Large Deviations 2

S.R.S. Varadhan
Courant Institute, NYU

Fields Institute
Toronto
April 14, 2011

Interacting Particle Systems

- Kipnis, Rezakhanlou, Quastel, Jensen,

Interacting Particle Systems

- Kipnis, Rezakhanlou, Quastel, Jensen,

Conserved Quantities.

Interacting Particle Systems

- Kipnis, Rezakhanlou, Quastel, Jensen,
- Conserved Quantities.
\square Keep track of motion of many particles.

Interacting Particle Systems

- Kipnis, Rezakhanlou, Quastel, Jensen,
- Conserved Quantities.
- Keep track of motion of many particles.
- Local Equilibria

Interacting Particle Systems

- Kipnis, Rezakhanlou, Quastel, Jensen,
- Conserved Quantities.
- Keep track of motion of many particles.
- Local Equilibria
- Averaging has to be done.
\square Model. Symmetric Simple exclusion on Z^{d}.

\square Model. Symmetric Simple exclusion on Z^{d}.

$\square p(w)=p(-w) ; \sum_{w} w_{i} w_{j} p(w)=\delta_{i, j}$
\square Model. Symmetric Simple exclusion on Z^{d}.
$\square p(w)=p(-w) ; \sum_{w} w_{i} w_{j} p(w)=\delta_{i, j}$

$$
(\mathcal{L} f)(\eta)=\sum_{u, v} p(v-u) \eta(u)(1-\eta(v))\left[f\left(\eta^{u, v}\right)-f(\eta)\right]
$$

\square Model. Symmetric Simple exclusion on Z^{d}.
$\square p(w)=p(-w) ; \sum_{w} w_{i} w_{j} p(w)=\delta_{i, j}$

$$
\left.\begin{array}{rl}
& (\mathcal{L} f)(\eta)
\end{array}\right)=\sum_{u, v} p(v-u) \eta(u)(1-\eta(v))\left[f\left(\eta^{u, v}\right)-f(\eta)\right] .
$$

Model. Symmetric Simple exclusion on Z^{d}.
$\square p(w)=p(-w) ; \sum_{w} w_{i} w_{j} p(w)=\delta_{i, j}$

$$
\begin{aligned}
& (\mathcal{L} f)(\eta)=\sum_{u, v} p(v-u) \eta(u)(1-\eta(v))\left[f\left(\eta^{u, v}\right)-f(\eta)\right] \\
& \eta \rightarrow \eta^{u, v} \Leftrightarrow(1,0) \leftrightarrow(0,1) .
\end{aligned}
$$

$$
\begin{array}{r}
(\mathcal{A} f)\left(\left\{u_{j}\right\}\right)= \\
\sum_{i} \sum_{w} p(w)\left(1-\eta\left(u_{i}+w\right)\right) \\
{\left[f\left(\left\{u_{j}\right\}, i, u_{i}+w\right)-f\left(\left\{u_{j}\right\}\right)\right]}
\end{array}
$$

$\square \mathbf{Z}_{N}^{d}$, periodic. Number of particles ρN^{d}
$\square \mathbf{Z}_{N}^{d}$, periodic. Number of particles ρN^{d}
$\square u \rightarrow x=\frac{u}{N}$
$\square \mathbf{Z}_{N}^{d}$, periodic. Number of particles ρN^{d}
$\square u \rightarrow x=\frac{u}{N}$
$\square N^{2} t \rightarrow t$
$\square \mathbf{Z}_{N}^{d}$, periodic. Number of particles ρN^{d}
$\square u \rightarrow x=\frac{u}{N}$
$-N^{2} t \rightarrow t$

$$
\mathcal{L}_{N}=N^{2} \mathcal{L} ; \mathcal{A}_{N}=N^{2} \mathcal{A}
$$

$-\mathbf{Z}_{N}^{d}$, periodic. Number of particles ρN^{d}
$\square u \rightarrow x=\frac{u}{N}$
$-N^{2} t \rightarrow t$

$$
\begin{gathered}
\mathcal{L}_{N}=N^{2} \mathcal{L} ; \mathcal{A}_{N}=N^{2} \mathcal{A} \\
R=\frac{1}{N^{d}} \sum_{i} \delta_{\frac{u_{i}(\cdot)}{N}}
\end{gathered}
$$

Initial Condition

$$
\frac{1}{N^{d}} \sum_{i} \delta_{\frac{u_{i}(0)}{N}}=\frac{1}{N^{d}} \sum_{u} \eta_{0}(u) \delta_{\frac{u}{N}}=r_{N}
$$

Initial Condition

$\square \frac{1}{N^{d}} \sum_{i} \delta_{\frac{u_{i}(0)}{N}}=\frac{1}{N^{d}} \sum_{u} \eta_{0}(u) \delta_{\frac{u}{N}}=r_{N}$
\square A measure on the Torus \mathcal{T}^{d}.

