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Interacting Particle Systems

Kipnis, Rezakhanlou, Quastel, Jensen,

Conserved Quantities.

Keep track of motion of many particles.

Local Equilibria

Averaging has to be done.
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Model. Symmetric Simple exclusion onZd.

p(w) = p(−w);
∑

w wiwjp(w) = δi,j

(Lf)(η) =
∑

u,v

p(v−u)η(u)(1−η(v))[f(ηu,v)−f(η)]

η → ηu,v ⇔ (1, 0) ↔ (0, 1).

(Af)({uj}) =
∑

i

∑

w

p(w)(1 − η(ui + w))

[f({uj}, i, ui + w) − f({uj})]
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Z
d
N , periodic. Number of particlesρNd

u → x = u
N

N2t → t

LN = N2L; AN = N2A

R =
1

Nd

∑

i

δui(·)

N
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Initial Condition
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Nd
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N

= 1
Nd
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u η0(u)δ u

N
= rN
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Initial Condition
1

Nd

∑

i δui(0)

N

= 1
Nd

∑

u η0(u)δ u

N
= rN

A measure on the TorusT d.

rN → ρ0(x)dx

0 ≤ ρ0(x) ≤ 1
∫

T d ρ0(x)dx = ρ
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How does the density evolve?

1
Nd

∑

u δ u

N
ηt(u) → ρ(t, x)dx
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How does the density evolve?

1
Nd

∑

u δ u

N
ηt(u) → ρ(t, x)dx

ρt(t, x) = 1
2∆ρ(t, x)

ρ(0, x) = ρ0(x)

Converges in probability. Deviations are possible.
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Large Deviation probability.

How can we achieve a given profileρ(t, x) with
ρ(0, x) = ρ0(x)?

The rates do not have to be equal. Introduce a bias.

q : [0, T ] × T d × Zd → R,

(LNf)(η) = N2
∑

u,v

(p(v − u) +
q(t, u

N
, v − u)

N
)

η(u)(1 − η(v))[f(ηu,v) − f(η)]
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Large Deviation probability.

How can we achieve a given profileρ(t, x) with
ρ(0, x) = ρ0(x)?

The rates do not have to be equal. Introduce a bias.

q : [0, T ] × T d × Zd → R,

(LNf)(η) = N2
∑

u,v

(p(v − u) +
q(t, u

N
, v − u)

N
)

η(u)(1 − η(v))[f(ηu,v) − f(η)]

q(t, x, z) + q(t, x,−z) = 0.
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Effect: b(t, x) =
∑

w wq(t, x, w)

ρt(t, x) =
1

2
∆ρ −∇ · (b(t, x)ρ(t, x)(1 − ρ(t, x))
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Effect: b(t, x) =
∑

w wq(t, x, w)

ρt(t, x) =
1

2
∆ρ −∇ · (b(t, x)ρ(t, x)(1 − ρ(t, x))

Entropy CostH(λ2, λ1) = λ2 log λ2

λ1
− (λ2 − λ1)

N2E

[
∫ T

0

∑

u,w

[η(t, u)(1−η(t, u+w))H(p+
q

N
, p)]dt

]
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Effect: b(t, x) =
∑

w wq(t, x, w)

ρt(t, x) =
1

2
∆ρ −∇ · (b(t, x)ρ(t, x)(1 − ρ(t, x))

Entropy CostH(λ2, λ1) = λ2 log λ2

λ1
− (λ2 − λ1)

N2E

[
∫ T

0

∑

u,w

[η(t, u)(1−η(t, u+w))H(p+
q

N
, p)]dt

]

Minimize overq, fixing b.

