Large Deviations 3

S.R.S. Varadhan
Courant Institute, NYU

Fields Institute
Toronto, April 15, 2011

Large Deviations 3

S.R.S. Varadhan
Courant Institute, NYU

Fields Institute
Toronto, April 15, 2011

\square Joint work with Sourav Chatterjee

- Joint work with Sourav Chatterjee arxiv.org/pdf/1008.1946

- Large deviations of Erdös-Renyi Random graphs.
- Large deviations of Erdös-Renyi Random graphs.
\square We are interested in the behavior of large random graphs. \mathcal{G}_{n}
- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. \mathcal{G}_{n}
$\square \mathcal{G}_{n}$ is a graph with n vertices.
- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. \mathcal{G}_{n}
$\square \mathcal{G}_{n}$ is a graph with n vertices.
\square Each of the $\binom{n}{2}$ edges are turned on independently with probability p.
- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. \mathcal{G}_{n}
- \mathcal{G}_{n} is a graph with n vertices.
\square Each of the $\binom{n}{2}$ edges are turned on independently with probability p.
- We then have a probability measure Q_{n} on the space of $2\binom{n}{2}$ possible graphs.
\square Random symmetric $n \times n$ matrix of 0 's and 1 's.
\square Random symmetric $n \times n$ matrix of 0 's and 1 's.
- Diagonals are 0
\square Random symmetric $n \times n$ matrix of 0 's and 1^{\prime} s.
- Diagonals are 0
- Probability is $p^{k}(1-p)^{\binom{n}{2}-k}$
\square Random symmetric $n \times n$ matrix of 0 's and 1^{\prime} s.
\square Diagonals are 0
- Probability is $p^{k}(1-p)\binom{n}{2}-k$
$\square k$ is the number of edges that are on.
- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
$\square N(\omega)$ is the number of Triangles
- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
$\square N(\omega)$ is the number of Triangles
- Law of large numbers

$$
\frac{N}{n^{3}} \simeq \frac{p^{3}}{6}
$$

- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
$\square N(\omega)$ is the number of Triangles
- Law of large numbers

$$
\frac{N}{n^{3}} \simeq \frac{p^{3}}{6}
$$

- What is the probability that

$$
\frac{N}{n^{3}} \simeq a
$$

\square Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^{3}}$?
\square Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^{3}}$?

- How about quadrilaterals, or complete 4 graphs and so on.
\square Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^{3}}$?
- How about quadrilaterals, or complete 4 graphs and so on.
\square What about the probability for two such rare events happening together?
\square Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^{3}}$?
- How about quadrilaterals, or complete 4 graphs and so on.
\square What about the probability for two such rare events happening together?
\square What kinds of graphs contribute to these events?
\square First Step. Need a space independent of n in which graphs of all sizes live.
- First Step. Need a space independent of n in which graphs of all sizes live.
- Imbedding the vertices $\{1,2, \ldots, n\}$ as subintervals of the unit interval $[0,1]$
- First Step. Need a space independent of n in which graphs of all sizes live.
- Imbedding the vertices $\{1,2, \ldots, n\}$ as subintervals of the unit interval $[0,1]$
$\square E_{i}^{n}=\left[\frac{i-1}{n}, \frac{i}{n}\right]$
\square First Step. Need a space independent of n in which graphs of all sizes live.
\square Imbedding the vertices $\{1,2, \ldots, n\}$ as subintervals of the unit interval $[0,1]$
- $E_{i}^{n}=\left[\frac{i-1}{n}, \frac{i}{n}\right]$
- The the graph V imbedded as a random function

$$
f(x, y)=\sum_{i, j} 1_{E_{i}^{n}}(x) 1_{E_{j}^{n}}(y) \pi_{i, j}
$$

$\pi_{i, j}=1$ if the edge (i, j) is present and 0 otherwise.

