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lnteracting Particle Systems

= Kipnis, Rezakhanlou, Quastel, Jensen,
= Conserved Quantities.

= Keep track of motion of many particles.
= Local Equilibria

= Averaging has to be done.
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p(w) = p(=w); 3, wiw;p(w) = 9
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Z¢:, periodic. Number of particlesN

_u

N2t — ¢t
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| Condition

2 0w = a2 Doy To(w)de =1y
measure on the Torug®.

- — po(x)dx

po(z) <1



Initial Condition

ﬁzz 5%7(0) — ﬁZuno(u)é% = TN

= A measure on the Torus®.
mry — po(x)dx
=0 <po(z) <1

— de 100 dZIZ’ —
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doesthe density evolve?

Dy 0um(u) — p(t, x)dx
t,x) = s Ap(t, x)

0, z) = po(7)



How does the density evolve?

= >, 0unp(u) — p(t, x)da
m pi(t, x) = 3Ap(t, x)

- IO(O,ZC) — IOO(:E)
= Converges in probability. Deviations are possible.
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Large Deviation probability.

How can we achieve a given profité¢t, =) with
p(0, ) = po(z)?
The rates do not have to be equal. Introduce a bia

q:10,T] x T¢ x Z% — R,

(Lnf)(n NQZ v — ) (th]’\;}_u))

n(u )(1—77( DLf(0™) = f(n)]
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Large Deviation probability.

How can we achieve a given profité¢t, =) with
p(0, ) = po(z)?
The rates do not have to be equal. Introduce a bia

q:[0,T] x T x 2 — R,

(Lnf)(n NQZ v — ) (th]’\/;}_u))

n(U)(l —n@)Lf(n"") — f(n)]

q(t,x,z) +q(t,x,—z) = 0.
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Effect: b(t,z) = > wq(t, x,w)

w

piltx) = 5 Ap — - (b(t, D)plt, 2)(1 — plt,2))

Entropy CostH (s, A1) = Aglog 42 — (Ay — A1)

N?E{ / St ) (e w) HpF p)l
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Effect: b(t,z) = > wq(t, x,w)

w

piltx) = 5 Ap — - (b(t, D)plt, 2)(1 — plt,2))

Entropy CostH (s, A1) = Aglog 42 — (Ay — A1)

N?E{ / St ) (e w) HpF p)l

Minimize overyg, fixing b.
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Effect: b(t,z) = > wq(t, x,w)

w

1
pr(t, z) = 5 Ap = V- (b(t, z)p(t, 2)(1 = p(t, 2))
Entropy CostH (s, A1) = Aglog 42 — (Ay — A1)
2 ! q
W | [ttt s Ho Gl
Minimize overgq, fixing b.

Replace)(t,u)|1 — n(t,u + w)] by
p(t, £)(1 = p(t, £)).



e guantity reduces to

d T
5 | eI = )y



The quantity reduces to

5 | Lot a0 - pft,2)dido

Minimize overb subject to

o= 30 = V- (bt 2)p(t,2)(1 = plt, )
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The quantity reduces to

5 | Lot a0 - pft,2)dido

Minimize overb subject to
1

L L Ap)? d
T(p) = 5 | o= 580110t

Larae Deviations 2 — p. C



The quantity reduces to

5 | Lot a0 - pft,2)dido

Minimize overb subject to
1

L L Ap)? d
T(p) = 5 | o= 580110t

This does not track individual particles.

| arae Dev
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Track a particle in equilibrium. Bernoulli Densigy
Diffuses. Excludd — d nearest neighbor.

Larae Deviations 2 — n. 1(



Track a particle in equilibrium. Bernoulli Densigy
Diffuses. Excludd — d nearest neighbor.

Diffuses.S(p). S(p) — I asp — 0 andS(p) — 0
asp — 1.

Larae Deviations 2 — n. 1(



Track a particle in equilibrium. Bernoulli Densigy
Diffuses. Excludd — d nearest neighbor.

Diffuses.S(p). S(p) — I asp — 0 andS(p) — 0
asp — 1.

What about non equilibrium?

Larae Deviations 2 — n. 1(



Track a particle in equilibrium. Bernoulli Densigy
Diffuses. Excludd — d nearest neighbor.

Diffuses.S(p). S(p) — I asp — 0 andS(p) — 0
asp — 1.

What about non equilibrium?

Vp
2p

D, = 5V - S(p(t,2))V + [S(p) ~ []2L - ¥
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Track a particle in equilibrium. Bernoulli Densigy
Diffuses. Excludd — d nearest neighbor.

Diffuses.S(p). S(p) — I asp — 0 andS(p) — 0
asp — 1.

What about non equilibrium?