Initial Condition

$\square \frac{1}{N^{d}} \sum_{i} \delta_{\frac{u_{i}(0)}{N}}=\frac{1}{N^{d}} \sum_{u} \eta_{0}(u) \delta_{\frac{u}{N}}=r_{N}$
\square A measure on the Torus \mathcal{T}^{d}.
$\square r_{N} \rightarrow \rho_{0}(x) d x$

Initial Condition

$\square \frac{1}{N^{d}} \sum_{i} \delta_{\frac{u_{i}(0)}{N}}=\frac{1}{N^{d}} \sum_{u} \eta_{0}(u) \delta_{\frac{u}{N}}=r_{N}$
\square A measure on the Torus \mathcal{T}^{d}.
$\square r_{N} \rightarrow \rho_{0}(x) d x$
$\square 0 \leq \rho_{0}(x) \leq 1$

Initial Condition

$\square \frac{1}{N^{d}} \sum_{i} \delta_{\frac{u_{i}(0)}{N}}=\frac{1}{N^{d}} \sum_{u} \eta_{0}(u) \delta_{\frac{u}{N}}=r_{N}$

- A measure on the Torus \mathcal{T}^{d}.
$\square r_{N} \rightarrow \rho_{0}(x) d x$
$\square 0 \leq \rho_{0}(x) \leq 1$
$\int_{\mathcal{T}^{d}} \rho_{0}(x) d x=\rho$

How does the density evolve?

$$
\square \frac{1}{N^{d}} \sum_{u} \delta_{\frac{u}{N}} \eta_{t}(u) \rightarrow \rho(t, x) d x
$$

How does the density evolve?

$$
\begin{aligned}
& \square \frac{1}{N^{d}} \sum_{u} \delta_{\frac{u}{N}} \eta_{t}(u) \rightarrow \rho(t, x) d x \\
& \rho_{t}(t, x)=\frac{1}{2} \Delta \rho(t, x)
\end{aligned}
$$

How does the density evolve?

$=\frac{1}{N^{d}} \sum_{u} \delta_{\frac{u}{N}} \eta_{t}(u) \rightarrow \rho(t, x) d x$
$\rho_{t}(t, x)=\frac{1}{2} \Delta \rho(t, x)$
$\square \rho(0, x)=\rho_{0}(x)$

How does the density evolve?

$=\frac{1}{N^{d}} \sum_{u} \delta_{\frac{u}{N}} \eta_{t}(u) \rightarrow \rho(t, x) d x$
$\rho_{t}(t, x)=\frac{1}{2} \Delta \rho(t, x)$
$\square \rho(0, x)=\rho_{0}(x)$

- Converges in probability. Deviations are possible.
- Large Deviation probability.
- Large Deviation probability.
- How can we achieve a given profile $\rho(t, x)$ with $\rho(0, x)=\rho_{0}(x)$?
- Large Deviation probability.
- How can we achieve a given profile $\rho(t, x)$ with $\rho(0, x)=\rho_{0}(x)$?
- The rates do not have to be equal. Introduce a bias.
- Large Deviation probability.
\square How can we achieve a given profile $\rho(t, x)$ with $\rho(0, x)=\rho_{0}(x)$?
- The rates do not have to be equal. Introduce a bias.
$\square q:[0, T] \times \mathcal{T}^{d} \times Z^{d} \rightarrow R$,

$$
\begin{array}{r}
\left(\mathcal{L}_{N} f\right)(\eta)=N^{2} \sum_{u, v}\left(p(v-u)+\frac{q\left(t, \frac{u}{N}, v-u\right)}{N}\right) \\
\eta(u)(1-\eta(v))\left[f\left(\eta^{u, v}\right)-f(\eta)\right]
\end{array}
$$