- Probability measure P_{n} on the space \mathcal{X}
- Probability measure P_{n} on the space \mathcal{X}
$\square \mathcal{X}$ is compact in the weak topology.
- Probability measure P_{n} on the space \mathcal{X}
$\square \mathcal{X}$ is compact in the weak topology.
\square Rate function is

$$
\left[\frac{1}{2} \int f(x, y) \log \frac{f(x, y)}{p}+(1-f(x, y)) \log \frac{1-f(x, y)}{1-p}\right] d x d y
$$

- Probability measure P_{n} on the space \mathcal{X}
$\square \mathcal{X}$ is compact in the weak topology.
\square Rate function is
$\left[\frac{1}{2} \int f(x, y) \log \frac{f(x, y)}{p}+(1-f(x, y)) \log \frac{1-f(x, y)}{1-p}\right] d x d y$
\square But the topology is too weak.
- Probability measure P_{n} on the space \mathcal{X}
$\square \mathcal{X}$ is compact in the weak topology.
- Rate function is
$\left[\frac{1}{2} \int f(x, y) \log \frac{f(x, y)}{p}+(1-f(x, y)) \log \frac{1-f(x, y)}{1-p}\right] d x d y$
\square But the topology is too weak.
- Triangle Count $\Delta(f)$

$$
\frac{1}{6} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) f\left(x_{3}, x_{1}\right) d x_{1} d x_{2} d x_{3}
$$

is not continuous.

- Strong topology is too strong
- Strong topology is too strong
- Law of large numbers is not valid in the strong topology.
- Strong topology is too strong
- Law of large numbers is not valid in the strong topology.
$\square\{f(x, y)\}$ live only on functions that are either 0 or 1
\square Strong topology is too strong
- Law of large numbers is not valid in the strong topology.
$\square\{f(x, y)\}$ live only on functions that are either 0 or 1
- It is hard to make them converge to a more general function like a constant p
- A good compromise exists. "Cut Topology"
- A good compromise exists. "Cut Topology"
- Weak topology

$$
\int f_{n}(x, y) \phi(x, y) d x d y \rightarrow \int f(x, y) \phi(x, y) d x d y
$$

for every ϕ bounded by 1.

- A good compromise exists. "Cut Topology"
\square Weak topology

$$
\int f_{n}(x, y) \phi(x, y) d x d y \rightarrow \int f(x, y) \phi(x, y) d x d y
$$

for every ϕ bounded by 1.
\square Strong Topology

$$
\sup _{|\phi| \leq 1}\left|\int\left[f_{n}(x, y)-f(x, y)\right] \phi(x, y) d x d y\right| \rightarrow 0
$$

- Cut Topology.

$$
\sup _{\substack{|\phi| \leq 1 \\|\psi| \leq 1}}\left|\int\left[f_{n}(x, y)-f(x, y)\right] \phi(x) \psi(y) d x d y\right| \rightarrow 0
$$

- Cut Topology.

$$
\sup _{\substack{|\phi| \leq 1 \\|\psi| \leq 1}}\left|\int\left[f_{n}(x, y)-f(x, y)\right] \phi(x) \psi(y) d x d y\right| \rightarrow 0
$$

- A little weaker than strong topology.
- Cut Topology.

$$
\sup _{\substack{|\phi| \leq 1 \\|\psi| \leq 1}}\left|\int\left[f_{n}(x, y)-f(x, y)\right] \phi(x) \psi(y) d x d y\right| \rightarrow 0
$$

- A little weaker than strong topology.
\square Let γ be a finite graph, with vertices $1,2, \ldots, k$ and some edges (un-oriented) $e \in E$.
- Cut Topology.

$$
\sup _{\substack{|\phi| \leq 1 \\|\psi| \leq 1}}\left|\int\left[f_{n}(x, y)-f(x, y)\right] \phi(x) \psi(y) d x d y\right| \rightarrow 0
$$

- A little weaker than strong topology.
\square Let γ be a finite graph, with vertices $1,2, \ldots, k$ and some edges (un-oriented) $e \in E$.
\square The functional

$$
\Phi_{\gamma}(f)=\int \Pi_{e \in E} f\left(x_{i}, x_{j}\right) d x_{1} d x_{2} \ldots d x_{k}
$$

is a continuos functional of f in the cut topology.

