Large Deviations 3

S.R.S. Varadhan Courant Institute, NYU

Fields Institute
Toronto, April 15, 2011

Large Deviations 3

S.R.S. Varadhan Courant Institute, NYU

Fields Institute
Toronto, April 15, 2011

Joint work with Sourav Chatterjee

- Joint work with Sourav Chatterjee
- arxiv.org/pdf/1008.1946

Large deviations of Erdös-Renyi Random graphs.

- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. G_n

- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. G_n
- \mathcal{G}_n is a graph with n vertices.

- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. G_n
- \mathcal{G}_n is a graph with n vertices.
- Each of the $\binom{n}{2}$ edges are turned on independently with probability p.

- Large deviations of Erdös-Renyi Random graphs.
- We are interested in the behavior of large random graphs. G_n
- $lue{\mathcal{G}}_n$ is a graph with n vertices.
- Each of the $\binom{n}{2}$ edges are turned on independently with probability p.
- We then have a probability measure Q_n on the space of $2^{\binom{n}{2}}$ possible graphs.

Random symmetric $n \times n$ matrix of 0's and 1's.

- Random symmetric $n \times n$ matrix of 0's and 1's.
- Diagonals are 0

- Random symmetric $n \times n$ matrix of 0's and 1's.
- Diagonals are 0
- Probability is $p^k(1-p)^{\binom{n}{2}-k}$

- Random symmetric $n \times n$ matrix of 0's and 1's.
- Diagonals are 0
- Probability is $p^k(1-p)^{\binom{n}{2}-k}$
- = k is the number of edges that are on.

Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$

- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
- $N(\omega)$ is the number of Triangles

- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
- $N(\omega)$ is the number of Triangles
- Law of large numbers

$$\frac{N}{n^3} \simeq \frac{p^3}{6}$$

- Number of times a fixed subgraph appears in the random graph $(V, E(\omega))$
- $N(\omega)$ is the number of Triangles
- Law of large numbers

$$\frac{N}{n^3} \simeq \frac{p^3}{6}$$

What is the probability that

$$\frac{N}{n^3} \simeq a$$

Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^3}$?

- Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^3}$?
- How about quadrilaterals, or complete 4 graphs and so on.

- Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^3}$?
- How about quadrilaterals, or complete 4 graphs and so on.
- What about the probability for two such rare events happening together?

- Is there a rate function $I_{\Delta}(a)$ for large deviations of $\frac{N}{n^3}$?
- How about quadrilaterals, or complete 4 graphs and so on.
- What about the probability for two such rare events happening together?
- What kinds of graphs contribute to these events?

First Step. Need a space independent of *n* in which graphs of all sizes live.

- First Step. Need a space independent of *n* in which graphs of all sizes live.
- Imbedding the vertices $\{1, 2, \dots, n\}$ as subintervals of the unit interval [0, 1]

- First Step. Need a space independent of *n* in which graphs of all sizes live.
- Imbedding the vertices $\{1, 2, \dots, n\}$ as subintervals of the unit interval [0, 1]
- $lacksquare E_i^n = \left[rac{i-1}{n}, rac{i}{n}
 ight]^n$

- First Step. Need a space independent of *n* in which graphs of all sizes live.
- Imbedding the vertices $\{1, 2, \dots, n\}$ as subintervals of the unit interval [0, 1]
- $E_i^n = \left[\frac{i-1}{n}, \frac{i}{n}\right]$
- \blacksquare The the graph V imbedded as a random function

$$f(x,y) = \sum_{i,j} \mathbf{1}_{E_i^n}(x) \mathbf{1}_{E_j^n}(y) \pi_{i,j}$$

 $\pi_{i,j} = 1$ if the edge (i,j) is present and 0 otherwise.

Probability measure P_n on the space \mathcal{X}

- Probability measure P_n on the space \mathcal{X}
- \mathbf{Z} is compact in the weak topology.

