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Techniques

• Statistical Analysis of Channel Time Series
• Singular-Value Decomposition
• Diagnostic of markers via cross-correlation
• Complex Coherence

• Mathematical Modeling
• Spatio-Temporal Model features



Singular Value Decomposition

• The singular values along the diagonal in D are ordered.

λ1 ≥ λ2 ≥ · · · ≥ λp

• If the singular values are of the same order then the columns
of X are likely to be uncorrelated.

• If a few singular values dominate then most of the variation
among the columns of X can be explained by the first few
principal components.



Are time series xi(t), xj(t) correlated?
Define cross-variance and cross-correlation

σij (τ) :=
1

N − 1

N∑
t=1

(xi (t − τ)− µi )(xj (t)− µj ) (1)

rij (τ) :=
σij (τ)√

σii (0)σjj (0)
(2)

• Compute correlation coefficients rij (0), check for statistical
significance.

• Compute cross spectral density

Pij (ω) :=
∞∑

n=−∞
σij (n) exp(ιωn) = F(xi )(ω)F(xj )(ω)

• Mean-squared coherance

Rij (ω) :=
Pij (ω)√

Pii (ω)Pjj (ω)
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Statistical Analysis: Diagnostic via cross-correlation

• Cross-correlation: correlation of series xt and yt−l

• Measure of synchrony between series (time-domain)

• Computed mean, min, max cross-correlation in a sample of
known healthy (n=6) & unhealthy patients (n=7)

• This allowed us to compare the variability in category



Reuslts of Cross-Correlation Analysis

• Mean Channel Correlation:
• Normal: 0.14
• Traumatic Brain Injury: 0.17

• Fairly similar, which does not confirm our intuition. (TBI
specific?)

• Variable over subsets



Correlations and Cross-Correlations

• Correlations calculated between all pairs of channels via
Matlab’s CORR function.

• Cross-correlations calculated between all pairs of channels via
Matlab’s XCORR function.

• Results were not identical but showed similar trends.

• Matlab’s pcolor is a good way to quickly visualize results.



Correlations and Cross-Correlations
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Hyperventilation Data – 19 channel EEG:
Corr and Xcorr show similarities in trends.

Similar trends
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Cross-Correlations

MEG data – normal subject : 147 channel cross‐correlations via matlab

5 minute window First  1.25 minutes of same data

Cross correlation is affected by window size and choice.



Spectral Analysis
• Distributions of energies over channels not equal
• Energy distributions over channels can change, even for same

condition (e.g. sleep)
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Spectral Analysis
• FFTs show definite spikes at certain frequencies
• For sleep data, frequency content below 5Hz and at ≈ 29 Hz.
• Did not investigate for enough conditions or signals but

observations are that the spikes in frequencies at each channel
should be investigated.
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Comparing channels
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Figure: L: Statistically significant correlation. R: Cross spectral density,
(T5+P3) and (T5+O2).



Windowing time series and then comparing

Select sub-intervals in time, and compute measures of correlation
per window. Compare over all windows.



Measuring correlation: data segmented in time



Hyperventilation data
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Figure: CPcontrolpre (colorbar: blue=0, red=1)



Hyperventilation data: 30 s
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Figure: 30 seconds: (colorbar: blue=0, red=1)



Hyperventilation data: end of experiment
Select sub-intervals in time, and compute measures of correlation
per window. Compare over all windows.

0 5 10 15 20
0

5

10

15

20
ω= 0

0 5 10 15 20
0

5

10

15

20
ω= 1

0 5 10 15 20
0

5

10

15

20
ω= 2

0 5 10 15 20
0

5

10

15

20
ω= 3

0 5 10 15 20
0

5

10

15

20
ω= 4

0 5 10 15 20
0

5

10

15

20
ω= 5

0 5 10 15 20
0

10

20
ω= 6

0 5 10 15 20
0

10

20
ω= 7

0 5 10 15 20
0

10

20
ω= 8

0 5 10 15 20
0

5

10

15

20
ω= 9

0 5 10 15 20
0

5

10

15

20
ω= 10

0 5 10 15 20
0

5

10

15

20
ω= 11

Figure: end



Spatio-temporal mean field theory of cortical activity

Liley, Cadusch et al [ 2001] propose a PDE model for
electrocortical activity.