- Large Deviation probability.
\square How can we achieve a given profile $\rho(t, x)$ with $\rho(0, x)=\rho_{0}(x)$?
\square The rates do not have to be equal. Introduce a bias.
$\square q:[0, T] \times \mathcal{T}^{d} \times Z^{d} \rightarrow R$,

$$
\begin{gathered}
\left(\mathcal{L}_{N} f\right)(\eta)=N^{2} \sum_{u, v}\left(p(v-u)+\frac{q\left(t, \frac{u}{N}, v-u\right)}{N}\right) \\
\eta(u)(1-\eta(v))\left[f\left(\eta^{u, v}\right)-f(\eta)\right] \\
-q(t, x, z)+q(t, x,-z)=0 .
\end{gathered}
$$

\square Effect: $b(t, x)=\sum_{w} w q(t, x, w)$

$$
\rho_{t}(t, x)=\frac{1}{2} \Delta \rho-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x))
$$

\square Effect: $b(t, x)=\sum_{w} w q(t, x, w)$

$$
\rho_{t}(t, x)=\frac{1}{2} \Delta \rho-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x))
$$

Entropy Cost $H\left(\lambda_{2}, \lambda_{1}\right)=\lambda_{2} \log \frac{\lambda_{2}}{\lambda_{1}}-\left(\lambda_{2}-\lambda_{1}\right)$

$$
N^{2} E\left[\int_{0}^{T} \sum_{u, w}\left[\eta(t, u)(1-\eta(t, u+w)) H\left(p+\frac{q}{N}, p\right)\right] d t\right]
$$

\square Effect: $b(t, x)=\sum_{w} w q(t, x, w)$

$$
\rho_{t}(t, x)=\frac{1}{2} \Delta \rho-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x))
$$

\square Entropy Cost $H\left(\lambda_{2}, \lambda_{1}\right)=\lambda_{2} \log \frac{\lambda_{2}}{\lambda_{1}}-\left(\lambda_{2}-\lambda_{1}\right)$
$N^{2} E\left[\int_{0}^{T} \sum_{u, w}\left[\eta(t, u)(1-\eta(t, u+w)) H\left(p+\frac{q}{N}, p\right)\right] d t\right]$
Minimize over q, fixing b.
\square Effect: $b(t, x)=\sum_{w} w q(t, x, w)$

$$
\rho_{t}(t, x)=\frac{1}{2} \Delta \rho-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x))
$$

Entropy Cost $H\left(\lambda_{2}, \lambda_{1}\right)=\lambda_{2} \log \frac{\lambda_{2}}{\lambda_{1}}-\left(\lambda_{2}-\lambda_{1}\right)$
$N^{2} E\left[\int_{0}^{T} \sum_{u, w}\left[\eta(t, u)(1-\eta(t, u+w)) H\left(p+\frac{q}{N}, p\right)\right] d t\right]$
Minimize over q, fixing b.
Replace $\eta(t, u)[1-\eta(t, u+w)]$ by
$\rho\left(t, \frac{x}{N}\right)\left(1-\rho\left(t, \frac{x}{N}\right)\right)$.

- The quantity reduces to

$$
\frac{N^{d}}{2} \int_{0}^{T} \int_{\mathcal{F} T^{d}}\|b(t, x)\|^{2} \rho(t, x)(1-\rho(t, x)) d t d x
$$

- The quantity reduces to

$$
\frac{N^{d}}{2} \int_{0}^{T} \int_{\mathcal{F} T^{d}}\|b(t, x)\|^{2} \rho(t, x)(1-\rho(t, x)) d t d x
$$

\square Minimize over b subject to

$$
\rho_{t}=\frac{1}{2} \Delta-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x)))
$$

- The quantity reduces to

$$
\frac{N^{d}}{2} \int_{0}^{T} \int_{\mathcal{F} T^{d}}\|b(t, x)\|^{2} \rho(t, x)(1-\rho(t, x)) d t d x
$$

\square Minimize over b subject to

$$
\begin{aligned}
& \rho_{t}=\frac{1}{2} \Delta-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x))) \\
& \mathcal{I}(\rho)=\frac{1}{2} \int_{0}^{T}\left\|\rho_{t}-\frac{1}{2} \Delta \rho\right\|_{-1, \rho(t,)(1-\rho(\cdot))}^{2} d t
\end{aligned}
$$

- The quantity reduces to

$$
\frac{N^{d}}{2} \int_{0}^{T} \int_{\mathcal{F} T^{d}}\|b(t, x)\|^{2} \rho(t, x)(1-\rho(t, x)) d t d x
$$

\square Minimize over b subject to

$$
\begin{aligned}
& \rho_{t}=\frac{1}{2} \Delta-\nabla \cdot(b(t, x) \rho(t, x)(1-\rho(t, x))) \\
& \mathcal{I}(\rho)=\frac{1}{2} \int_{0}^{T}\left\|\rho_{t}-\frac{1}{2} \Delta \rho\right\|_{-1, \rho(t,)(1-\rho(\cdot))}^{2} d t
\end{aligned}
$$

\square This does not track individual particles.