Replaceη(t, u)[1 − η(t, u + w)] by
ρ(t, x

N
)(1 − ρ(t, x

N
)).
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The quantity reduces to

Nd

2

∫ T

0

∫

FT d

‖b(t, x)‖2ρ(t, x)(1 − ρ(t, x))dtdx
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The quantity reduces to

Nd
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∫ T

0

∫

FT d

‖b(t, x)‖2ρ(t, x)(1 − ρ(t, x))dtdx

Minimize overb subject to

ρt =
1

2
∆ −∇ · (b(t, x)ρ(t, x)(1 − ρ(t, x)))

I(ρ) =
1

2

∫ T

0

‖ρt −
1

2
∆ρ‖2

−1,ρ(t,·)(1−ρ(·))dt
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The quantity reduces to

Nd

2

∫ T

0

∫

FT d

‖b(t, x)‖2ρ(t, x)(1 − ρ(t, x))dtdx

Minimize overb subject to

ρt =
1

2
∆ −∇ · (b(t, x)ρ(t, x)(1 − ρ(t, x)))

I(ρ) =
1

2

∫ T

0

‖ρt −
1

2
∆ρ‖2

−1,ρ(t,·)(1−ρ(·))dt

This does not track individual particles.
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Track a particle in equilibrium. Bernoulli Densityρ.
Diffuses. Exclude1 − d nearest neighbor.
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Diffuses. Exclude1 − d nearest neighbor.

Diffuses.S(ρ). S(ρ) → I asρ → 0 andS(ρ) → 0
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Track a particle in equilibrium. Bernoulli Densityρ.
Diffuses. Exclude1 − d nearest neighbor.

Diffuses.S(ρ). S(ρ) → I asρ → 0 andS(ρ) → 0
asρ → 1.

What about non equilibrium?

Dt =
1

2
∇ · S(ρ(t, x))∇ + [S(ρ) − I]

∇ρ

2ρ
· ∇

ρt = D∗
t ρ
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Rn → P .

We want to do large deviations.
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circulation.

Db,t =
1
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Rn → P .

We want to do large deviations.

With b, we get a different diffusion. Extra
circulation.

Db,t =
1

2
∇ · S(ρ(t, x))∇ + [S(ρ) − I]

∇ρ

2ρ
· ∇

+ b(t, x)(1 − ρ(t, x)) · ∇

J (b). Pb.
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Q determinesq(t, x), b(t, x) compatible with it.

I(Q) = J (b) + H(Q|Pb)

Large Deviations 2 – p. 12/29



ProbabilityRn ∼ Q

Q determinesq(t, x), b(t, x) compatible with it.

I(Q) = J (b) + H(Q|Pb)

Can put in initial randomness.ρ0 can be different.
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Totally asymmetric case

d = 1. p(1) = 1. Nt → t.

Limit ρ(t, x) is a weak solution of

ρt + (ρ(1 − ρ))x = 0

Solution is not unique.

Entropy condition.
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If ρ is smooth then for anyh

[h(ρ)]t + [g(ρ)]x = 0

whereh′(ρ)(1 − 2ρ) = g′(ρ)

Solution is uniquely identified by Entropy condition.
For convexh

As a distribution,

[h(ρ)]t + [g(ρ)]x ≤ 0
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One strictly convex function is enough.

h(p) = −[p log p + (1 − p) log(1 − p)]

Large deviations forρ(t, x)

Infinite unlessρ is a weak solution of
ρt + [ρ(1 − ρ)]x = 0

I(ρ(·, ·)) =

∫

S

∫ T

0

[[h(ρ)]t + [g(ρ)]x]
+dxdt
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Diffusions in a random environment
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2
a(x)D2

x + b(x)Dx
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Diffusions in a random environment

1

2
a(x)D2

x + b(x)Dx

1

2
a(x, ω)D2

x + b(x, ω)Dx

a, b random, stationary inx.

P [x(t)
t

≃ a]?
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a,bφ = 0.
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Look at the Periodic case.[0, 1]

There is a unique periodic invariant densityφ(x).
L∗

a,bφ = 0.