- Probability measure P_n on the space \mathcal{X}
- $\blacksquare \mathcal{X}$ is compact in the weak topology.
- Rate function is

$$\left[\frac{1}{2}\int f(x,y)\log\frac{f(x,y)}{p} + (1-f(x,y))\log\frac{1-f(x,y)}{1-p}\right]dxdy$$

- Probability measure P_n on the space \mathcal{X}
- $\blacksquare \mathcal{X}$ is compact in the weak topology.
- Rate function is $[\frac{1}{2} \int f(x,y) \log \frac{f(x,y)}{p} + (1-f(x,y)) \log \frac{1-f(x,y)}{1-p}] dx dy$
- But the topology is too weak.

- Probability measure P_n on the space \mathcal{X}
- \mathbf{Z} is compact in the weak topology.
- Rate function is

$$[\frac{1}{2} \int f(x,y) \log \frac{f(x,y)}{p} + (1-f(x,y)) \log \frac{1-f(x,y)}{1-p}] dx dy$$

- But the topology is too weak.
- **Tr**iangle Count $\Delta(f)$

$$\frac{1}{6} \int_0^1 \int_0^1 \int_0^1 f(x_1, x_2) f(x_2, x_3) f(x_3, x_1) dx_1 dx_2 dx_3$$

is not continuous.

Strong topology is too strong

- Strong topology is too strong
- Law of large numbers is not valid in the strong topology.

- Strong topology is too strong
- Law of large numbers is not valid in the strong topology.
- $\blacksquare \{f(x,y)\}$ live only on functions that are either 0 or 1

- Strong topology is too strong
- Law of large numbers is not valid in the strong topology.
- $\blacksquare \{f(x,y)\}$ live only on functions that are either 0 or 1
- It is hard to make them converge to a more general function like a constant p

A good compromise exists. "Cut Topology"

- A good compromise exists. "Cut Topology"
- Weak topology

$$\int f_n(x,y)\phi(x,y)dxdy \to \int f(x,y)\phi(x,y)dxdy$$

for every ϕ bounded by 1.

- A good compromise exists. "Cut Topology"
- Weak topology

$$\int f_n(x,y)\phi(x,y)dxdy \to \int f(x,y)\phi(x,y)dxdy$$

for every ϕ bounded by 1.

Strong Topology

$$\sup_{|\phi| \le 1} |\int [f_n(x, y) - f(x, y)] \phi(x, y) dx dy| \to 0$$

$$\sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} \left| \int [f_n(x, y) - f(x, y)] \phi(x) \psi(y) dx dy \right| \to 0$$

$$\sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} \left| \int [f_n(x, y) - f(x, y)] \phi(x) \psi(y) dx dy \right| \to 0$$

A little weaker than strong topology.

$$\sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} \left| \int [f_n(x, y) - f(x, y)] \phi(x) \psi(y) dx dy \right| \to 0$$

- A little weaker than strong topology.
- Let γ be a finite graph, with vertices $1, 2, \dots, k$ and some edges (un-oriented) $e \in E$.

$$\sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} \left| \int [f_n(x, y) - f(x, y)] \phi(x) \psi(y) dx dy \right| \to 0$$

- A little weaker than strong topology.
- Let γ be a finite graph, with vertices $1, 2, \ldots, k$ and some edges (un-oriented) $e \in E$.
- The functional

$$\Phi_{\gamma}(f) = \int \Pi_{e \in E} f(x_i, x_j) dx_1 dx_2 \dots dx_k$$

is a continuos functional of f in the cut topology.

Proof

Consider triangles.

$$\int f_n(x_1, x_2) f_n(x_2, x_3) f_n(x_3, x_1) dx_1 dx_2 dx_3$$

Proof

Consider triangles.

$$\int f_n(x_1, x_2) f_n(x_2, x_3) f_n(x_3, x_1) dx_1 dx_2 dx_3$$

$$\int [f_n(x_1, x_2) - f(x_1, x_2)] f_n(x_2, x_3) f_n(x_3, x_1) dx_1 dx_2$$

 \rightarrow 0 not only for each x_3 but uniformly over x_3 .

