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Large deviations of Erdös-Renyi Random graphs.

We are interested in the behavior of large random
graphs.Gn

Gn is a graph withn vertices.

Each of the
(

n
2

)

edges are turned on independently
with probabilityp.

We then have a probability measureQn on the space

of 2(
n
2) possible graphs.
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Random symmetricn× n matrix of0′s and1′s.

Diagonals are0

Probability ispk(1 − p)(
n
2)−k

k is the number of edges that are on.
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Number of times a fixed subgraph appears in the
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Number of times a fixed subgraph appears in the
random graph(V,E(ω))

N(ω) is the number of Triangles

Law of large numbers

N

n3
≃
p3

6
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Number of times a fixed subgraph appears in the
random graph(V,E(ω))

N(ω) is the number of Triangles

Law of large numbers

N

n3
≃
p3

6

What is the probability that

N

n3
≃ a
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Is there a rate functionI∆(a) for large deviations of
N
n3 ?
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Is there a rate functionI∆(a) for large deviations of
N
n3 ?

How about quadrilaterals, or complete4 graphs and
so on.

What about the probability for two such rare events
happening together?

What kinds of graphs contribute to these events?
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First Step. Need a space independent ofn in which
graphs of all sizes live.
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First Step. Need a space independent ofn in which
graphs of all sizes live.

Imbedding the vertices{1, 2, . . . , n} as subintervals
of the unit interval[0, 1]

En
i = [ i−1

n
, i

n
]

The the graphV imbedded as a random function

f(x, y) =
∑

i,j

1En
i
(x)1En

j
(y)πi,j

πi,j = 1 if the edge(i, j) is present and0 otherwise.
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Probability measurePn on the spaceX

X is compact in the weak topology.

Rate function is
[12

∫

f(x, y) log f(x,y)
p

+(1−f(x, y)) log 1−f(x,y)
1−p

]dxdy

But the topology is too weak.

Triangle Count∆(f)

1

6

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2)f(x2, x3)f(x3, x1)dx1dx2dx3

is not continuous.
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Law of large numbers is not valid in the strong
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{f(x, y)} live only on functions that are either0 or 1
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Strong topology is too strong

Law of large numbers is not valid in the strong
topology.

{f(x, y)} live only on functions that are either0 or 1

It is hard to make them converge to a more general
function like a constantp
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A good compromise exists. "Cut Topology"

Weak topology
∫

fn(x, y)φ(x, y)dxdy →

∫

f(x, y)φ(x, y)dxdy

for everyφ bounded by1.
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A good compromise exists. "Cut Topology"

Weak topology
∫

fn(x, y)φ(x, y)dxdy →

∫

f(x, y)φ(x, y)dxdy

for everyφ bounded by1.

Strong Topology

sup
|φ|≤1

|

∫

[fn(x, y) − f(x, y)]φ(x, y)dxdy| → 0
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Cut Topology.
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Cut Topology.

sup
|φ|≤1

|ψ|≤1

|

∫

[fn(x, y) − f(x, y)]φ(x)ψ(y)dxdy| → 0

A little weaker than strong topology.

Let γ be a finite graph, with vertices1, 2, . . . , k and
some edges (un-oriented)e ∈ E.

The functional

Φγ(f) =

∫

Πe∈Ef(xi, xj)dx1dx2 . . . dxk

is a continuos functional off in the cut topology.
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Proof

Consider triangles.
∫

fn(x1, x2)fn(x2, x3)fn(x3, x1)dx1dx2dx3
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Proof

Consider triangles.
∫

fn(x1, x2)fn(x2, x3)fn(x3, x1)dx1dx2dx3

∫

[fn(x1, x2)−f(x1, x2)]fn(x2, x3)fn(x3, x1)dx1dx2

→ 0 not only for eachx3 but uniformly overx3.
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Proof

Consider triangles.
∫

fn(x1, x2)fn(x2, x3)fn(x3, x1)dx1dx2dx3

∫

[fn(x1, x2)−f(x1, x2)]fn(x2, x3)fn(x3, x1)dx1dx2

→ 0 not only for eachx3 but uniformly overx3.