Proof

\square Consider triangles.

$$
\int f_{n}\left(x_{1}, x_{2}\right) f_{n}\left(x_{2}, x_{3}\right) f_{n}\left(x_{3}, x_{1}\right) d x_{1} d x_{2} d x_{3}
$$

Proof

\square Consider triangles.
$\int f_{n}\left(x_{1}, x_{2}\right) f_{n}\left(x_{2}, x_{3}\right) f_{n}\left(x_{3}, x_{1}\right) d x_{1} d x_{2} d x_{3}$
$\int\left[f_{n}\left(x_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right)\right] f_{n}\left(x_{2}, x_{3}\right) f_{n}\left(x_{3}, x_{1}\right) d x_{1} d x_{2}$
$\rightarrow 0$ not only for each x_{3} but uniformly over x_{3}.

Proof

- Consider triangles.
$\int f_{n}\left(x_{1}, x_{2}\right) f_{n}\left(x_{2}, x_{3}\right) f_{n}\left(x_{3}, x_{1}\right) d x_{1} d x_{2} d x_{3}$
$\int\left[f_{n}\left(x_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right)\right] f_{n}\left(x_{2}, x_{3}\right) f_{n}\left(x_{3}, x_{1}\right) d x_{1} d x_{2}$
$\rightarrow 0$ not only for each x_{3} but uniformly over x_{3}.
\square Therefore

$$
\int_{\rightarrow 0}\left(f_{n}-f\right)\left(x_{1}, x_{2}\right) f_{n}\left(x_{2}, x_{3}\right) f_{n}\left(x_{3}, x_{1}\right) d x_{1} d x_{2} d x_{3}
$$

- Replace f_{n} by f, one edge at a time.
- Replace f_{n} by f, one edge at a time.
\square It works.
- Replace f_{n} by f, one edge at a time.
\square It works.

$$
\int\left[f_{n}-f\right]\left(x_{i}, x_{j}\right) \phi_{n}\left(x_{i}, x^{*}\right) \psi_{n}\left(x_{j}, x^{*}\right) d x_{i} d x_{j} d x^{*}
$$

- Replace f_{n} by f, one edge at a time.
\square It works.

$$
\int\left[f_{n}-f\right]\left(x_{i}, x_{j}\right) \phi_{n}\left(x_{i}, x^{*}\right) \psi_{n}\left(x_{j}, x^{*}\right) d x_{i} d x_{j} d x^{*}
$$

Goes to 0 .
\square It seems reasonable to to take as our space \mathcal{X} with cut topology

- It seems reasonable to to take as our space \mathcal{X} with cut topology

$$
d_{\square}(f, g)=\sup _{\substack{|\phi| \leq 1 \\|\psi| \leq 1}}\left|\int[f(x, y)-g(x, y)] \phi(x) \psi(y) d x d y\right|
$$

- It seems reasonable to to take as our space \mathcal{X} with cut topology

$$
\begin{aligned}
d_{\square}(f, g) & =\sup _{\substack{|\phi| \leq 1 \\
|\psi| \leq 1}}\left|\int[f(x, y)-g(x, y)] \phi(x) \psi(y) d x d y\right| \\
d_{\square}(f, g) & =\sup _{A, B}\left|\int_{x \in A, y \in B}[f(x, y)-g(x, y)] d x d y\right|
\end{aligned}
$$

- It seems reasonable to to take as our space \mathcal{X} with cut topology

$$
\begin{aligned}
d_{\square}(f, g) & =\sup _{\substack{|\phi| \leq 1 \\
|\psi| \leq 1}}\left|\int[f(x, y)-g(x, y)] \phi(x) \psi(y) d x d y\right| \\
d_{\square}(f, g) & =\sup _{A, B}\left|\int_{x \in A, y \in B}[f(x, y)-g(x, y)] d x d y\right|
\end{aligned}
$$

Is the law of large numbers valid in the cut topology?

