bounded \Rightarrow CSP(Γ) is in NP

Let \mathcal{F} be a set of finite τ -structures.

Forb(\mathcal{F}): class of all τ -structures that do not embed a structure from \mathcal{F} .

Age(Γ): class of all structures that embed into Γ .

Definition

A homogeneous structure is called finitely bounded if there exists a finite set of finite structures \mathcal{F} such that $Age(\Gamma) = Forb(\mathcal{F})$.

Examples: $(\mathbb{Q}; <)$, the Rado graph, the universal homogeneous poset, ...

Remark: Γ finitely bounded \Rightarrow CSP(Γ) is in NP

Want to prove:

Theorem.

Let Γ be homogeneous, Ramsey, and finitely bounded.

Then $Expr(\Gamma)$ is decidable.

10

Decidability of Definability Manuel Bodirsky

A function $f: D^k \to D$ preserves $R \subseteq D^m$ if $(f(a_1^1, \ldots, a_n^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$ whenever $(a_1^i, \ldots, a_m^i) \in R$ for all $i \le m$.

A function $f: D^k \to D$ preserves $R \subseteq D^m$ if $\left(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)\right) \in R$ whenever $(a_1^i, \ldots, a_m^i) \in R$ for all $i \leq m$.

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

A function
$$f: D^k \to D$$
 preserves $R \subseteq D^m$ if $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$ whenever $(a_1^i, \ldots, a_m^i) \in R$ for all $i \le m$.

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

Theorem 6.

In finite or ω -categorical structures Γ , a relation R is

primitively positively definable if and only if R is preserved by all polymorphisms of Γ (MB+Nešetřil'03);

A function $f: D^k \to D$ preserves $R \subseteq D^m$ if $\left(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)\right) \in R$ whenever $(a_1^i, \ldots, a_m^i) \in R$ for all $i \leq m$.

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

Theorem 6.

In finite or ω -categorical structures Γ , a relation R is

- primitively positively definable if and only if R is preserved by all polymorphisms of Γ (MB+Nešetřil'03);
- existentially positively definable in Γ if and only if R is preserved by all endomorphisms of Γ (Lyndon and Los-Tarski combined);

```
A function f: D^k \to D preserves R \subseteq D^m if \left(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)\right) \in R whenever (a_1^i, \ldots, a_m^i) \in R for all i \leq m.
```

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

Theorem 6.

In finite or ω -categorical structures Γ , a relation R is

- primitively positively definable if and only if R is preserved by all polymorphisms of Γ (MB+Nešetřil'03);
- existentially positively definable in Γ if and only if R is preserved by all endomorphisms of Γ (Lyndon and Los-Tarski combined);
- existentially definable in Γ if and only if R is preserved by all self-embeddings of Γ into Γ (Los-Tarski);

```
A function f: D^k \to D preserves R \subseteq D^m if \left(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)\right) \in R whenever (a_1^i, \ldots, a_m^i) \in R for all i \leq m.
```

We say that f is a polymorphism of Γ if it preserves all relations of Γ .

Theorem 6.

In finite or ω -categorical structures Γ , a relation R is

- primitively positively definable if and only if R is preserved by all polymorphisms of Γ (MB+Nešetřil'03);
- existentially positively definable in Γ if and only if R is preserved by all endomorphisms of Γ (Lyndon and Los-Tarski combined);
- existentially definable in Γ if and only if R is preserved by all self-embeddings of Γ into Γ (Los-Tarski);
- first-order definable in Γ if and only if R is preserved by all automorphisms of Γ (Ryll-Nardzewski).

Definition (Canonical Unary Operations)

An operation $f: \Gamma \to \Delta$ is canonical if for all k-types t_1 in Γ there exists a k-type t_2 in Δ such that f maps every tuple of type t_1 to a tuple of type t_2 .

Definition (Canonical Unary Operations)

An operation $f: \Gamma \to \Delta$ is canonical if for all k-types t_1 in Γ there exists a k-type t_2 in Δ such that f maps every tuple of type t_1 to a tuple of type t_2 .

Example: 3 'behaviors' of canonical operations from $(\mathbb{Q};<) \to (\mathbb{Q};<)$:

Definition (Canonical Unary Operations)

An operation $f: \Gamma \to \Delta$ is canonical if for all k-types t_1 in Γ there exists a k-type t_2 in Δ such that f maps every tuple of type t_1 to a tuple of type t_2 .

Example: 3 'behaviors' of canonical operations from $(\mathbb{Q};<) \to (\mathbb{Q};<)$:

the constant operation

Definition (Canonical Unary Operations)

An operation $f: \Gamma \to \Delta$ is canonical if for all k-types t_1 in Γ there exists a k-type t_2 in Δ such that f maps every tuple of type t_1 to a tuple of type t_2 .

Example: 3 'behaviors' of canonical operations from $(\mathbb{Q};<) \to (\mathbb{Q};<)$:

- the constant operation
- the operation $x \mapsto -x$

Definition (Canonical Unary Operations)

An operation $f: \Gamma \to \Delta$ is canonical if for all k-types t_1 in Γ there exists a k-type t_2 in Δ such that f maps every tuple of type t_1 to a tuple of type t_2 .