Therefore
∫

(fn − f)(x1, x2)fn(x2, x3)fn(x3, x1)dx1dx2dx3

→ 0
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Replacefn by f , one edge at a time.
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Replacefn by f , one edge at a time.

It works.

∫

[fn − f ](xi, xj)φn(xi, x
∗)ψn(xj, x

∗)dxidxjdx
∗
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Replacefn by f , one edge at a time.

It works.

∫

[fn − f ](xi, xj)φn(xi, x
∗)ψn(xj, x

∗)dxidxjdx
∗

Goes to0.
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It seems reasonable to to take as our spaceX with
cut topology
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It seems reasonable to to take as our spaceX with
cut topology

d�(f, g) = sup
|φ|≤1

|ψ|≤1

|

∫

[f(x, y)−g(x, y)]φ(x)ψ(y)dxdy|
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It seems reasonable to to take as our spaceX with
cut topology

d�(f, g) = sup
|φ|≤1

|ψ|≤1

|

∫

[f(x, y)−g(x, y)]φ(x)ψ(y)dxdy|

d�(f, g) = sup
A,B

|

∫

x∈A,y∈B

[f(x, y) − g(x, y)]dxdy|

Is the law of large numbers valid in the cut topology?
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sup
A,B

∣

∣

∣

∣

N(A,B)

n2
− |A||B|

∣

∣

∣

∣

→ 0?
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∣

∣

∣
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sup
A,B

∣

∣

∣

∣

N(A,B)

n2
− |A||B|

∣

∣

∣

∣

→ 0?

Each one is just law of large numbers.

Sup is the problem.

Enough to takeA,B to be union of intervals[ i−1
n
, i

n
].
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There are2n × 2n of them.
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There are2n × 2n of them.

The number of edges isn2.

The LLN comes with an error estimate ofe−cn2

.

2n × 2n << ecn2
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Large Deviation Lower Bounds:

Large Deviations 3 – p. 18/40



Large Deviation Lower Bounds:

By the tilting argument

Large Deviations 3 – p. 18/40



Large Deviation Lower Bounds:

By the tilting argument

P (A) =

∫

A

e− log dQ

dP dQ

Large Deviations 3 – p. 18/40



Large Deviation Lower Bounds:

By the tilting argument
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Large Deviation Lower Bounds:

By the tilting argument

P (A) =

∫

A

e− log dQ

dP dQ

= Q(A)[
1

Q(A)

∫

A

e− log dQ
dP dQ]

≥ Q(A) exp[−[
1

Q(A)

∫

A

log
dQ

dP
dQ]]
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Pn[F ∈ B(f, δ)] ≥ exp[−
n2

2

∫

Hp(f(x, y))dxdy

+ o(n2)]
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Pn[F ∈ B(f, δ)] ≥ exp[−
n2

2

∫

Hp(f(x, y))dxdy

+ o(n2)]

Where

Hp(f) = [f log
f

p
+ (1 − f) log

1 − f)

1 − p
]
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Upper bound ?

The rate function wants to be

Ip(f) =
1

2

∫

Hp(f(x, y))dxdy

I(f) is bounded by a constantC = C(p)

There is no chance of coercivity unlessX is
compact.
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IsX compact? No.
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IsX compact? No.

d�(fn(x, y), f(x, y)) → 0 implies

Large Deviations 3 – p. 21/40



IsX compact? No.

d�(fn(x, y), f(x, y)) → 0 implies
∫

fn(x, y)dy →
∫

f(x, y)dy in L1[0, 1]
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IsX compact? No.

d�(fn(x, y), f(x, y)) → 0 implies
∫

fn(x, y)dy →
∫

f(x, y)dy in L1[0, 1]

Kills any chance forX being compact.