- Track a particle in equilibrium. Bernoulli Density ρ. Diffuses. Exclude $1-d$ nearest neighbor.
- Track a particle in equilibrium. Bernoulli Density ρ. Diffuses. Exclude $1-d$ nearest neighbor.
\square Diffuses. $S(\rho)$. $S(\rho) \rightarrow I$ as $\rho \rightarrow 0$ and $S(\rho) \rightarrow 0$ as $\rho \rightarrow 1$.
- Track a particle in equilibrium. Bernoulli Density ρ. Diffuses. Exclude $1-d$ nearest neighbor.
\square Diffuses. $S(\rho)$. $S(\rho) \rightarrow I$ as $\rho \rightarrow 0$ and $S(\rho) \rightarrow 0$ as $\rho \rightarrow 1$.
\square What about non equilibrium?
- Track a particle in equilibrium. Bernoulli Density ρ. Diffuses. Exclude $1-d$ nearest neighbor.
\square Diffuses. $S(\rho)$. $S(\rho) \rightarrow I$ as $\rho \rightarrow 0$ and $S(\rho) \rightarrow 0$ as $\rho \rightarrow 1$.
\square What about non equilibrium?

$$
\mathcal{D}_{t}=\frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla+[S(\rho)-I] \frac{\nabla \rho}{2 \rho} \cdot \nabla
$$

\square Track a particle in equilibrium. Bernoulli Density ρ. Diffuses. Exclude $1-d$ nearest neighbor.
\square Diffuses. $S(\rho)$. $S(\rho) \rightarrow I$ as $\rho \rightarrow 0$ and $S(\rho) \rightarrow 0$ as $\rho \rightarrow 1$.
\square What about non equilibrium?

$$
\begin{gathered}
\mathcal{D}_{t}=\frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla+[S(\rho)-I] \frac{\nabla \rho}{2 \rho} \cdot \nabla \\
\rho_{t}=D_{t}^{*} \rho
\end{gathered}
$$

$\square R_{n} \rightarrow P$.
$\square R_{n} \rightarrow P$.

- We want to do large deviations.
$\square R_{n} \rightarrow P$.
\square We want to do large deviations.
\square With b, we get a different diffusion. Extra circulation.
- $R_{n} \rightarrow P$.
- We want to do large deviations.
- With b, we get a different diffusion. Extra circulation.

$$
\begin{aligned}
\mathcal{D}_{b, t}= & \frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla+[S(\rho)-I] \frac{\nabla \rho}{2 \rho} \cdot \nabla \\
& +b(t, x)(1-\rho(t, x)) \cdot \nabla
\end{aligned}
$$

- $R_{n} \rightarrow P$.
\square We want to do large deviations.
- With b, we get a different diffusion. Extra circulation.

$$
\begin{aligned}
\mathcal{D}_{b, t}= & \frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla+[S(\rho)-I] \frac{\nabla \rho}{2 \rho} \cdot \nabla \\
& +b(t, x)(1-\rho(t, x)) \cdot \nabla
\end{aligned}
$$

$\mathcal{J}(b) . P_{b}$.

- Probability $R_{n} \sim Q$
- Probability $R_{n} \sim Q$
$\square Q$ determines $q(t, x), b(t, x)$ compatible with it.
- Probability $R_{n} \sim Q$
$\square Q$ determines $q(t, x), b(t, x)$ compatible with it.
$\square I(Q)=\mathcal{J}(b)+H\left(Q \mid P_{b}\right)$
- Probability $R_{n} \sim Q$
$\square Q$ determines $q(t, x), b(t, x)$ compatible with it.
$\square I(Q)=\mathcal{J}(b)+H\left(Q \mid P_{b}\right)$
\square Can put in initial randomness. ρ_{0} can be different.

Totally asymmetric case

$\square d=1 . p(1)=1 . N t \rightarrow t$.