P [x(t)
t

∼
∫ 1

0 b(x)φ(x)dx] = 1

P [x(t)
t

∼ m] = e−tI(m)+o(t)

Changeb(x) to c(x).
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Invariant densityφc(x)
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Invariant densityφc(x)

Now Q[x(t)
t

∼
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0 c(x)φc(x)dx] ∼ 1
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Invariant densityφc(x)

Now Q[x(t)
t

∼
∫ 1

0 c(x)φc(x)dx] ∼ 1

Entropy cost is proportional tot an the constant is

J (c) =
1

2

∫ 1

0

(c(x) − b(x))2

a(x)
φc(x)
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Invariant densityφc(x)

Now Q[x(t)
t

∼
∫ 1

0 c(x)φc(x)dx] ∼ 1

Entropy cost is proportional tot an the constant is

J (c) =
1

2

∫ 1

0

(c(x) − b(x))2

a(x)
φc(x)

I(m) = inf
c:

∫ 1

0
c(x)φc(x)dx=m

J (c)
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Random Stationary Case.

Invariant measure?

Another processφ(x, ω) ≥ 0 such thatφ, a, b are
jointly stationaryEP [φ(x, ω)] = 1, and

L∗
a,bφ = 0

It may not exist. If it does it is unique.
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Random Stationary Case.

Invariant measure?

Another processφ(x, ω) ≥ 0 such thatφ, a, b are
jointly stationaryEP [φ(x, ω)] = 1, and

L∗
a,bφ = 0

It may not exist. If it does it is unique.
x(t)

t
→ E[φ(0, ω)b(0, ω)].
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Large Deviations

P [x(t)
t

∼ m] = exp[−t I(m) + o(t)]?
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P [x(t)
t
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Find pairsc, φc such thatE[φc] = 1, E[cφc] = m
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a,cφc = 0
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Large Deviations

P [x(t)
t

∼ m] = exp[−t I(m) + o(t)]?

Find pairsc, φc such thatE[φc] = 1, E[cφc] = m

L∗
a,cφc = 0

J (c) =
1

2
E[

(c − b)2

a
φc]
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Large Deviations

P [x(t)
t

∼ m] = exp[−t I(m) + o(t)]?

Find pairsc, φc such thatE[φc] = 1, E[cφc] = m

L∗
a,cφc = 0

J (c) =
1

2
E[

(c − b)2

a
φc]

I(m) = inf
c:E[cφc]=m

J (c)
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(Ω,F , P, {Tx;x ∈ R}) Measure preserving.
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(Ω,F , P, {Tx;x ∈ R}) Measure preserving.

a(Txω), b(Txω) are stationary processes.

L = 1
2a(ω)D2

x + b(ω)Dx

Diffusion onΩ. Is there an invariant measureQ with
dQ = φ(ω)dP .
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(Ω,F , P, {Tx;x ∈ R}) Measure preserving.

a(Txω), b(Txω) are stationary processes.

L = 1
2a(ω)D2

x + b(ω)Dx

Diffusion onΩ. Is there an invariant measureQ with
dQ = φ(ω)dP .

It is unique if it exists and is ergodic.

Large Deviations 2 – p. 21/29



Cannot in general findφ for a givenb.
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Cannot in general findφ for a givenb.

But can find pairs(c, φc) such thatL∗φc = 0.

I(m) = infc,φ:E[φc]=m H(c, φ)
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Cannot in general findφ for a givenb.

But can find pairs(c, φc) such thatL∗φc = 0.

I(m) = infc,φ:E[φc]=m H(c, φ)

H(c, φ) = 1
2E

Q[ (c−b)2

a
] = 1

2E
P [ (c−b)2

a
φc]
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Another way

Takea(x) = 1. Consider the limit

lim
t→∞

1

t
log E[eθx(t)] = Λ(θ)
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Another way

Takea(x) = 1. Consider the limit

lim
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1

t
log E[eθx(t)] = Λ(θ)

Then
I(m) = sup

θ

[θm − Λ(θ)]
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Another way

Takea(x) = 1. Consider the limit

lim
t→∞

1

t
log E[eθx(t)] = Λ(θ)

Then
I(m) = sup

θ

[θm − Λ(θ)]

Solve the equation

ut +
1

2
uxx + b(x, ω)ux = 0; u(T, x) = eθx
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Another way

Takea(x) = 1. Consider the limit

lim
t→∞

1

t
log E[eθx(t)] = Λ(θ)

Then
I(m) = sup

θ

[θm − Λ(θ)]

Solve the equation

ut +
1

2
uxx + b(x, ω)ux = 0; u(T, x) = eθx

Λ(θ) = lim
T→∞

log u(T, 0)

T Large Deviations 2 – p. 23/29



Hopf-Cole transformation.
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Hopf-Cole transformation.