Proof

Consider triangles.

$$\int f_n(x_1, x_2) f_n(x_2, x_3) f_n(x_3, x_1) dx_1 dx_2 dx_3$$

$$\int [f_n(x_1, x_2) - f(x_1, x_2)] f_n(x_2, x_3) f_n(x_3, x_1) dx_1 dx_2$$

- \rightarrow 0 not only for each x_3 but uniformly over x_3 .
- Therefore

$$\int (f_n - f)(x_1, x_2) f_n(x_2, x_3) f_n(x_3, x_1) dx_1 dx_2 dx_3$$

$$\longrightarrow 0$$

Replace f_n by f, one edge at a time.

- Replace f_n by f, one edge at a time.
- It works.

- Replace f_n by f, one edge at a time.
- It works.

$$\int [f_n - f](x_i, x_j) \phi_n(x_i, x^*) \psi_n(x_j, x^*) dx_i dx_j dx^*$$

- Replace f_n by f, one edge at a time.
- It works.

$$\int [f_n - f](x_i, x_j) \phi_n(x_i, x^*) \psi_n(x_j, x^*) dx_i dx_j dx^*$$

Goes to 0.

$$d_{\square}(f,g) = \sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} |\int [f(x,y) - g(x,y)] \phi(x) \psi(y) dx dy|$$

$$d_{\square}(f,g) = \sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} \left| \int [f(x,y) - g(x,y)] \phi(x) \psi(y) dx dy \right|$$

$$d_{\square}(f,g) = \sup_{A,B} |\int_{x \in A, y \in B} [f(x,y) - g(x,y)] dxdy|$$

$$d_{\square}(f,g) = \sup_{\substack{|\phi| \le 1 \\ |\psi| \le 1}} \left| \int [f(x,y) - g(x,y)] \phi(x) \psi(y) dx dy \right|$$

$$d_{\square}(f,g) = \sup_{A,B} |\int_{x \in A, y \in B} [f(x,y) - g(x,y)] dxdy|$$

Is the law of large numbers valid in the cut topology?

$$\sup_{A,B} \left| \frac{N(A,B)}{n^2} - |A||B| \right| \to 0?$$

$$\sup_{A,B} \left| \frac{N(A,B)}{n^2} - |A||B| \right| \to 0?$$

Each one is just law of large numbers.

$$\sup_{A,B} \left| \frac{N(A,B)}{n^2} - |A||B| \right| \to 0?$$

- Each one is just law of large numbers.
- Sup is the problem.

$$\sup_{A,B} \left| \frac{N(A,B)}{n^2} - |A||B| \right| \to 0?$$

- Each one is just law of large numbers.
- Sup is the problem.
- **Enough** to take A, B to be union of intervals $\left[\frac{i-1}{n}, \frac{i}{n}\right]$.

There are $2^n \times 2^n$ of them.

- There are $2^n \times 2^n$ of them.
- The number of edges is n^2 .

- There are $2^n \times 2^n$ of them.
- The number of edges is n^2 .
- The LLN comes with an error estimate of e^{-cn^2} .

- There are $2^n \times 2^n$ of them.
- The number of edges is n^2 .
- The LLN comes with an error estimate of e^{-cn^2} .
- $2^n \times 2^n << e^{cn^2}$

Large Deviation Lower Bounds:

- Large Deviation Lower Bounds:
- By the tilting argument

- Large Deviation Lower Bounds:
- By the tilting argument

$$P(A) = \int_{A} e^{-\log\frac{dQ}{dP}} dQ$$

- Large Deviation Lower Bounds:
- By the tilting argument

$$P(A) = \int_{A} e^{-\log\frac{dQ}{dP}} dQ$$

$$= Q(A)\left[\frac{1}{Q(A)}\int_{A} e^{-\log\frac{dQ}{dP}}dQ\right]$$

- Large Deviation Lower Bounds:
- By the tilting argument

$$P(A) = \int_{A} e^{-\log \frac{dQ}{dP}} dQ$$

$$= Q(A) \left[\frac{1}{Q(A)} \int_{A} e^{-\log \frac{dQ}{dP}} dQ \right]$$

$$\geq Q(A) \exp\left[-\left[\frac{1}{Q(A)} \int_{A} \log \frac{dQ}{dP} dQ \right] \right]$$