Totally asymmetric case

$\square d=1 . p(1)=1 . N t \rightarrow t$.
\square Limit $\rho(t, x)$ is a weak solution of

Totally asymmetric case

$\square d=1 . p(1)=1 . N t \rightarrow t$.
\square Limit $\rho(t, x)$ is a weak solution of
$\square \rho_{t}+(\rho(1-\rho))_{x}=0$

Totally asymmetric case

$\square d=1 . p(1)=1 . N t \rightarrow t$.
\square Limit $\rho(t, x)$ is a weak solution of
$-\rho_{t}+(\rho(1-\rho))_{x}=0$
\square Solution is not unique.

Totally asymmetric case

$\square d=1 . p(1)=1 . N t \rightarrow t$.
\square Limit $\rho(t, x)$ is a weak solution of
$-\rho_{t}+(\rho(1-\rho))_{x}=0$
\square Solution is not unique.
\square Entropy condition.

- If ρ is smooth then for any h
- If ρ is smooth then for any h

$$
[h(\rho)]_{t}+[g(\rho)]_{x}=0
$$

- If ρ is smooth then for any h

$$
[h(\rho)]_{t}+[g(\rho)]_{x}=0
$$

where $h^{\prime}(\rho)(1-2 \rho)=g^{\prime}(\rho)$

- If ρ is smooth then for any h

$$
[h(\rho)]_{t}+[g(\rho)]_{x}=0
$$

\square where $h^{\prime}(\rho)(1-2 \rho)=g^{\prime}(\rho)$
\square Solution is uniquely identified by Entropy condition. For convex h

- If ρ is smooth then for any h

$$
[h(\rho)]_{t}+[g(\rho)]_{x}=0
$$

- where $h^{\prime}(\rho)(1-2 \rho)=g^{\prime}(\rho)$
- Solution is uniquely identified by Entropy condition. For convex h
- As a distribution,

$$
[h(\rho)]_{t}+[g(\rho)]_{x} \leq 0
$$

- One strictly convex function is enough.
- One strictly convex function is enough.
$\square h(p)=-[p \log p+(1-p) \log (1-p)]$
- One strictly convex function is enough.
$\square h(p)=-[p \log p+(1-p) \log (1-p)]$
- Large deviations for $\rho(t, x)$
- One strictly convex function is enough.
$\square h(p)=-[p \log p+(1-p) \log (1-p)]$
- Large deviations for $\rho(t, x)$
- Infinite unless ρ is a weak solution of $\rho_{t}+[\rho(1-\rho)]_{x}=0$
- One strictly convex function is enough.
- $h(p)=-[p \log p+(1-p) \log (1-p)]$
- Large deviations for $\rho(t, x)$
- Infinite unless ρ is a weak solution of $\rho_{t}+[\rho(1-\rho)]_{x}=0$

$$
I(\rho(\cdot, \cdot))=\int_{\mathcal{S}} \int_{0}^{T}\left[[h(\rho)]_{t}+[g(\rho)]_{x}\right]^{+} d x d t
$$

Diffusions in a random environment

$$
\frac{1}{2} a(x) D_{x}^{2}+b(x) D_{x}
$$

Diffusions in a random environment

$$
\begin{gathered}
\frac{1}{2} a(x) D_{x}^{2}+b(x) D_{x} \\
\frac{1}{2} a(x, \omega) D_{x}^{2}+b(x, \omega) D_{x}
\end{gathered}
$$

Diffusions in a random environment

$$
\begin{gathered}
\frac{1}{2} a(x) D_{x}^{2}+b(x) D_{x} \\
\frac{1}{2} a(x, \omega) D_{x}^{2}+b(x, \omega) D_{x}
\end{gathered}
$$

$\square a, b$ random, stationary in x.

