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Large deviations of Erdos-Renyi Random graphs.

We are Interested In the behavior of large random
graphs.g,

G, IS a graph withn vertices.

Each of the()}) edges are turned on independently
with probabillity p.

We then have a probability measupe on the space
of 2(2) possible graphs.

Larae Deviations 3 — p. Z



andom symmetrie x n matrix of0’s andl’s.



Random symmetrie x n matrix of0’s andl’s.
Diagonals ar®
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Random symmetrie x n matrix of0’s andl’s.
Diagonals ar®

Probability isp*(1 — p)(2)~*
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Random symmetrie x n matrix of0’s andl’s.
Diagonals ar®

Probability isp*(1 — p)(2)~*
k Is the number of edges that are on.
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Number of times a fixed subgraph appears in the
random graphV, E(w))
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Number of times a fixed subgraph appears in the
random graphV, E(w))

N (w) Is the number of Triangles
Law of large numbers

Y

r
nd 6
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Number of times a fixed subgraph appears in the
random graphV, E(w))

N (w) Is the number of Triangles
Law of large numbers

N p3

nd 6
What is the probability that
N

— >~ Q

n3

Larae Deviations 3 — p. €



there a rate functiom (a) for large deviations of
?



Is there a rate functiona (a) for large deviations of
N o

n3 °
How about quadrilaterals, or completgraphs and
SO on.
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Is there a rate functiona (a) for large deviations of
N o
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How about quadrilaterals, or completgraphs and
SO on.

What about the probabillity for two such rare event:
happening together?
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Is there a rate functiona (a) for large deviations of

N o
n3 -

How about quadrilaterals, or completgraphs and
SO on.

What about the probabillity for two such rare event:
happening together?
What kinds of graphs contribute to these events?
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First Step. Need a space independent of which
graphs of all sizes live.
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First Step. Need a space independent of which
graphs of all sizes live.

Imbedding the vertice$§l, 2, ..., n} as subintervals
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First Step. Need a space independent of which
graphs of all sizes live.

Imbedding the vertice$§l, 2, ..., n} as subintervals
of the unit interval0, 1]

En — [ﬂ 1']

(2 n ’'n
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First Step. Need a space independent of which
graphs of all sizes live.

Imbedding the vertice$§l, 2, ..., n} as subintervals
of the unit interval0, 1]

E” _ [;1 i]

n ’'n

The the graplVV imbedded as a random function
Z 1E” 1E” 7Tz,j
m;; = 1 if the edge(z, j) is present and otherwise.
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Probability measuré’, on the spac&t’
X Is compact in the weak topology.
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Probability measuré’, on the spac&t’
X Is compact in the weak topology.

Rate function Is
0 1—f(x
3 [ fla.y)log L2204 (1— f (2, y)) log 2L | dwdy
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Probability measuré’, on the spac&t’

X Is compact in the weak topology.

Rate function is

3 J f(@,y)log 2L (1— f(2,y)) log =20 ddy

But the topology Is too weak.
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Probability measuré’, on the spac&t’

X Is compact in the weak topology.

Rate function is

3./ f(,9)log T2+ (1= f(w,9)) log ¥ dardy
But the topology Is too weak.

Triangle CountA( f)

1 1 1
é/o /O /O f(z1,2) f (22, 3) f (3, 71)dw1dT2dX3

IS not continuous.
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Strong topology Is too strong

Law of large numbers is not valid in the strong
topology.
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Strong topology Is too strong

Law of large numbers is not valid in the strong
topology.