$$
\sup _{A, B}\left|\frac{N(A, B)}{n^{2}}-|A|\right| B| | \rightarrow 0 ?
$$

$$
\sup _{A, B}\left|\frac{N(A, B)}{n^{2}}-|A|\right| B| | \rightarrow 0 ?
$$

- Each one is just law of large numbers.

$$
\sup _{A, B}\left|\frac{N(A, B)}{n^{2}}-|A|\right| B| | \rightarrow 0 ?
$$

- Each one is just law of large numbers.
\square Sup is the problem.

$$
\sup _{A, B}\left|\frac{N(A, B)}{n^{2}}-|A|\right| B| | \rightarrow 0 ?
$$

- Each one is just law of large numbers.
- Sup is the problem.
- Enough to take A, B to be union of intervals $\left[\frac{i-1}{n}, \frac{i}{n}\right]$.
- There are $2^{n} \times 2^{n}$ of them.
- There are $2^{n} \times 2^{n}$ of them. The number of edges is n^{2}.
\square There are $2^{n} \times 2^{n}$ of them.
\square The number of edges is n^{2}.
The LLN comes with an error estimate of $e^{-c n^{2}}$.
- There are $2^{n} \times 2^{n}$ of them.
\square The number of edges is n^{2}.
The LLN comes with an error estimate of $e^{-c n^{2}}$.
$2^{n} \times 2^{n} \ll e^{c n^{2}}$
- Large Deviation Lower Bounds:
\square Large Deviation Lower Bounds:
\square By the tilting argument
\square Large Deviation Lower Bounds:
\square By the tilting argument

$$
P(A)=\int_{A} e^{-\log \frac{d Q}{d P}} d Q
$$

\square Large Deviation Lower Bounds:

- By the tilting argument

$$
\begin{gathered}
P(A)=\int_{A} e^{-\log \frac{d Q}{d P}} d Q \\
=Q(A)\left[\frac{1}{Q(A)} \int_{A} e^{-\log \frac{d Q}{d P}} d Q\right]
\end{gathered}
$$

\square Large Deviation Lower Bounds:
\square By the tilting argument

$$
\begin{gathered}
P(A)=\int_{A} e^{-\log \frac{d Q}{d T}} d Q \\
=Q(A)\left[\frac{1}{Q(A)} \int_{A} e^{-\log \frac{Q}{d P}} d Q\right] \\
\geq Q(A) \exp \left[-\left[\frac{1}{Q(A)} \int_{A} \log \frac{d Q}{d P} d Q\right]\right]
\end{gathered}
$$

$$
\begin{gathered}
P_{n}[F \in B(f, \delta)] \geq \exp \left[-\frac{n^{2}}{2} \int H_{p}(f(x, y)) d x d y\right. \\
\left.+o\left(n^{2}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
P_{n}[F \in B(f, \delta)] \geq \exp \left[-\frac{n^{2}}{2} \int H_{p}(f(x, y)) d x d y\right. \\
\left.+o\left(n^{2}\right)\right]
\end{gathered}
$$

\square Where

$$
H_{p}(f)=\left[f \log \frac{f}{p}+(1-f) \log \frac{1-f)}{1-p}\right]
$$

- Upper bound ?
\square Upper bound ?
\square The rate function wants to be

$$
I_{p}(f)=\frac{1}{2} \int H_{p}(f(x, y)) d x d y
$$

\square Upper bound ?
\square The rate function wants to be

$$
I_{p}(f)=\frac{1}{2} \int H_{p}(f(x, y)) d x d y
$$

$\square I(f)$ is bounded by a constant $C=C(p)$
\square Upper bound ?
\square The rate function wants to be

$$
I_{p}(f)=\frac{1}{2} \int H_{p}(f(x, y)) d x d y
$$

$\square I(f)$ is bounded by a constant $C=C(p)$

- There is no chance of coercivity unless \mathcal{X} is compact.
- Is \mathcal{X} compact? No.
\square Is \mathcal{X} compact? No.
$\square d_{\square}\left(f_{n}(x, y), f(x, y)\right) \rightarrow 0$ implies
- Is \mathcal{X} compact? No.
$\square d \square\left(f_{n}(x, y), f(x, y)\right) \rightarrow 0$ implies
- $\int f_{n}(x, y) d y \rightarrow \int f(x, y) d y$ in $L_{1}[0,1]$
- Is \mathcal{X} compact? No.
$\square d_{\square}\left(f_{n}(x, y), f(x, y)\right) \rightarrow 0$ implies
- $\int f_{n}(x, y) d y \rightarrow \int f(x, y) d y$ in $L_{1}[0,1]$
\square Kills any chance for \mathcal{X} being compact.