$$P_n[F \in B(f, \delta)] \ge \exp\left[-\frac{n^2}{2} \int H_p(f(x, y)) dx dy + o(n^2)\right]$$

$$P_n[F \in B(f, \delta)] \ge \exp\left[-\frac{n^2}{2} \int H_p(f(x, y)) dx dy + o(n^2)\right]$$

Where

$$H_p(f) = \left[f \log \frac{f}{p} + (1 - f) \log \frac{1 - f}{1 - p} \right]$$

Upper bound ?

- Upper bound ?
- The rate function wants to be

$$I_p(f) = \frac{1}{2} \int H_p(f(x,y)) dx dy$$

- Upper bound ?
- The rate function wants to be

$$I_p(f) = \frac{1}{2} \int H_p(f(x,y)) dx dy$$

 $\blacksquare I(f)$ is bounded by a constant C = C(p)

- Upper bound ?
- The rate function wants to be

$$I_p(f) = \frac{1}{2} \int H_p(f(x,y)) dx dy$$

- $\blacksquare I(f)$ is bounded by a constant C = C(p)
- There is no chance of coercivity unless \mathcal{X} is compact.

Is \mathcal{X} compact? No.

- Is \mathcal{X} compact? No.
- $d_{\square}(f_n(x,y),f(x,y)) \to 0$ implies

- Is \mathcal{X} compact? No.
- $d_{\square}(f_n(x,y),f(x,y)) \to 0 \text{ implies}$
- $\int f_n(x,y)dy \rightarrow \int f(x,y)dy \text{ in } L_1[0,1]$

- Is \mathcal{X} compact? No.
- $d_{\square}(f_n(x,y),f(x,y)) \to 0$ implies
- $f_n(x,y)dy \longrightarrow \int f(x,y)dy \text{ in } L_1[0,1]$
- **Kills** any chance for \mathcal{X} being compact.

What have we ignored?

- What have we ignored?
- The labeling of the vertices is irrelevant

- What have we ignored?
- The labeling of the vertices is irrelevant
- We have permutation symmetry in the problem.

- What have we ignored?
- The labeling of the vertices is irrelevant
- We have permutation symmetry in the problem.
- Symmetry with respect to the group G of measure preserving one to one maps σ of $[0,1] \rightarrow [0,1]$.

We define the quotient space $\tilde{\mathcal{X}} = \mathcal{X}/G$

- We define the quotient space $\tilde{\mathcal{X}} = \mathcal{X}/G$
- Orbits $\tilde{f} = \{f(\sigma x, \sigma y)\}$

- We define the quotient space $\mathcal{X} = \mathcal{X}/G$
- Orbits $\tilde{f} = \{f(\sigma x, \sigma y)\}$

$$d_{\square}(\tilde{f}, \tilde{g}) = \inf_{\sigma_1, \sigma_2} d_{\square}(f_{\sigma_1}, g_{\sigma_2})$$

$$= \inf_{\sigma} d_{\square}(f_{\sigma}, g)$$

$$= \inf_{\sigma} d_{\square}(f, g_{\sigma})$$

Is $\widetilde{\mathcal{X}}$ with the $d_{\square}(\widetilde{f},\widetilde{g})$ metric compact?

- Is $\tilde{\mathcal{X}}$ with the $d_{\square}(\tilde{f}, \tilde{g})$ metric compact?
- According to a theorem of Lovász and Szegedy it is

- Is $\tilde{\mathcal{X}}$ with the $d_{\square}(\tilde{f}, \tilde{g})$ metric compact?
- According to a theorem of Lovász and Szegedy it is
- This is a consequence of Szemerédi's regularity lemma.

