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Combinatorics

I enumerative combinatorics

I how many {0, 1}–strings of length n? 2n, for each
n = 0, 1, 2, . . .

I how many {N,S ,E ,W }–strings of length n, with no substring
with equal number of N’s and S ’s, and equal number of E ’s
and W ’s?

I who knows? self-avoiding walks in the plane
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Generating series

I ΦS(x) =
∑

σ∈S xω(σ),

where S is a set of combinatorial
objects, ω(σ) takes on only values in {0, 1, 2, . . .}, ω is a
weight function

I for example,
∑

σ∈{0,1}∗ x length(σ), the generating series for
{0, 1}–strings with respect to length

I this generating series equals 1 + 2x + 4x2 + 8x3 + . . .
= (1 − 2x)−1
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Algebra – formal power series

I Consider two formal power series
A(x) =

∑
i≥0 aix

i ,B(x) =
∑

j≥0 bjx
j

I Definition: A(x) + B(x) =
∑

n≥0(an + bn)x
n,

A(x) · B(x) =
∑

n≥0(a0bn + a1bn−1 + · · · + anb0)x
n

I 1 = 1 + 0x + 0x2 + · · · is a multiplicative identity, and
(1− 2x)(1+2x +4x2 +8x3 + . . .) = 1, (since coefficient of xn

in this product is 2n − 2 · 2n−1 = 0 for each positive integer n)
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Combinatorics of strings and matrix algebra

Simon Newcomb Problem: Consider the generating series

R(x1, . . . , xn, u) =
∑

σ∈{1,...,n}∗
x

num(1′s)
1 · · · xnum(n′s)

n unum(rises),

where a rise is a substring ij with i < j
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Matrix encoding: Let

A =


1 u · · · u u
1 1 · · · u u
...

...
. . .

...
...

1 1 · · · 1 u
1 1 · · · 1 1

 ,

an n by n matrix, and X be a diagonal n by n matrix with entries
x1, . . . , xn

Note that the monomial xiaijxjajkxkaklxlalmxmamnxn

gives precisely the correct contribution to R for the string ijklmn,
and that this monomial arises in the ij–entry of the matrix
XAXAXAXAXAX .
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We conclude that R − 1 is the sum of all the entries in the matrix

X + XAX + XAXAX + XAXAXAX + . . .

= (I − XA)−1X .

More compactly,

R = 1 + trace(I − XA)−1XJ,

where J is the n by n matrix of all 1’s.

Sherman-Morrison formula: If P,Q are square matrices of the
same size, with P invertible and Q of rank 1, then

(P + Q)−1 = P−1 − 1

1 + traceP−1Q
P−1Q,

if 1 + traceP−1Q 6= 0.
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Circular sequences

Here, the generating series is

trace(XA + 1
2(XA)2 + 1

3(XA)3 + . . .)

= trace log(I − XA)−1 = log det(I − XA)−1,

the last equality from Jacobi’s identity adapted to formal power
series
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Symmetric functions and the symmetric group

I A tableau of shape (5, 3, 2) is given below. Positive integers
are placed in each cell so that they are weakly increasing in
each row (left to right), and strictly increasing down each
column (top to bottom).

5

44

32

53311

We call the weakly decreasing list (5, 3, 2) a partition of 10,
with parts 5, 3, 2 (e.g., the partitions of 4 are (4), (3, 1),
(2, 2), (2, 1, 1), (1, 1, 1, 1)).

I The Schur function indexed by a partition λ is the generating
series

sλ(x1, x2, . . .) =
∑
T

x
num(1′s)
1 x

num(2′s)
2 · · · ,

summed over all tableaux T of shape λ. Schur functions are
symmetric in x1, x2, . . ..
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Another symmetric function is the power sum pi = x i
1 + x i

2 + . . .,
and we define the power sum indexed by a partition to be the
product of the power sums indexed by the parts,

so, for example,
p(5,3,2) = p5p3p2.
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I A permutation of {1, . . . , n} is a bijective function on
{1, . . . , n}.

For example, with n = 12,(
1 2 3 4 5 6 7 8 9 10 11 12
5 6 10 1 12 2 7 11 8 3 9 4

)
,

describes a permutation σ, where σ(1) = 5, σ(2) = 6, . . ..