What have we ignored?

- What have we ignored?
\square The labeling of the vertices is irrelevant
- What have we ignored?
\square The labeling of the vertices is irrelevant
\square We have permutation symmetry in the problem.
- What have we ignored?
\square The labeling of the vertices is irrelevant
\square We have permutation symmetry in the problem.
\square Symmetry with respect to the group G of measure preserving one to one maps σ of $[0,1] \rightarrow[0,1]$.

We define the quotient space $\tilde{\mathcal{X}}=\mathcal{X} / G$

- We define the quotient space $\tilde{\mathcal{X}}=\mathcal{X} / G$
- Orbits $\tilde{f}=\{f(\sigma x, \sigma y)\}$
- We define the quotient space $\tilde{\mathcal{X}}=\mathcal{X} / G$
- Orbits $\tilde{f}=\{f(\sigma x, \sigma y)\}$

$$
\begin{aligned}
d_{\square}(\tilde{f}, \tilde{g}) & =\inf _{\sigma_{1}, \sigma_{2}} d_{\square}\left(f_{\sigma_{1}}, g_{\sigma_{2}}\right) \\
& =\inf _{\sigma} d_{\square}\left(f_{\sigma}, g\right) \\
& =\inf _{\sigma} d_{\square}\left(f, g_{\sigma}\right)
\end{aligned}
$$

\square Is $\tilde{\mathcal{X}}$ with the $d_{\square}(\tilde{f}, \tilde{g})$ metric compact?
\square Is $\tilde{\mathcal{X}}$ with the $d_{\square}(\tilde{f}, \tilde{g})$ metric compact?
\square According to a theorem of Lovász and Szegedy it is
\square Is $\tilde{\mathcal{X}}$ with the $d_{\square}(\tilde{f}, \tilde{g})$ metric compact?
\square According to a theorem of Lovász and Szegedy it is
\square This is a consequence of Szemerédi's regularity lemma.

Given any $\epsilon>0$ and k, there is an $m \geq k$ and n_{0} such that if $n \geq n_{0}(\epsilon, k)$

Given any $\epsilon>0$ and k, there is an $m \geq k$ and n_{0} such that if $n \geq n_{0}(\epsilon, k)$

- And (V, E) is ANY graph with n vertices,
- Given any $\epsilon>0$ and k, there is an $m \geq k$ and n_{0} such that if $n \geq n_{0}(\epsilon, k)$
- And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,
\square Given any $\epsilon>0$ and k, there is an $m \geq k$ and n_{0} such that if $n \geq n_{0}(\epsilon, k)$
- And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,
\square i.e a permutation of the rows and columns of Π (same permutation σ)
\square Given any $\epsilon>0$ and k, there is an $m \geq k$ and n_{0} such that if $n \geq n_{0}(\epsilon, k)$
- And (V, E) is ANY graph with n vertices,
\square There is a labeling of the vertices,
- i.e a permutation of the rows and columns of Π (same permutation σ)
\square a simple function

$$
f=\sum_{i, j=1}^{m} \mathbf{1}_{E_{i}^{m}}(x) \mathbf{1}_{E_{j}^{m}}(y) \pi_{i, j} \in \mathcal{X}
$$

\square Given any $\epsilon>0$ and k, there is an $m \geq k$ and n_{0} such that if $n \geq n_{0}(\epsilon, k)$