Given any $\epsilon > 0$ and k, there is an $m \ge k$ and n_0 such that if $n \ge n_0(\epsilon, k)$

- Given any $\epsilon > 0$ and k, there is an $m \geq k$ and n_0 such that if $n \geq n_0(\epsilon, k)$
- \blacksquare And (V, E) is ANY graph with n vertices,

- Given any $\epsilon > 0$ and k, there is an $m \geq k$ and n_0 such that if $n \geq n_0(\epsilon, k)$
- \blacksquare And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,

- Given any $\epsilon > 0$ and k, there is an $m \geq k$ and n_0 such that if $n \geq n_0(\epsilon, k)$
- \blacksquare And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,
- i.e a permutation of the rows and columns of Π (same permutation σ)

- Given any $\epsilon > 0$ and k, there is an $m \geq k$ and n_0 such that if $n \geq n_0(\epsilon, k)$
- \blacksquare And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,
- i.e a permutation of the rows and columns of Π (same permutation σ)
- a simple function

$$f = \sum_{i,j=1}^{m} \mathbf{1}_{E_i^m}(x) \mathbf{1}_{E_j^m}(y) \pi_{i,j} \in \mathcal{X}$$

- Given any $\epsilon > 0$ and k, there is an $m \geq k$ and n_0 such that if $n \geq n_0(\epsilon, k)$
- \blacksquare And (V, E) is ANY graph with n vertices,
- There is a labeling of the vertices,
- i.e a permutation of the rows and columns of Π (same permutation σ)
- a simple function

$$f = \sum_{i,j=1}^{m} \mathbf{1}_{E_i^m}(x) \mathbf{1}_{E_j^m}(y) \pi_{i,j} \in \mathcal{X}$$

$$d_{\square}(f, \sum_{i,j} \mathbf{1}_{E_i^n}(x) \mathbf{1}_{E_j^n}(y) \pi_{i,j}) \le \epsilon$$

The reason it works is that $n! << e^{cn^2}$.

- The reason it works is that $n! << e^{cn^2}$.
- Rate function for the triangle count

- The reason it works is that $n! << e^{cn^2}$.
- Rate function for the triangle count
- Variational problem

- The reason it works is that $n! << e^{cn^2}$.
- Rate function for the triangle count
- Variational problem

$$\inf_{f:\Phi_{\Delta}(f)=c}I_{p}(f)$$

- The reason it works is that $n! < e^{cn^2}$.
- Rate function for the triangle count
- Variational problem

$$\inf_{f:\Phi_{\Delta}(f)=c} I_p(f)$$

The infimum is attained

- The reason it works is that $n! << e^{cn^2}$
- Rate function for the triangle count
- Variational problem

$$\inf_{f:\Phi_{\Delta}(f)=c}I_p(f)$$

- The infimum is attained
- Euler equation for the function at which the infimum is attained.

By a contractionargument one can show that

- By a contractionargument one can show that
- If $\left|\frac{p^3}{6}-c\right|<<1$, the only solution is $f=p_c=(6c)^{\frac{1}{3}}$ a constant.

- By a contractionargument one can show that
- If $\left|\frac{p^3}{6}-c\right| << 1$, the only solution is $f=p_c=(6c)^{\frac{1}{3}}$ a constant.
- So the graph looks like a similar graph with an 'adjusted' p

- By a contractionargument one can show that
- If $\left|\frac{p^3}{6}-c\right|<<1$, the only solution is $f=p_c=(6c)^{\frac{1}{3}}$ a constant.
- So the graph looks like a similar graph with an 'adjusted' p
- If $p \ll 1$, $f_c = \mathbf{1}_{[0,p_c]}$ is a better option.