Diffusions in a random environment

$$
\begin{gathered}
\frac{1}{2} a(x) D_{x}^{2}+b(x) D_{x} \\
\frac{1}{2} a(x, \omega) D_{x}^{2}+b(x, \omega) D_{x}
\end{gathered}
$$

$\square a, b$ random, stationary in x.
$\square P\left[\frac{x(t)}{t} \simeq a\right] ?$

- Look at the Periodic case. $[0,1]$
- Look at the Periodic case. $[0,1]$
\square There is a unique periodic invariant density $\phi(x)$. $\mathcal{L}_{a, b}^{*} \phi=0$.
- Look at the Periodic case. $[0,1]$
\square There is a unique periodic invariant density $\phi(x)$. $\mathcal{L}_{a, b}^{*} \phi=0$.
- $P\left[\frac{x(t)}{t} \sim \int_{0}^{1} b(x) \phi(x) d x\right]=1$
- Look at the Periodic case. $[0,1]$
\square There is a unique periodic invariant density $\phi(x)$. $\mathcal{L}_{a, b}^{*} \phi=0$.
$\square P\left[\frac{x(t)}{t} \sim \int_{0}^{1} b(x) \phi(x) d x\right]=1$
$\square P\left[\frac{x(t)}{t} \sim m\right]=e^{-t I(m)+o(t)}$
- Look at the Periodic case. $[0,1]$
\square There is a unique periodic invariant density $\phi(x)$. $\mathcal{L}_{a, b}^{*} \phi=0$.
$\square P\left[\frac{x(t)}{t} \sim \int_{0}^{1} b(x) \phi(x) d x\right]=1$
- $P\left[\frac{x(t)}{t} \sim m\right]=e^{-t I(m)+o(t)}$
- Change $b(x)$ to $c(x)$.
\square Invariant density $\phi_{c}(x)$
- Invariant density $\phi_{c}(x)$

Now $Q\left[\frac{x(t)}{t} \sim \int_{0}^{1} c(x) \phi_{c}(x) d x\right] \sim 1$
\square Invariant density $\phi_{c}(x)$
Now $Q\left[\frac{x(t)}{t} \sim \int_{0}^{1} c(x) \phi_{c}(x) d x\right] \sim 1$

- Entropy cost is proportional to t an the constant is

$$
\mathcal{J}(c)=\frac{1}{2} \int_{0}^{1} \frac{(c(x)-b(x))^{2}}{a(x)} \phi_{c}(x)
$$

\square Invariant density $\phi_{c}(x)$

- Now $Q\left[\frac{x(t)}{t} \sim \int_{0}^{1} c(x) \phi_{c}(x) d x\right] \sim 1$
- Entropy cost is proportional to t an the constant is

$$
\begin{gathered}
\mathcal{J}(c)=\frac{1}{2} \int_{0}^{1} \frac{(c(x)-b(x))^{2}}{a(x)} \phi_{c}(x) \\
I(m)=\inf _{c: \int_{0}^{1} c(x) \phi_{c}(x) d x=m} \mathcal{J}(c)
\end{gathered}
$$

- Random Stationary Case.
- Random Stationary Case.
- Invariant measure?
- Random Stationary Case.
- Invariant measure?
- Another process $\phi(x, \omega) \geq 0$ such that ϕ, a, b are jointly stationary $E^{P}[\phi(x, \omega)]=1$, and
- Random Stationary Case.
- Invariant measure?
- Another process $\phi(x, \omega) \geq 0$ such that ϕ, a, b are jointly stationary $E^{P}[\phi(x, \omega)]=1$, and
- $\mathcal{L}_{a, b}^{*} \phi=0$
- Random Stationary Case.
\square Invariant measure?
\square Another process $\phi(x, \omega) \geq 0$ such that ϕ, a, b are jointly stationary $E^{P}[\phi(x, \omega)]=1$, and
- $\mathcal{L}_{a, b}^{*} \phi=0$
\square It may not exist. If it does it is unique.
- Random Stationary Case.
- Invariant measure?
- Another process $\phi(x, \omega) \geq 0$ such that ϕ, a, b are jointly stationary $E^{P}[\phi(x, \omega)]=1$, and
- $\mathcal{L}_{a, b}^{*} \phi=0$
\square It may not exist. If it does it is unique.
$\square \frac{x(t)}{t} \rightarrow E[\phi(0, \omega) b(0, \omega)]$.
- Large Deviations

- Large Deviations

$\square P\left[\frac{x(t)}{t} \sim m\right]=\exp [-t I(m)+o(t)] ?$

- Large Deviations

$\square P\left[\frac{x(t)}{t} \sim m\right]=\exp [-t I(m)+o(t)] ?$
\square Find pairs c, ϕ_{c} such that $E\left[\phi_{c}\right]=1, E\left[c \phi_{c}\right]=m$

$$
\mathcal{L}_{a, c}^{*} \phi_{c}=0
$$

- Large Deviations
$\square P\left[\frac{x(t)}{t} \sim m\right]=\exp [-t I(m)+o(t)] ?$
\square Find pairs c, ϕ_{c} such that $E\left[\phi_{c}\right]=1, E\left[c \phi_{c}\right]=m$

$$
\begin{gathered}
\mathcal{L}_{a, c}^{*} \phi_{c}=0 \\
\mathcal{J}(c)=\frac{1}{2} E\left[\frac{(c-b)^{2}}{a} \phi_{c}\right]
\end{gathered}
$$