- And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,
- i.e a permutation of the rows and columns of Π (same permutation σ)
\square a simple function

$$
f=\sum_{i, j=1}^{m} \mathbf{1}_{E_{i}^{m}}(x) \mathbf{1}_{E_{j}^{m}}(y) \pi_{i, j} \in \mathcal{X}
$$

$$
d_{\square}\left(f, \sum_{i, j} \mathbf{1}_{E_{i}^{n}}(x) 1_{E_{j}^{n}}(y) \pi_{i, j}\right) \leq \epsilon
$$

- The reason it works is that $n!\ll e^{c n^{2}}$.
- The reason it works is that $n!\ll e^{c n^{2}}$.
\square Rate function for the triangle count
- The reason it works is that $n!\ll e^{c n^{2}}$.
\square Rate function for the triangle count
- Variational problem
- The reason it works is that $n!\ll e^{c n^{2}}$.
\square Rate function for the triangle count
- Variational problem

$$
\inf _{f: \Phi \Delta(f)=c} I_{p}(f)
$$

- The reason it works is that $n!\ll e^{c n^{2}}$.
\square Rate function for the triangle count
- Variational problem

$$
\inf _{f: \Phi \Delta(f)=c} I_{p}(f)
$$

\square The infimum is attained

- The reason it works is that $n!\ll e^{c n^{2}}$.
\square Rate function for the triangle count
\square Variational problem

$$
\inf _{f: \Phi_{\Delta}(f)=c} I_{p}(f)
$$

\square The infimum is attained
\square Euler equation for the function at which the infimum is attained.

- By a contractionargument one can show that
- By a contractionargument one can show that

If $\left|\frac{p^{3}}{6}-c\right| \ll 1$, the only solution is $f=p_{c}=(6 c)^{\frac{1}{3}}$ a constant.

- By a contractionargument one can show that
- If $\left|\frac{p^{3}}{6}-c\right| \ll 1$, the only solution is $f=p_{c}=(6 c)^{\frac{1}{3}}$ a constant.
- So the graph looks like a similar graph with an 'adjusted' p
- By a contractionargument one can show that
- If $\left|\frac{p^{3}}{6}-c\right| \ll 1$, the only solution is $f=p_{c}=(6 c)^{\frac{1}{3}}$ a constant.
- So the graph looks like a similar graph with an 'adjusted' p
- If $p \ll 1, f_{c}=\mathbf{1}_{\left[0, p_{c}\right]}$ is a better option.
- By a contractionargument one can show that
- If $\left|\frac{p^{3}}{6}-c\right| \ll 1$, the only solution is $f=p_{c}=(6 c)^{\frac{1}{3}}$ a constant.
- So the graph looks like a similar graph with an 'adjusted' p
- If $p \ll 1, f_{c}=1_{\left[0, p_{c}\right]}$ is a better option.

$$
\begin{aligned}
& \frac{1}{2}\left[p_{c} \log \frac{p_{c}}{p}+\left(1-p_{c}\right) \log \frac{1-p_{c}}{1-p}\right] \\
& \quad>\frac{1}{2}\left[p_{c}^{2} \log \frac{1}{p}+\left(1-p_{c}^{2}\right) \log \frac{1}{1-p}\right]
\end{aligned}
$$

- For $p \ll 1$,

$$
p_{c}>p_{c}^{2}
$$

\square For $p \ll 1$,

$$
p_{c}>p_{c}^{2}
$$

■ Can get more triangles by forming "cliques".
\square For $p \ll 1$,

$$
p_{c}>p_{c}^{2}
$$

- Can get more triangles by forming "cliques".
- No triangles. Turán. Bipartite graph. Cut half the edges.
\square For $p \ll 1$,

$$
p_{c}>p_{c}^{2}
$$

- Can get more triangles by forming "cliques".
\square No triangles. Turán. Bipartite graph. Cut half the edges.

$$
I\left(f_{0}\right)=\frac{1}{4} \log (1-p)
$$

\square For $p \ll 1$,

$$
p_{c}>p_{c}^{2}
$$

- Can get more triangles by forming "cliques".
- No triangles. Turán. Bipartite graph. Cut half the edges.

$$
I\left(f_{0}\right)=\frac{1}{4} \log (1-p)
$$

$$
\begin{aligned}
I\left(p_{c}\right) & =\frac{1}{2}\left[p_{c} \log \frac{p_{c}}{p}+\left(1-p_{c}\right) \log \frac{1-p_{c}}{1-p}\right] \\
& \simeq \frac{1}{2} \log (1-p)
\end{aligned}
$$

Can fix $\Phi_{\gamma}(f)$ for any finite number of γ 's and minimize $I_{p}(f)$.