{f(z,y)} live only on functions that are eithéror 1
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Strong topology Is too strong

Law of large numbers is not valid in the strong
topology.
{f(z,y)} live only on functions that are eithéror 1

It Is hard to make them converge to a more genere
function like a constant

Larae Deviations 3 —pn. 1(



good compromise exists. "Cut Topology"



A good compromise exists. "Cut Topology"
Weak topology

/fn(ﬂ?,y)qﬁ(m,y)dﬂfdy — /f(m,y)qb(af,y)dfﬁdy

for every¢ bounded byi.
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A good compromise exists. "Cut Topology"
Weak topology

/fn(ﬂ?,y)qﬁ(m,y)dﬂfdy — /f(m,y)cb(af,y)dfﬁdy

for every¢ bounded byi.
Strong Topology

|ZU<101| Sfulz,y) = fz,y)|o(z, y)dzdy| — O

ons3—-np. 11



t Topology.

sup | [ [fu(z,y) — f(z,y)]é(x)Y(y)dzdy| — 0

[p|<1
[¥l<1



Cut Topology.

sup | [ [fu(z,y) — f(z,y)]o(x)Y(y)dxdy| — O

|p|<1
[¥|<1

A little weaker than strong topology.
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Cut Topology.
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|p|<1
[¥|<1

A little weaker than strong topology.

Let ~ be a finite graph, with vertices 2. . . ., £ and
some edges (un-oriented} F.
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Cut Topology.

sup | [ [fu(z,y) — f(z,y)]o(x)Y(y)dxdy| — O

|p|<1
[¥|<1

A little weaker than strong topology.

Let ~ be a finite graph, with vertices 2. . . ., £ and
some edges (un-oriented} F.

The functional
S (f) = /HeeEf(xi,a:j)dxlde .. dxg

IS a continuos functional of in the cut topology.

3—-—pn. 17
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Consider triangles.
f fn(xh xQ)fn(x% x3)fn(x37 fl)dﬁlﬁld.fgdﬂfg

/[fn(%, $2) —f(il?l, 5172)]fn(1’2, ﬂfs)fn(l’S, 371)d5171d$2

— 0 not only for eachr; but uniformly overzs.
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Consider triangles.
f fn(xh xQ)fn(x% x3)fn(x37 fl)dﬁlﬁld.fgdﬂfg

/[fn(%, $2) —f(il?l, 5172)]fn(1’2, ﬂfs)fn(l’S, 371)d5171d$2

— 0 not only for eachr; but uniformly overzs.
Therefore

/(fn — f)(xlv $2)fn(332, $3)fn(333, $1)d$1d$2d$3

— (
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Replacef,, by f, one edge at a time.
It works.

/[fn — fl(@i, ) on(xi, 2 )hn (), 27)dwda jda”
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Replacef,, by f, one edge at a time.
It works.

/[fn — fl(@i, ) on(xi, 2 )hn (), 27)dwda jda”

Goes ta).
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It seems reasonable to to take as our spae@th
cut topology

Larae Deviations 3 —p. 1F



It seems reasonable to to take as our spae@th
cut topology

do(f,g) =sup | [ [f(z,y)—g(z,y)|o(x)Y(y)drdy|
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It seems reasonable to to take as our spae@th
cut topology

do(f,g) =sup | [ [f(z,y)—g(z,y)|o(x)Y(y)drdy|

do(f,g) = sup| Sz, y) — g(x,y)|dzdy|
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It seems reasonable to to take as our spae@th
cut topology

do(f,g) =sup | [ [f(z,y)—g(z,y)|o(x)Y(y)drdy|

do(f,g) = sup| Sz, y) — g(z,y)|dzdy,
AB JxcAyeB

Is the law of large numbers valid in the cut topology
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N(A, B)

sup |A||B|| — 07

A,B n

Each one is just law of large numbers.
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N(A, B)

sup |A||B|| — 07

A,B n

Each one is just law of large numbers.
Sup Is the problem.