- Large Deviations
$\square P\left[\frac{x(t)}{t} \sim m\right]=\exp [-t I(m)+o(t)] ?$
\square Find pairs c, ϕ_{c} such that $E\left[\phi_{c}\right]=1, E\left[c \phi_{c}\right]=m$

$$
\begin{gathered}
\mathcal{L}_{a, c}^{*} \phi_{c}=0 \\
\mathcal{J}(c)=\frac{1}{2} E\left[\frac{(c-b)^{2}}{a} \phi_{c}\right] \\
I(m)=\inf _{c: E\left[c \phi_{c}\right]=m} \mathcal{J}(c)
\end{gathered}
$$

$\square\left(\Omega, \mathcal{F}, P,\left\{T_{x} ; x \in R\right\}\right)$ Measure preserving.
$\square\left(\Omega, \mathcal{F}, P,\left\{T_{x} ; x \in R\right\}\right)$ Measure preserving.
$\square a\left(T_{x} \omega\right), b\left(T_{x} \omega\right)$ are stationary processes.
$\square\left(\Omega, \mathcal{F}, P,\left\{T_{x} ; x \in R\right\}\right)$ Measure preserving.
$a\left(T_{x} \omega\right), b\left(T_{x} \omega\right)$ are stationary processes.

- $\mathcal{L}=\frac{1}{2} a(\omega) D_{x}^{2}+b(\omega) D_{x}$
$\square\left(\Omega, \mathcal{F}, P,\left\{T_{x} ; x \in R\right\}\right)$ Measure preserving.
$\square a\left(T_{x} \omega\right), b\left(T_{x} \omega\right)$ are stationary processes.
- $\mathcal{L}=\frac{1}{2} a(\omega) D_{x}^{2}+b(\omega) D_{x}$
\square Diffusion on Ω. Is there an invariant measure Q with $d Q=\phi(\omega) d P$.
$\square\left(\Omega, \mathcal{F}, P,\left\{T_{x} ; x \in R\right\}\right)$ Measure preserving.
$\square a\left(T_{x} \omega\right), b\left(T_{x} \omega\right)$ are stationary processes.
- $\mathcal{L}=\frac{1}{2} a(\omega) D_{x}^{2}+b(\omega) D_{x}$
\square Diffusion on Ω. Is there an invariant measure Q with $d Q=\phi(\omega) d P$.
- It is unique if it exists and is ergodic.
- Cannot in general find ϕ for a given b.
- Cannot in general find ϕ for a given b.
\square But can find pairs $\left(c, \phi_{c}\right)$ such that $\mathcal{L}^{*} \phi_{c}=0$.
- Cannot in general find ϕ for a given b.
\square But can find pairs $\left(c, \phi_{c}\right)$ such that $\mathcal{L}^{*} \phi_{c}=0$.
$\square I(m)=\inf _{c, \phi: E[\phi c]=m} H(c, \phi)$
- Cannot in general find ϕ for a given b.
\square But can find pairs $\left(c, \phi_{c}\right)$ such that $\mathcal{L}^{*} \phi_{c}=0$.
$\square I(m)=\inf _{c, \phi: E[\phi c]=m} H(c, \phi)$
$\square H(c, \phi)=\frac{1}{2} E^{Q}\left[\frac{(c-b)^{2}}{a}\right]=\frac{1}{2} E^{P}\left[\frac{(c-b)^{2}}{a} \phi_{c}\right]$

Another way

\square Take $a(x)=1$. Consider the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log E\left[e^{\theta x(t)}\right]=\Lambda(\theta)
$$

Another way

\square Take $a(x)=1$. Consider the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log E\left[e^{\theta x(t)}\right]=\Lambda(\theta)
$$

\square Then

$$
I(m)=\sup _{\theta}[\theta m-\Lambda(\theta)]
$$

Another way

\square Take $a(x)=1$. Consider the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log E\left[e^{\theta x(t)}\right]=\Lambda(\theta)
$$