Random Matrics

$$
\left\{X_{i, j}\right\}
$$

Random Matrics

$$
\left\{X_{i, j}\right\}
$$

$\square X_{i, j}$ are i.i.d random variables. Good tail.

Random Matrics

$$
\left\{X_{i, j}\right\}
$$

$\square X_{i, j}$ are i.i.d random variables. Good tail.
\square The eigenvalues are.

$$
\left\{\lambda_{i}^{n}(\omega): 1 \leq i \leq n\right\}
$$

Random Matrics

$$
\left\{X_{i, j}\right\}
$$

$\square X_{i, j}$ are i.i.d random variables. Good tail.
\square The eigenvalues are.

$$
\left\{\lambda_{i}^{n}(\omega): 1 \leq i \leq n\right\}
$$

- Scale down.

$$
\sigma_{i}^{n}(\omega)=\frac{\lambda_{i}^{n}(\omega)}{n}
$$

The $\left\{\sigma_{i}^{n}\right\}$ are all uniformly small.

\square The $\left\{\sigma_{i}^{n}\right\}$ are all uniformly small.
There is a small chance that they are not.

- The $\left\{\sigma_{i}^{n}\right\}$ are all uniformly small.
- There is a small chance that they are not.
\square What is the probability that some survive?
- The $\left\{\sigma_{i}^{n}\right\}$ are all uniformly small.
\square There is a small chance that they are not.
\square What is the probability that some survive?
- Estimates in the scale

$$
P(E) \simeq \exp \left[-c n^{2}+o\left(n^{2}\right)\right]
$$

- Only possibility is $\mathcal{S}=\left\{\sigma_{j}\right\}$ such that $\left|\sigma_{j}\right| \rightarrow 0$.

- Only possibility is $\mathcal{S}=\left\{\sigma_{j}\right\}$ such that $\left|\sigma_{j}\right| \rightarrow 0$.

$$
c=c(\mathcal{S})
$$

- Only possibility is $\mathcal{S}=\left\{\sigma_{j}\right\}$ such that $\left|\sigma_{j}\right| \rightarrow 0$.

$$
c=c(\mathcal{S})
$$

\square What is it?

$$
c(\mathcal{S})=\inf _{\left\{\phi_{j}(x)\right\} \in \mathcal{B}} \frac{1}{2} \int H\left(\sum_{j} \sigma_{j} \phi_{j}(x) \phi_{j}(y)\right) d x d y
$$

$$
c(\mathcal{S})=\inf _{\left\{\phi_{j}(x)\right\} \in \mathcal{B}} \frac{1}{2} \int H\left(\sum_{j} \sigma_{j} \phi_{j}(x) \phi_{j}(y)\right) d x d y
$$

$\square\left\{\phi_{j}\right\}$ are orthonormal. \mathcal{B} all choices of orthonormal sets.

$$
c(\mathcal{S})=\inf _{\left\{\phi_{j}(x)\right\} \in \mathcal{B}} \frac{1}{2} \int H\left(\sum_{j} \sigma_{j} \phi_{j}(x) \phi_{j}(y)\right) d x d y
$$

$\left\{\phi_{j}\right\}$ are orthonormal. \mathcal{B} all choices of orthonormal sets.