I The disjoint cycle representation of σ is given by

1

2

3
4

5

6

7
8

9

10

11

12

We often write σ = (1 5 12 4)(2 6)(3 10)(7)(8 11 9). Here the
cycles of σ have lengths (4, 3, 2, 2, 1), a partition of 12, and all
permutations with cycle lengths specified by a given partition
λ form a conjugacy class, denoted by Cλ.
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The set of all permutations of {1, . . . , } is a group, called the
symmetric group on {1, . . .}.

Let Cλ =
∑

σ∈Cλ
σ, an element of

the group algebra of the symmetric group The {Cλ} commute with
each other, and form a basis for the centre (the set of elements
that commute with everything) of the group algebra.
Moreover, there is a basis {Fθ} of orthogonal idempotents (which
means that FθFρ = Fθδθ ρ), with

Cµ = |Cµ|
∑
θ`n

χθ(µ)

χθ(1n)
Fθ,

Fρ =
χρ(1n)

n!

∑
ν`n

χρ(ν)Cν ,

where 1n is the partition with n parts, each equal to 1, and χλ(µ)
is an irreducible character of the symmetric group.
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V = (1 2 7)(3 4)(5 6)(8)(9), G = (1 8 6)(2 9 4)(3 5 7),
W = (1 5 8)(2 6 3 9)(4 7), VGW = identity

〈V ,G ,W 〉 acts transitively on {1, . . . , 9} (the hypermap is
connected).
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I This gives an expression for the generating series for rooted
hypermaps (maps are a special case) in orientable surfaces in
terms of symmetric functions.

I An alternative expression, by considering the combinatorics of
matchings, gives an expression for these maps as a matrix
integral, over complex Hermitian matrices.

I For rooted hypermaps in nonorientable surfaces (like the
projective plane or the Klein bottle), we use another
commutative algebra – the algebra of double cosets of the
symmetric group with hyperoctahedral subgroup. In this case,
the Schur functions are replaced by zonal polynomials, and it
becomes a matrix integral, over real symmetric matrices.
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Hurwitz numbers and the KP hierarchy

I For a partition α of n and a nonnegative integer r , let H r
α be

the number of tuples (σ, π1, . . . , πr ) of permutations on
{1, . . . , n} such that

σ ∈ Cα, π1, . . . , πr are transpositions,
σπ1 · · ·πr is the identity, and 〈σ, γ, π1, π2, . . .〉 acts
transitively on {1, . . . , n}.

I Branched covers of the sphere with branch points
∞,X1, . . . ,Xr , at which we have branching σ, π1, . . . , πr ,
respectively. (The branching at π1, . . . , πr is simple.) (The
product equal to the identity permutation is a monodromy
condition, and the transitivity condition means that the covers
are connected.) The genus g of the cover is given by
r = l(α) + n + 2g − 2, from the Riemann-Hurwitz formula.
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I Applying the relationship between Schur functions and
conjugacy classes, we can evaluate the generating series for
Hurwitz numbers, and prove that it is of the form

log

(∑
λ

aλsλ

)
,

where {aλ} satisfies the Plücker relations from algebraic
geometry.

I This implies that the Hurwitz generating series is a solution to
the KP hierarchy.
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Consider two independent sets of indeterminates p = (p1, p2, . . .)
and p̂ = (p̂1, p̂2, . . .). Then log τ satisfies the KP hierarchy if and
only if

[t−1] exp

∑
k≥1

tk

k
(pk − p̂k)

 exp

−
∑
i≥1

t−i

(
∂

∂pi
− ∂

∂p̂i

) τ(p)τ(p̂)

= 0.

The KP hierarchy is a simultaneous system of quadratic pde’s:

F2,2 − F3,1 + 1
12F1,1,1,1 + 1

2F 2
1,1 = 0,

F3,2 − F4,1 + 1
6F2,1,1,1 + F1,1F2,1 = 0,

F4,2 − F5,1 + 1
4F3,1,1,1 − 1

120F1,1,1,1,1,1 + F1,1F3,1 + 1
2F 2

2,1,

where F2,1 denotes ∂2

∂p1∂p2
F .
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