• ”Spatially averaged neuron”: averages neurons over small
regions;

• Model mean soma membrane potentials for excitory and
inhibitory neurons, he , hi ;

• he is directly measurable using EEG;

• Synaptic activity between e, i neurons part of model;

• Includes short and long range cortical connectivity;

• Model includes wave equation for cortical connectivity,
allowing for pattern formation;



”Patch” of cortex
van Veen, D.Liley et al [ 2006] simplified full PDE model for
electrocortical activity to 1 local patch:

• he , hi = excitory and inhibitory potentials;
• Ik,l where k , l = i , e denote feedback/feedforward synaptic

activity, modeled as critically damped oscillators
• 4 second-order ODE for synaptic activities, 2 first-order ODE

for potentials.

Prototypical equations:

τe
d

dt
he = her − he︸ ︷︷ ︸

deviation from resting potential

−C1he Iee − C2he Iie

(3)

d2

dt2
Iee + C3

d

dt
Iee + C4Iee = C5[Nee Se(he)︸ ︷︷ ︸

mean firing rate

+pee ] (4)

Here pee is excitatory input from distant cortical neurons. van
Veen et al perform bifurcation analysis to predict chaos, with pee

and pei as bifurcation parameters.



Rudimentary model for workshop

• Take two ”spatially averaged neurons” at a distance d, with
strength of connection ε;

• Connect them by setting excitatory input for neuron 1
pee = εIee/d from neuron 2 and vice-versa

• Assess behaviour of he for both neurons as ε varies.
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”Patch” of cortex
van Veen, D.Liley et al [ 2006] simplified full PDE model for
electrocortical activity to 1 local patch:

• he , hi = excitory and inhibitory potentials;

• Ik,l where k , l = i , e denote feedback/feedforward synaptic
activity, modeled as critically damped oscillators

• 4 second-order ODE for synaptic activities, 2 first-order ODE
for potentials.

Prototypical equations (similar for hi , Iie , Iei , Iii )

τe
d

dt
he = her − he︸ ︷︷ ︸

deviation from resting potential

−(1− C1)he Iee − (1− C2)he Iie

(5)

d2

dt2
Iee + C3

d

dt
Iee + C4Iee = C5[Nee Se(he)︸ ︷︷ ︸

mean firing rate

+pee ] (6)

Here pee is excitatory input from distant cortical neurons.



Rudimentary model for workshop

• Take two ”spatially averaged neurons” at a distance d, with
strength of connection ε;

• Connect them by setting excitatory input for neuron 1
pee = εinteractionterm/d from neuron 2 and vice-versa

• Assess behaviour of he for both neurons as nature of coupling
or ε varies.



Single space-averaged neuron
membrane potentials in mV, synaptic activities in bottom
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Coupling of neurons

Types of coupling tried:

• Both neurons are identical, and experience the same
interaction terms;

• The neurons are not identical, and experience a different
immediate neighbourhood;

• The effect of the neurons on each other is felt through a
distributed delay.



Identical coupled neurons

long − range forcing term pee,1 −→ εe Iee,2

long − range forcing term pee,1 −→ εi Iee,2
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Figure: L: different inhibitory εe and excitory interaction εi ; R: weaker
interaction (magnitudes)



Distinct coupled neurons
Neighbourhood influence on neurons is different:

pee,1 −→ pee,1 + ε1Iee,2

etc. Top: excitory membrane potentials. Bottom: cross-spectral
density of the time series.
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Coupling via delay

d2

dt2
Iee + C3

d

dt
Iee + C4Iee = C5[Nee Se(he)︸ ︷︷ ︸

mean firing rate

+pee ]

+ C6 Se(he,2(t − τ))︸ ︷︷ ︸
mean firing rate of ,neuron2 delayed

B: cross-spectral density of the time series.
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Future work

• Determine physiologically reasonable parameter values for
2-”neuron” coupling model with delay

• Simulate mean-field PDE model (developed for normal
functioning), and add single disorder such as autism.

• Compare various statistical measures of EEG cross-channel
correlation for robustness, sensitivity and specificity for
diagnostic purposes.

• Feature selection to identify important channels and reduce
dimensionality.

• Analysis by specific condition.