$$
\mathcal{K}(\mathcal{S})=\{k: \sigma(k)=\mathcal{S} \cup\{0\}\}
$$

$$
c(\mathcal{S})=\inf _{k \in \mathcal{K}} \frac{1}{2} \int H(k(x, y)) d x d y
$$

$$
\begin{aligned}
c(\mathcal{S}) & =\inf _{k \in \mathcal{K}} \frac{1}{2} \int H(k(x, y)) d x d y \\
H(k) & =\sup _{\theta}\left[\theta k-\log E\left[e^{\theta X}\right]\right]
\end{aligned}
$$

is the Cramér rate function.

$$
\begin{gathered}
c(\mathcal{S})=\inf _{k \in \mathcal{K}} \frac{1}{2} \int H(k(x, y)) d x d y \\
H(k)=\sup _{\theta}\left[\theta k-\log E\left[e^{\theta X}\right]\right]
\end{gathered}
$$

is the Cramér rate function.

$$
H(k) \geq c k^{2}
$$

provides compactness.

Proof

- Imbed

$$
k(x, y)=\sum_{i, j} X_{i, j} 1_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) 1_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)
$$

Proof

- Imbed

$$
k(x, y)=\sum_{i, j} X_{i, j} \mathbf{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)
$$

- Do LDP on \mathcal{K} in the cut-topology

Proof

\square Imbed

$$
k(x, y)=\sum_{i, j} X_{i, j} \boldsymbol{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \boldsymbol{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)
$$

- Do LDP on \mathcal{K} in the cut-topology
$\square \mathcal{S}(k)$ depends continuously on k.

Moral of the story

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,

Moral of the story

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,
\square After rearrangement (permuting coordinates)

Moral of the story

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,
\square After rearrangement (permuting coordinates)
\square A kernel k will emerge in the cut topology

Moral of the story

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,
\square After rearrangement (permuting coordinates)
\square A kernel k will emerge in the cut topology
\square Its eigenvalues will be these eigen-values normalized by dividing by n.
$-d F$.
$-d F$.
- Cramér tilt.
$\square d F$.
- Cramér tilt.
- $F_{\theta}=\frac{1}{M(\theta)} e^{\theta x} d F$
$-d F$.
- Cramér tilt.
- $F_{\theta}=\frac{1}{M(\theta)} e^{\theta x} d F$
$\square k(\theta)=\frac{M^{\prime}(\theta)}{M(\theta)}$
$-d F$.
- Cramér tilt.
$F_{\theta}=\frac{1}{M(\theta)} e^{\theta x} d F$
$\square k(\theta)=\frac{M^{\prime}(\theta)}{M(\theta)}$
$\square \theta=\theta(k)$
$-d F$.
- Cramér tilt.
- $F_{\theta}=\frac{1}{M(\theta)} e^{\theta x} d F$
$\square k(\theta)=\frac{M^{\prime}(\theta)}{M(\theta)}$
$\square \theta=\theta(k)$
$\square H(k)=\theta(k) k-\log M(\theta(k))$
$\square k=k(x, y)$
$\square k=k(x, y)$
$\theta_{i, j}^{n}=\theta\left(k\left(\frac{i}{n}, \frac{j}{n}\right)\right)$
$\square k=k(x, y)$
$\square \theta_{i, j}^{n}=\theta\left(k\left(\frac{i}{n}, \frac{j}{n}\right)\right)$
$-\mathbf{X}_{i, j} \simeq F_{\theta_{i, j}^{n}}$
$\square k=k(x, y)$
$\theta_{i, j}^{n}=\theta\left(k\left(\frac{i}{n}, \frac{j}{n}\right)\right)$
$-\mathbf{X}_{i, j} \simeq F_{\theta_{i, j}^{n}}$

$$
\sum_{i, j} X_{i, j} \boldsymbol{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \boldsymbol{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)
$$

$\square k=k(x, y)$
$\theta_{i, j}^{n}=\theta\left(k\left(\frac{i}{n}, \frac{j}{n}\right)\right)$
$-\mathbf{X}_{i, j} \simeq F_{\theta_{i, j}^{n}}$

$$
\sum_{i, j} X_{i, j} \mathbf{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)
$$

$\square \rightarrow k$ in cut-topology.

last slide

THANK YOU

last slide

THANK YOU

THE END