Enough to taked, B to be union of interval$—, *].
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_|

nere are” x 2" of them.
ne number of edges is°.

ne LLN comes with an error estimate of“" .
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There ar&™ x 2" of them.
The number of edges i,

The LLN comes with an error estimate of“" .
M 5 I <<
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Large Deviation Lower Bounds:
By the tilting argument
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Large Deviation Lower Bounds:
By the tilting argument

P(A) = /A e~ 1837 ()

QW [ e Haq)

> QUi expl- [y [ 1og SR
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PP € BU.0) 2 expl-"2 [ H,(1(r,v))dedy
+ o(n?)]
Where

Hy(f) = [flog* + (1= f)log T~



per bound ?



Upper bound ?
The rate function wants to be

L(f) =5 [ HlfGe.y)dudy
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Upper bound ?
The rate function wants to be

L(f) =5 [ HlfGe.y)dudy

I(f) is bounded by a constaat = C'(p)
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Upper bound ?
The rate function wants to be

L(f) =5 [ HlfGe.y)dudy
I(f) is bounded by a constaat = C'(p)

There is no chance of coercivity unle&sis
compact.
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X compact? No.
(fulz,y), f(z,y)) — 0implies



X compact? No.
(fulz,y), f(z,y)) — 0implies
w2, y)dy — [ f(z,y)dyin L0, 1]



Is X compact? No.
do(fu(z,y), f(z,y)) — 0implies

[ folz,y)dy — [ f(z,y)dyin Ly[0,1]
Kills any chance fotX’ being compact.
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The labeling of the vertices is irrelevant
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What have we ignored?
The labeling of the vertices is irrelevant
We have permutation symmetry in the problem.
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What have we ignored?
The labeling of the vertices is irrelevant
We have permutation symmetry in the problem.

Symmetry with respect to the grodpof measure
preserving one to one mapf [0, 1] — [0, 1].
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e define the quotient spade= X' /G
bits f = {f (o, 0y)}



We define the quotient spagé= X /G
Orbits f = { f(oz, oy)}

~

do(f,9) = Ullni do( fo1 9os)

— 1ralf dlj(faa g)
— 12f dD(fv ga)
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Is X with thed( f, §) metric compact?
According to a theorem of Lovasz and Szegedy it |
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Is X with thed( f, §) metric compact?
According to a theorem of Lovasz and Szegedy it |

This Is a consequence of Szemerédi’s regularity
lemma.
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Given anye > 0 andk, there i1s ann > k andn
such that ifn > ng(e, k)

And (V. E/) is ANY graph withn vertices,
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Given anye > 0 andk, there i1s ann > k andn
such that ifn > ng(e, k)

And (V. E/) is ANY graph withn vertices,
There Is a labeling of the vertices,

l.e a permutation of the rows and columnd bf
(same permutatios )

a simple function
= 2?37':1 1E¢($)1E;n(y)ﬂ'@'7j c X
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Given anye > 0 andk, there i1s ann > k andn
such that ifn > ng(e, k)

And (V. E/) is ANY graph withn vertices,
There Is a labeling of the vertices,

l.e a permutation of the rows and columnd bf
(same permutatios )

a simple function
= 2?37':1 1E¢($)1E;n(y)ﬂ'@'7j c X

leE” )1gn(y)mi;) <€
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The reason it works is that << e,
Rate function for the triangle count
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The reason it works is that << e,
Rate function for the triangle count
Variational problem

inft [
f:a(f)=c p(f)

The infimum Is attained
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The reason it works is that << e,
Rate function for the triangle count
Variational problem

inft [
f:a(f)=c p(f)

The infimum Is attained

Euler equation for the function at which the infimur
IS attained.
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By a contractionargument one can show that

|f ]%3 — ¢| << 1, the only solution isf = p.
a constant.

W

(6¢)
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By a contractionargument one can show that

W

If ]%3 — ¢| << 1, the only solution isf = p. = (6¢)
a constant.

So the graph looks like a similar graph with an
‘adjusted’p
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By a contractionargument one can show that

W

If ]%3 — ¢| << 1, the only solution isf = p. = (6¢)
a constant.