Vp

2,0.v

Dy = 5V - S(plt, )V +[S(p) — T
pe = Dip
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R, — P.
We want to do large deviations.

With b, we get a different diffusion. Extra
circulation.

Dy = 5V - S(plt, )V +[S(p) ~ 1127 -
+b(t,x)(1 — p(t,z)) -V

J(0). B.
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ProbabilityR,, ~ Q)
() determineg(t, x), b(t, x) compatible with it.
[(Q) = J(b) + H(Q| )
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ProbabilityR,, ~ Q)
() determineg(t, x), b(t, x) compatible with it.

I(Q) = J0) + H(Q|F)
Can put in initial randomnesg, can be different.
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Totally asymmetric case

ud=1.p(1)=1. Nt —t.

m Limit p(z, z) is a weak solution of
= prt+ (p(1 = p))z =0

= Solution Is not unique.

= Entropy condition.
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0 1S smooth then for ang

h(p)]t + [9(p)]z =0
ereh/(p)(1 — 2p) = ¢'(p)



If p Is smooth then for ang

h(p)le + g(p)]le =0

whereh'(p)(1 — 2p) = ¢'(p)

Solution is uniquely identified by Entropy conditior
For convexh
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If p Is smooth then for ang

h(p)le + g(p)]le =0

whereh'(p)(1 — 2p) = ¢'(p)

Solution is uniquely identified by Entropy conditior
For convexh

As a distribution,

h(p)le + g(p)]e <0
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One strictly convex function is enough.

h(p) = —[plogp + (1 — p)log(1 — p)]
Large deviations fop(¢, x)
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One strictly convex function is enough.
h(p) = —[plogp + (1 — p) log(1 — p)|
Large deviations fop(¢, x)

Infinite unless Is a weak solution of
pr+ [p(1 = p)la =0
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One strictly convex function is enough.

h(p) = —[plogp + (1 — p)log(1 — p)]
Large deviations fop(¢, x)

Infinite unless Is a weak solution of
pr+ [p(1 = p)la =0

I(p(,)) = /S / h(O)): + [9(p))a] dadt
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S oNsS N arandom environment

1
Qa(x)Dazj + b(x) D,

1
5&(1’, w)D?2 + b(z,w)D,

b random, stationary im.

@:a]?
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Look at the Periodic casé), 1]
There is a unique periodic invariant densityr).

/l*bgb:O.
—Nf() r)dx] =1

P[@ ~m] = e—tl( m)+o(t)
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Look at the Periodic casé), 1]
There is a unique periodic invariant densityr).
20 fo r)dx] =1

P[@ ~m] = 6—t[( m)+o(t)

Changée(x) to c(x).
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Invariant densitybc( )

NOWQ fo r)dx] ~ 1
=plife]0)Y cost IS proportlonal toan the constant is

T(c) = 1/0 (C(f)azx[;(ﬂf)) bu(1)
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Random Stationary Case.
Invariant measure?

Another process(z,w) > 0 such thatp, a, b are
jointly stationaryE*’[¢(z,w)] = 1, and
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Random Stationary Case.
Invariant measure?

Another process(z,w) > 0 such thatp, a, b are
jointly stationaryE*’[¢(z,w)] = 1, and

[’Z,zﬁb =0

It may not exist. If it does it is unique.
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Random Stationary Case.
Invariant measure?

Another process(z,w) > 0 such thatp, a, b are
jointly stationaryE* [¢(z,w)] = 1, and

[’Z,zﬁb =0
It may not exist. If it does it is unique.
= — E[(0,w)b(0,w)).

t
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rge Deviations

2~ m] = exp[—t I(m) + o(t)]?



Large Deviations

P[EY ~ m] = exp[—t I(m) + o(t)]?

Find pairse, ¢. such thatt|¢.| = 1, Elco.] = m
£Z,C¢C =0
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Large Deviations

P[EY ~ m] = exp[—t I(m) + o(t)]?

Find pairse, ¢. such thatt|¢.| = 1, Elco.] = m
£Z,C¢C =0

Lpe=¥,
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Large Deviations

P[EY ~ m] = exp[—t I(m) + o(t)]?

Find pairsc, ¢. such thatE[¢.] = 1, Elco.]

L, .p. =0

1 _ (c—b)

a

I(m)= inf J(c)

c:Elcopl=m

@]

— m
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(Q, F, P,{T,;x € R}) Measure preserving.
a(T,w),b(T,w) are stationary processes.
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(Q, F, P,{T,;x € R}) Measure preserving.
a(T,w),b(T,w) are stationary processes.

L = za(w)D? + b(w) D,

Diffusion on(2. Is there an invariant measugewith

dQ) = ¢(w)dP.
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(Q, F, P,{T,;x € R}) Measure preserving.
a(T,w),b(T,w) are stationary processes.