Large Deviations 3 – p. 21/40



What have we ignored?
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What have we ignored?

The labeling of the vertices is irrelevant

We have permutation symmetry in the problem.

Symmetry with respect to the groupG of measure
preserving one to one mapsσ of [0, 1] → [0, 1].
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We define the quotient spacẽX = X/G
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We define the quotient spacẽX = X/G

Orbits f̃ = {f(σx, σy)}
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We define the quotient spacẽX = X/G

Orbits f̃ = {f(σx, σy)}

d�(f̃ , g̃) = inf
σ1,σ2

d�(fσ1
, gσ2

)

= inf
σ
d�(fσ, g)

= inf
σ
d�(f, gσ)
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Is X̃ with thed�(f̃ , g̃) metric compact?
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Is X̃ with thed�(f̃ , g̃) metric compact?

According to a theorem of Lovász and Szegedy it is
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Is X̃ with thed�(f̃ , g̃) metric compact?

According to a theorem of Lovász and Szegedy it is

This is a consequence of Szemerédi’s regularity
lemma.
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such that ifn ≥ n0(ǫ, k)
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Given anyǫ > 0 andk, there is anm ≥ k andn0

such that ifn ≥ n0(ǫ, k)

And (V,E) is ANY graph withn vertices,

There is a labeling of the vertices,

i.e a permutation of the rows and columns ofΠ
(same permutationσ )

a simple function
f =

∑m
i,j=1 1Em

i
(x)1Em

j
(y)πi,j ∈ X
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Given anyǫ > 0 andk, there is anm ≥ k andn0

such that ifn ≥ n0(ǫ, k)

And (V,E) is ANY graph withn vertices,

There is a labeling of the vertices,

i.e a permutation of the rows and columns ofΠ
(same permutationσ )

a simple function
f =

∑m
i,j=1 1Em

i
(x)1Em

j
(y)πi,j ∈ X

d�(f,
∑

i,j

1En
i
(x)1En

j
(y)πi,j) ≤ ǫ
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The reason it works is thatn! << ecn2

.
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The infimum is attained
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The reason it works is thatn! << ecn2

.

Rate function for the triangle count

Variational problem

inf
f :Φ∆(f)=c

Ip(f)

The infimum is attained

Euler equation for the function at which the infimum
is attained.
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By a contractionargument one can show that
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By a contractionargument one can show that

If |p
3

6 − c| << 1, the only solution isf = pc = (6c)
1

3

a constant.
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So the graph looks like a similar graph with an
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By a contractionargument one can show that

If |p
3

6 − c| << 1, the only solution isf = pc = (6c)
1

3

a constant.

So the graph looks like a similar graph with an
’adjusted’p

If p << 1, fc = 1[0,pc] is a better option.

1

2
[pc log

pc

p
+ (1 − pc) log

1 − pc

1 − p
]

>
1

2
[p2

c log
1

p
+ (1 − p2

c) log
1

1 − p
]

Large Deviations 3 – p. 27/40



Forp << 1,
pc > p2

c
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I(f0) = 1
4 log(1 − p)
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Forp << 1,
pc > p2

c

Can get more triangles by forming "cliques".

No triangles. Turán. Bipartite graph. Cut half the
edges.

I(f0) = 1
4 log(1 − p)

I(pc) =
1

2
[pc log

pc

p
+ (1 − pc) log

1 − pc

1 − p
]

≃
1

2
log(1 − p)
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Can fixΦγ(f) for any finite number ofγ’s and
minimizeIp(f).
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Random Matrics

{Xi,j}
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Random Matrics

{Xi,j}

Xi,j are i.i.d random variables. Good tail.

The eigenvalues are.

{λn
i (ω) : 1 ≤ i ≤ n}
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Random Matrics

{Xi,j}

Xi,j are i.i.d random variables. Good tail.

The eigenvalues are.