- By a contractionargument one can show that
- If $\left|\frac{p^3}{6} c\right| << 1$, the only solution is $f = p_c = (6c)^{\frac{1}{3}}$ a constant.
- So the graph looks like a similar graph with an 'adjusted' p
- If $p \ll 1$, $f_c = \mathbf{1}_{[0,p_c]}$ is a better option.

$$\frac{1}{2} \left[p_c \log \frac{p_c}{p} + (1 - p_c) \log \frac{1 - p_c}{1 - p} \right]
> \frac{1}{2} \left[p_c^2 \log \frac{1}{p} + (1 - p_c^2) \log \frac{1}{1 - p} \right]$$

For p << 1,

$$p_c > p_c^2$$

$$p_c > p_c^2$$

Can get more triangles by forming "cliques".

$$p_c > p_c^2$$

- Can get more triangles by forming "cliques".
- No triangles. Turán. Bipartite graph. Cut half the edges.

$$p_c > p_c^2$$

- Can get more triangles by forming "cliques".
- No triangles. Turán. Bipartite graph. Cut half the edges.
- $I(f_0) = \frac{1}{4}\log(1-p)$

$$p_c > p_c^2$$

- Can get more triangles by forming "cliques".
- No triangles. Turán. Bipartite graph. Cut half the edges.

$$I(f_0) = \frac{1}{4}\log(1-p)$$

$$I(p_c) = \frac{1}{2} [p_c \log \frac{p_c}{p} + (1 - p_c) \log \frac{1 - p_c}{1 - p}]$$

$$\simeq \frac{1}{2} \log(1 - p)$$

Can fix $\Phi_{\gamma}(f)$ for any finite number of γ 's and minimize $I_p(f)$.

$$\{X_{i,j}\}$$

 $X_{i,j}$ are i.i.d random variables. Good tail.

$$\{X_{i,j}\}$$

- $X_{i,j}$ are i.i.d random variables. Good tail.
- The eigenvalues are.

$$\{\lambda_i^n(\omega): 1 \le i \le n\}$$

$$\{X_{i,j}\}$$

- $X_{i,j}$ are i.i.d random variables. Good tail.
- The eigenvalues are.

$$\{\lambda_i^n(\omega): 1 \le i \le n\}$$

Scale down.

$$\sigma_i^n(\omega) = \frac{\lambda_i^n(\omega)}{n}$$

The $\{\sigma_i^n\}$ are all uniformly small.

- **The** $\{\sigma_i^n\}$ are all uniformly small.
- There is a small chance that they are not.

- The $\{\sigma_i^n\}$ are all uniformly small.
- There is a small chance that they are not.
- What is the probability that some survive?

- The $\{\sigma_i^n\}$ are all uniformly small.
- There is a small chance that they are not.
- What is the probability that some survive?
- **Estimates** in the scale

$$P(E) \simeq \exp[-cn^2 + o(n^2)]$$

Only possibility is $S = \{\sigma_j\}$ such that $|\sigma_j| \to 0$.

Only possibility is $S = \{\sigma_j\}$ such that $|\sigma_j| \to 0$.

$$c = c(\mathcal{S})$$

Only possibility is $S = \{\sigma_j\}$ such that $|\sigma_j| \to 0$.

$$c = c(\mathcal{S})$$

What is it?

$$c(\mathcal{S}) = \inf_{\{\phi_j(x)\} \in \mathcal{B}} \frac{1}{2} \int H(\sum_j \sigma_j \phi_j(x) \phi_j(y)) dx dy$$

$$c(\mathcal{S}) = \inf_{\{\phi_j(x)\} \in \mathcal{B}} \frac{1}{2} \int H(\sum_j \sigma_j \phi_j(x) \phi_j(y)) dx dy$$

 $\{\phi_j\}$ are orthonormal. \mathcal{B} all choices of orthonormal sets.

$$c(\mathcal{S}) = \inf_{\{\phi_j(x)\} \in \mathcal{B}} \frac{1}{2} \int H(\sum_j \sigma_j \phi_j(x) \phi_j(y)) dx dy$$

 $\{\phi_j\}$ are orthonormal. \mathcal{B} all choices of orthonormal sets.