So the graph looks like a similar graph with an
‘adjusted’p

If p << 1, f. = 1y, IS @ better option.
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By a contractionargument one can show that

W

If ]%3 — ¢| << 1, the only solution isf = p. = (6¢)
a constant.

So the graph looks like a similar graph with an
‘adjusted’p

If p << 1, f. = 1y, IS @ better option.

1 Pe 1_pc
—|pclog — + (1 — p.) log
Spelog ™ 4 (1= po)log

1, 1 , 1
> —|p2 log — 1 — |
2[pc ng+( p;) 0g 7

|
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Forp << 1,
pe > P
Can get more triangles by forming "cliques”.

No triangles. Turan. Bipartite graph. Cut half the
edges.
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Forp << 1,
pe > P
Can get more triangles by forming "cliques”.

No triangles. Turan. Bipartite graph. Cut half the
edges.

I(fo) = ilOg(l —p)

1 Pe 1_pc
[ C — C]‘ D 1_ Cl
(pe) = 51 ng+( p)ogl_p]
1
— 510g(1—17)
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an fixd,(f) for any finite number ofy’s and
nimize I,,(f).
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Random M atrics

O

1Xij)
= X, ; are I.I.d random variables. Good tail.
= The eigenvalues are.

{AN'(w):1<1<n}
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Random M atrics

{Xij}

= X, ; are I.I.d random variables. Good tail.

= The eigenvalues are.
{A'w):1<i<n}

= Scale down.

ons 3 —-pn. 3(
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The{c!} are all uniformly small.
There is a small chance that they are not.
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The{c!} are all uniformly small.
There is a small chance that they are not.
What Is the probability that some survive?
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The{c!} are all uniformly small.

There is a small chance that they are not.
What Is the probability that some survive?
Estimates in the scale

P(E) ~ exp[—cn® + o(n?)]
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ly possibility isS = {o,} such thato;| — 0.
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ly possibility isS = {o,} such thato;| — 0.

c=c(S)
hat Is it?



S) = int_ 5 [ H 0j0,()0;(0)dody

T {6,()}eB 2 :




¢(S) = inf / H( Zajgb] )i (y))dzdy

{¢;(x)}eB 2

{¢;} are orthonormalB all choices of orthonormal
sets.
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¢(S) = inf / H( Zajgb] )i (y))dzdy

{¢;(x)}eB 2

{¢;} are orthonormalB all choices of orthonormal
sets.

K(S)={k:0o(k)=SU{0}}
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(8) = inf / H(k(z, y))ddy




«(8) = inf ¢ / H(k(x, y))dvdy

H(k) = Sl;.p[@ k —log Ele?*]]

IS the Crameér rate function.
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«(8) = inf ¢ / H(k(x, y))dvdy

H (k) = sup|f k — log E[e’*]]
0
IS the Crameér rate function.

H(k) > ck?
provides compactness.
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Pr oof

= Imbed

= Do LDP on/ in the cut-topology
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Do LDP on/C in the cut-topology
S(k) depends continuously on
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Moral of the story

» If In a random symmetric matrix of size x n we
saw a few eigen-values that are of order
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If iIn a random symmetric matrix of size x n we
saw a few eigen-values that are of oraer

After rearrangement ( permuting coordinates)
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If iIn a random symmetric matrix of size x n we
saw a few eigen-values that are of oraer

After rearrangement ( permuting coordinates)
A kernelk will emerge In the cut topology
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If iIn a random symmetric matrix of size x n we
saw a few eigen-values that are of oraer

After rearrangement ( permuting coordinates)

A kernelk will emerge In the cut topology

Its eigenvalues will be these eigen-values
normalized by dividing by..
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amer tilt.

1 T
— Wee dF

M’ (6
§) = M((H))




amer tilt.

1 T
— Wee dF

_ M'(0)




amer tilt.

1 Ox
—We dF

_ M'(0)

k) =0(k)k — log M(0(k
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