{λn
i (ω) : 1 ≤ i ≤ n}

Scale down.

σn
i (ω) =

λn
i (ω)

n
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The{σn
i } are all uniformly small.
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The{σn
i } are all uniformly small.

There is a small chance that they are not.

What is the probability that some survive?

Estimates in the scale

P (E) ≃ exp[−cn2 + o(n2)]
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Only possibility isS = {σj} such that|σj| → 0.
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Only possibility isS = {σj} such that|σj| → 0.
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Only possibility isS = {σj} such that|σj| → 0.

c = c(S)

What is it?
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c(S) = inf
{φj(x)}∈B

1

2

∫

H(
∑

j

σjφj(x)φj(y))dxdy
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c(S) = inf
{φj(x)}∈B

1

2

∫

H(
∑

j

σjφj(x)φj(y))dxdy

{φj} are orthonormal.B all choices of orthonormal
sets.
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c(S) = inf
{φj(x)}∈B

1

2

∫

H(
∑

j

σjφj(x)φj(y))dxdy

{φj} are orthonormal.B all choices of orthonormal
sets.

K(S) = {k : σ(k) = S ∪ {0}}
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c(S) = inf
k∈K

1

2

∫

H(k(x, y))dxdy
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c(S) = inf
k∈K

1

2

∫

H(k(x, y))dxdy

H(k) = sup
θ

[θ k − logE[eθX ]]

is the Cramér rate function.
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c(S) = inf
k∈K

1

2

∫

H(k(x, y))dxdy

H(k) = sup
θ

[θ k − logE[eθX ]]

is the Cramér rate function.

H(k) ≥ c k2

provides compactness.
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Proof

Imbed

k(x, y) =
∑

i,j

Xi,j1[ i−1

n
, i
n
](x)1[ j−1

n
, j
n
](y)
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Proof

Imbed

k(x, y) =
∑

i,j

Xi,j1[ i−1

n
, i
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, j
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Do LDP onK in the cut-topology
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Proof

Imbed

k(x, y) =
∑

i,j

Xi,j1[ i−1

n
, i
n
](x)1[ j−1

n
, j
n
](y)

Do LDP onK in the cut-topology

S(k) depends continuously onk.
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Moral of the story

If in a random symmetric matrix of sizen× n we
saw a few eigen-values that are of ordern,
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Moral of the story

If in a random symmetric matrix of sizen× n we
saw a few eigen-values that are of ordern,

After rearrangement ( permuting coordinates)

A kernelk will emerge in the cut topology

Its eigenvalues will be these eigen-values
normalized by dividing byn.
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dF .

Cramér tilt.
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dF .

Cramér tilt.

Fθ = 1
M(θ)e

θxdF
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Cramér tilt.

Fθ = 1
M(θ)e

θxdF

k(θ) = M ′(θ)
M(θ)
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Cramér tilt.

Fθ = 1
M(θ)e
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dF .

Cramér tilt.

Fθ = 1
M(θ)e

θxdF

k(θ) = M ′(θ)
M(θ)

θ = θ(k)

H(k) = θ(k)k − logM(θ(k))
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k = k(x, y)
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k = k(x, y)

θn
i,j = θ(k( i

n
, j

n
))
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k = k(x, y)

θn
i,j = θ(k( i
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Xi,j ≃ Fθni,j
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k = k(x, y)

θn
i,j = θ(k( i

n
, j

n
))

Xi,j ≃ Fθni,j

∑

i,j

Xi,j1[ i−1

n
, i
n
](x)1[ j−1

n
, j
n
](y)
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k = k(x, y)

θn
i,j = θ(k( i

n
, j

n
))

Xi,j ≃ Fθni,j

∑

i,j

Xi,j1[ i−1

n
, i
n
](x)1[ j−1

n
, j
n
](y)

→ k in cut-topology.
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last slide

THANK YOU
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last slide

THANK YOU

THE END
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