Call vT (t, x) = log u(Tt,Tx)
T

. Then

u(t, x) = eTvT ( t

T
, x

T
) and
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Hopf-Cole transformation.

Call vT (t, x) = log u(Tt,Tx)
T

. Then

u(t, x) = eTvT ( t

T
, x

T
) and

ThenvT satisfies

vT
t +

1

2T
vT

xx+
1

2
(vT

x )2+b(x, ω)vT
x = 0, vT (1, x) = θx
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Hopf-Cole transformation.

Call vT (t, x) = log u(Tt,Tx)
T

. Then

u(t, x) = eTvT ( t

T
, x

T
) and

ThenvT satisfies

vT
t +

1

2T
vT

xx+
1

2
(vT

x )2+b(x, ω)vT
x = 0, vT (1, x) = θx

Need the limit asT → ∞ of vT (0, 0).
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The limit is a solution of

vt + h(vx) = 0; v(1, x) = θ x
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The limit is a solution of

vt + h(vx) = 0; v(1, x) = θ x

h is not necessarily quadratic.
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The limit is a solution of

vt + h(vx) = 0; v(1, x) = θ x

h is not necessarily quadratic.

The solution isv(t, x) = θ x + h(θ)(T − t)
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The limit is a solution of

vt + h(vx) = 0; v(1, x) = θ x

h is not necessarily quadratic.

The solution isv(t, x) = θ x + h(θ)(T − t)

h(θ) = v(0,0)
T

.
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Homogenization of random Hamilton-Jacobi
equations.
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Homogenization of random Hamilton-Jacobi
equations.

vt +
ǫ

2
vxx + f(

x

ǫ
, vx, ω); v(1, x) = θx

Can determine the limit, in an analogous manner.
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Homogenization of random Hamilton-Jacobi
equations.

vt +
ǫ

2
vxx + f(

x

ǫ
, vx, ω); v(1, x) = θx

Can determine the limit, in an analogous manner.

Let
h(x, b, ω) = sup

v
[bv − f(x, v, ω)]
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vǫ(0, 0, ω) =

sup
b=b(s,x,ω)

E[θx(1) −

∫ 1

0

h(
x(s)

ǫ
, b(s, x(s), ω), ω)ds]
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vǫ(0, 0, ω) =

sup
b=b(s,x,ω)

E[θx(1) −

∫ 1

0

h(
x(s)

ǫ
, b(s, x(s), ω), ω)ds]

With T = ǫ−1, and rescaling space and time

vT (0, 0, ω) =

sup
b=b(s,x,ω)

E[θ
x(T )

T
−

1

T

∫ T

0

h(x(s), b(s, x(s), ω), ω)ds]
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Covariant stationary controls are asymptotically
efficient.
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Covariant stationary controls are asymptotically
efficient.

Take(Ω,F , Tx, P ).
f(x, v, ω) = f(v, Txω) andh(x, b, ω) = h(b, Txω)
Thenb(s, x, ω) can be taken to be a stationary
processb(Txω).
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Covariant stationary controls are asymptotically
efficient.

Take(Ω,F , Tx, P ).
f(x, v, ω) = f(v, Txω) andh(x, b, ω) = h(b, Txω)
Thenb(s, x, ω) can be taken to be a stationary
processb(Txω).

vT → v which is non random.
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Covariant stationary controls are asymptotically
efficient.

Take(Ω,F , Tx, P ).
f(x, v, ω) = f(v, Txω) andh(x, b, ω) = h(b, Txω)
Thenb(s, x, ω) can be taken to be a stationary
processb(Txω).

vT → v which is non random.

v(0, 0) = sup
(b,Pb)

EPb[θ b(ω) − h(b(ω), ω)]
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Last Slide

THE END
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