L = za(w)D? + b(w) D,

Diffusion on(2. Is there an invariant measugewith

dQ) = ¢(w)dP.

It Is unique If it exists and is ergodic.
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Cannot in general fing for a givenb.
But can find pairgc, ¢.) such thatC*¢. = 0.
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Cannot in general fing for a givenb.
But can find pairgc, ¢.) such thatC*¢. = 0.

](m) — infc,qb:E[qbc]:m H(Ca ¢)
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Cannot in general fing for a givenb.
But can find pairgc, ¢.) such thatC*¢. = 0.

](m) — infc,qb:E:qbc]:m H(Ca ¢)

H(c,¢) = B9[] =
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er way

kea(x) = 1. Consider the limit

lim = log E[e"®)] = A()

t—oo




Another way

m Takea(z) = 1. Consider the limit

1
tlim " log E[e?*1] = A(6)

m Then

[(m) = Svelp[@m — A(9),
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Another way

m Takea(z) = 1. Consider the limit

liny %log E[ef 0] — A()
= Then
I(m) = sup|@m — A(0)]
Z

= Solve the equation

1
Uy + 5 Uaz +b(z,wuy =0; u(T,z) = e
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Another way

m Takea(z) = 1. Consider the limit

liny %log E[ef 0] — A()
= Then
I(m) = sup|@m — A(0)]
Z

= Solve the equation

1
Uy + 5 Uaz +b(z,wuy =0; u(T,z) = e

A() = lim 2UT0)

T—>m | arae Deviations 2 — n. 2-
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Hopf-Cole transformation.

Call v (¢, z) = log U(T%Tw). Then

u(t, z) = e (%) and
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Hopf-Cole transformation.

Call v (¢, z) = log U(T%Tw). Then

u(t, z) = e (%) and

Thenv! satisfies
1 1

vf+ﬁvfx+§(vg)2+b(aj,w)vf =0,v' (1,2) = Oz
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Hopf-Cole transformation.

Call v (¢, z) = log U(T%Tw). Then

u(t, z) = e (%) and

Thenv! satisfies

1 1
U + oVt 5 (v ) b, w)vy = 0,07 (1,2) = Oz

Need the limit ad’ — oo of v (0, 0).
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v+ h(v,) = 0;0(l,x) =0z




The limit is a solution of
vy + h(vy) = 0;0(l,2) =0z

h 1S not necessarily quadratic.
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The limit is a solution of
vy + h(vy) = 0;0(l,2) =0z

h 1S not necessarily quadratic.
The solution isu(t,z) = 0x + h(0)(T — 1)
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The limit is a solution of
vy + h(vy) = 0;0(l,2) =0z

h 1S not necessarily quadratic.
The solution isu(t,z) = 0x + h(0)(T — 1)

h(6) = “3.
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Homogenization of random Hamilton-Jacobi
equations.
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Homogenization of random Hamilton-Jacobi
equations.

(e %Ua:a: T f(ga Ua:yw); ?)(1, Qf) = Ox
€

Can determine the limit, in an analogous manner.
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Homogenization of random Hamilton-Jacobi
equations.

(e %Ua:a: T f(ga Ua:yw); ?)(1, Qf) = Ox
€

Can determine the limit, in an analogous manner.

Let
h(x,b,w) = suplbv — f(z,v,w)]

(V)
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(0,0, w) =

sup Fl|0z(1) — h(—=,b(s,x(s),w),w)ds
b:b(sg,w) [ ( ) /0 ( ( ( ) ) ) ]

With T = ¢!, and rescaling space and time

”UT(O, O,w) =

x(T) 1 [*
b:zf(lslg,w)E[e T T/O h(z(s),b(s, z(s),w),w)ds]
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Covariant stationary controls are asymptotically
efficient.
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Covariant stationary controls are asymptotically
efficient.

Take(2, 7, T, P).

f(x,v,w) = f(v, T,w) andh(z,b,w) = h(b, T,w)
Thenb(s, z,w) can be taken to be a stationary
process (T, w).
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Covariant stationary controls are asymptotically
efficient.

Take(2, 7, T, P).

f(x,v,w) = f(v, T,w) andh(z,b,w) = h(b, T,w)
Thenb(s, z,w) can be taken to be a stationary
process (T, w).

vr — v Which is non random.
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Covariant stationary controls are asymptotically
efficient.

Take(2, 7, T, P).

f(x,v,w) = f(v, T,w) andh(z,b,w) = h(b, T,w)
Thenb(s, z,w) can be taken to be a stationary
process (T, w).

vr — v Which is non random.

v(0,0) = sup E™[0b(w) — h(b(w),w),
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THE END
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