Example: 3 'behaviors' of canonical operations from $(\mathbb{Q};<) \to (\mathbb{Q};<)$:

- the constant operation
- the operation $x \mapsto -x$
- the identity

Definition (Canonical Unary Operations)

An operation $f: \Gamma \to \Delta$ is canonical if for all k-types t_1 in Γ there exists a k-type t_2 in Δ such that f maps every tuple of type t_1 to a tuple of type t_2 .

Example: 3 'behaviors' of canonical operations from $(\mathbb{Q};<) \to (\mathbb{Q};<)$:

- the constant operation
- the operation $x \mapsto -x$
- the identity

Can be generalized to higher-ary operations

Canonizing

Let Γ be Ramsey and homogeneous, and let R be a k-ary relation.

Canonizing

Let Γ be Ramsey and homogeneous, and let R be a k-ary relation.

Theorem 7.

Suppose that R does not have an existential-positive definition in Γ .

Canonizing

Let Γ be Ramsey and homogeneous, and let R be a k-ary relation.

Theorem 7.

Suppose that R does not have an existential-positive definition in Γ . Then there exists an endomorphism e of Γ and a k-tuple $\bar{a} \in R$ such that

- e(ā) ∉ R
- e is canonical as a map from $(\Gamma, a_1, \ldots, a_k)$ to Γ .

Canonizing

Let Γ be Ramsey and homogeneous, and let R be a k-ary relation.

Theorem 7.

Suppose that R does not have an existential-positive definition in Γ . Then there exists an endomorphism e of Γ and a k-tuple $\bar{a} \in R$ such that

- e(ā) ∉ R
- e is canonical as a map from $(\Gamma, a_1, \ldots, a_k)$ to Γ .

For this we need:

if Γ is Ramsey, and a_1, \ldots, a_k are elements of Γ , then $(\Gamma, a_1, \ldots, a_k)$ is Ramsey as well.

Problem: If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ also Ramsey?

Problem: If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic'05).

An ordered homogeneous Γ is Ramsey if and only if $G = \operatorname{Aut}(\Gamma)$ is extremely amenable, i.e., if every G-action on a compact space has a fixed point.

(*G* viewed as abstract group with topology of pointwise convergence.)

Problem: If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic'05).

An ordered homogeneous Γ is Ramsey if and only if $G = \operatorname{Aut}(\Gamma)$ is extremely amenable, i.e., if every G-action on a compact space has a fixed point.

(*G* viewed as abstract group with topology of pointwise convergence.) **Fact 1:**

Open subgroups of extremely amenable groups are extremely amenable.

Problem: If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic'05).

An ordered homogeneous Γ is Ramsey if and only if $G = \operatorname{Aut}(\Gamma)$ is extremely amenable, i.e., if every G-action on a compact space has a fixed point.

(\emph{G} viewed as abstract group with topology of pointwise convergence.)

Fact 1:

Open subgroups of extremely amenable groups are extremely amenable.

Proposition 9.

If Γ is ordered homogeneous Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Problem: If Γ is Ramsey, is $(\Gamma, c_1, \dots, c_n)$ also Ramsey?

Theorem 8 (Kechris, Pestov, Todorcevic'05).

An ordered homogeneous Γ is Ramsey if and only if $G = \operatorname{Aut}(\Gamma)$ is extremely amenable, i.e., if every G-action on a compact space has a fixed point.

(*G* viewed as abstract group with topology of pointwise convergence.)

Fact 1:

Open subgroups of extremely amenable groups are extremely amenable.

Proposition 9.

If Γ is ordered homogeneous Ramsey, then so is $(\Gamma, c_1, \dots, c_n)$.

Fact 2:

Every homogeneous Ramsey structure Γ can be expanded to an ordered homogeneous Ramsey structure (Todorcevic, Van Thé).

Contributions:

■ Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey

Contributions:

- Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey
- Analogous problems for existential or existential-positive definability also decidable

Contributions:

- Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey
- Analogous problems for existential or existential-positive definability also decidable
- Many consequences: e.g., can also decide whether every existential formula is over Γ equivalent to an existential positive formula

Contributions:

- Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey
- Analogous problems for existential or existential-positive definability also decidable
- Many consequences: e.g., can also decide whether every existential formula is over Γ equivalent to an existential positive formula

Still open:

■ Do not get decidability of the analogous problem for first-order definability

Contributions:

- Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey
- Analogous problems for existential or existential-positive definability also decidable
- Many consequences: e.g., can also decide whether every existential formula is over Γ equivalent to an existential positive formula

Still open:

- Do not get decidability of the analogous problem for first-order definability
- Approach is non-constructive: we can decide primitive positive definability, but we cannot construct the primitive positive definition

Contributions:

- Expr(Γ) is decidable when Γ is finitely bounded homogeneous Ramsey
- Analogous problems for existential or existential-positive definability also decidable
- Many consequences: e.g., can also decide whether every existential formula is over Γ equivalent to an existential positive formula

Still open:

- Do not get decidability of the analogous problem for first-order definability
- Approach is non-constructive: we can decide primitive positive definability, but we cannot construct the primitive positive definition
- Every homogeneous structure can be expanded to a homogeneous Ramsey structure?

15