$$\mathcal{K}(\mathcal{S}) = \{k : \sigma(k) = \mathcal{S} \cup \{0\}\}\$$

$$c(\mathcal{S}) = \inf_{k \in \mathcal{K}} \frac{1}{2} \int H(k(x, y)) dx dy$$

$$c(\mathcal{S}) = \inf_{k \in \mathcal{K}} \frac{1}{2} \int H(k(x, y)) dx dy$$

$$H(k) = \sup_{\theta} [\theta k - \log E[e^{\theta X}]]$$

is the Cramér rate function.

$$c(\mathcal{S}) = \inf_{k \in \mathcal{K}} \frac{1}{2} \int H(k(x, y)) dx dy$$

$$H(k) = \sup_{\theta} [\theta k - \log E[e^{\theta X}]]$$

is the Cramér rate function.

$$H(k) \ge c k^2$$

provides compactness.

Proof

Imbed

$$k(x,y) = \sum_{i,j} X_{i,j} \mathbf{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)$$

Proof

Imbed

$$k(x,y) = \sum_{i,j} X_{i,j} \mathbf{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)$$

Do LDP on \mathcal{K} in the cut-topology

Proof

Imbed

$$k(x,y) = \sum_{i,j} X_{i,j} \mathbf{1}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n}, \frac{j}{n}\right]}(y)$$

- **Do** LDP on \mathcal{K} in the cut-topology
- $\mathcal{S}(k)$ depends continuously on k.

If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,
- After rearrangement (permuting coordinates)

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,
- After rearrangement (permuting coordinates)
- A kernel *k* will emerge in the cut topology

- If in a random symmetric matrix of size $n \times n$ we saw a few eigen-values that are of order n,
- After rearrangement (permuting coordinates)
- A kernel *k* will emerge in the cut topology
- Its eigenvalues will be these eigen-values normalized by dividing by n.

 $\blacksquare dF.$

- $\blacksquare dF.$
- Cramér tilt.

- $\blacksquare dF.$
- Cramér tilt.

$$F_{\theta} = \frac{1}{M(\theta)} e^{\theta x} dF$$

- $\blacksquare dF.$
- Cramér tilt.

$$F_{\theta} = \frac{1}{M(\theta)} e^{\theta x} dF$$

$$k(\theta) = \frac{M'(\theta)}{M(\theta)}$$

$$k(\theta) = \frac{M'(\theta)}{M(\theta)}$$

- $\blacksquare dF.$
- Cramér tilt.

$$F_{\theta} = \frac{1}{M(\theta)} e^{\theta x} dF$$

$$k(\theta) = \frac{M'(\theta)}{M(\theta)}$$

$$\theta = \theta(k)$$

$$\theta = \theta(k)$$

- $\blacksquare dF.$
- Cramér tilt.

$$F_{\theta} = \frac{1}{M(\theta)} e^{\theta x} dF$$

- $k(\theta) = \frac{M'(\theta)}{M(\theta)}$
- $\theta = \theta(k)$
- $H(k) = \theta(k)k \log M(\theta(k))$

k = k(x, y)

$$k = k(x, y)$$

$$k = k(x, y)$$

$$\mathbf{X}_{i,j} \simeq F_{\theta_{i,j}^n}$$

$$k = k(x, y)$$

$$\theta_{i,j}^n = \theta(k(\frac{i}{n}, \frac{j}{n}))$$

$$\mathbf{X}_{i,j} \simeq F_{\theta_{i,j}^n}$$

$$\sum_{i,j} X_{i,j} \mathbf{1}_{\left[\frac{i-1}{n},\frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n},\frac{j}{n}\right]}(y)$$

$$k = k(x, y)$$

$$\mathbf{X}_{i,j} \simeq F_{\theta_{i,j}^n}$$

$$\sum_{i,j} X_{i,j} \mathbf{1}_{\left[\frac{i-1}{n},\frac{i}{n}\right]}(x) \mathbf{1}_{\left[\frac{j-1}{n},\frac{j}{n}\right]}(y)$$

 $\longrightarrow k$ in cut-topology.

last slide

THANK YOU

last slide

THANK YOU

THE END