- Then

$$
I(m)=\sup _{\theta}[\theta m-\Lambda(\theta)]
$$

\square Solve the equation

$$
u_{t}+\frac{1}{2} u_{x x}+b(x, \omega) u_{x}=0 ; u(T, x)=e^{\theta x}
$$

Another way

\square Take $a(x)=1$. Consider the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log E\left[e^{\theta x(t)}\right]=\Lambda(\theta)
$$

\square Then

$$
I(m)=\sup _{\theta}[\theta m-\Lambda(\theta)]
$$

\square Solve the equation

$$
\begin{gathered}
u_{t}+\frac{1}{2} u_{x x}+b(x, \omega) u_{x}=0 ; u(T, x)=e^{\theta x} \\
\Lambda(\theta)=\lim _{T \rightarrow \infty} \frac{\log u(T, 0)}{T}
\end{gathered}
$$

- Hopf-Cole transformation.
- Hopf-Cole transformation.

Call $v^{T}(t, x)=\log \frac{u(T t, T x)}{T}$. Then $u(t, x)=e^{T v^{T}\left(\frac{t}{T}, \frac{x}{T}\right)}$ and

- Hopf-Cole transformation.

Call $v^{T}(t, x)=\log \frac{u(T t, T x)}{T}$. Then

$$
u(t, x)=e^{T v^{T}\left(\frac{t}{T}, \frac{x}{T}\right)} \text { and }
$$

- Then v^{T} satisfies

$$
v_{t}^{T}+\frac{1}{2 T} v_{x x}^{T}+\frac{1}{2}\left(v_{x}^{T}\right)^{2}+b(x, \omega) v_{x}^{T}=0, v^{T}(1, x)=\theta x
$$

- Hopf-Cole transformation.
- Call $v^{T}(t, x)=\log \frac{u(T t, T x)}{T}$. Then

$$
u(t, x)=e^{T v^{T}\left(\frac{t}{T}, \frac{x}{T}\right)} \text { and }
$$

- Then v^{T} satisfies

$$
v_{t}^{T}+\frac{1}{2 T} v_{x x}^{T}+\frac{1}{2}\left(v_{x}^{T}\right)^{2}+b(x, \omega) v_{x}^{T}=0, v^{T}(1, x)=\theta x
$$

\square Need the limit as $T \rightarrow \infty$ of $v_{T}(0,0)$.

- The limit is a solution of

$$
v_{t}+h\left(v_{x}\right)=0 ; v(1, x)=\theta x
$$

- The limit is a solution of

$$
v_{t}+h\left(v_{x}\right)=0 ; v(1, x)=\theta x
$$

$\square h$ is not necessarily quadratic.

- The limit is a solution of

$$
v_{t}+h\left(v_{x}\right)=0 ; v(1, x)=\theta x
$$

$\square h$ is not necessarily quadratic.
\square The solution is $v(t, x)=\theta x+h(\theta)(T-t)$

- The limit is a solution of

$$
v_{t}+h\left(v_{x}\right)=0 ; v(1, x)=\theta x
$$

$\square h$ is not necessarily quadratic.
\square The solution is $v(t, x)=\theta x+h(\theta)(T-t)$

- $h(\theta)=\frac{v(0,0)}{T}$.
- Homogenization of random Hamilton-Jacobi equations.
- Homogenization of random Hamilton-Jacobi equations.

$$
v_{t}+\frac{\epsilon}{2} v_{x x}+f\left(\frac{x}{\epsilon}, v_{x}, \omega\right) ; v(1, x)=\theta x
$$

Can determine the limit, in an analogous manner.

- Homogenization of random Hamilton-Jacobi equations.

$$
v_{t}+\frac{\epsilon}{2} v_{x x}+f\left(\frac{x}{\epsilon}, v_{x}, \omega\right) ; v(1, x)=\theta x
$$

Can determine the limit, in an analogous manner.

- Let

$$
h(x, b, \omega)=\sup _{v}[b v-f(x, v, \omega)]
$$

$v_{\epsilon}(0,0, \omega)=$

$$
\sup _{b=b(s, x, \omega)} E\left[\theta x(1)-\int_{0}^{1} h\left(\frac{x(s)}{\epsilon}, b(s, x(s), \omega), \omega\right) d s\right]
$$

$$
v_{\epsilon}(0,0, \omega)=
$$

$$
\sup _{b=b(s, x, \omega)} E\left[\theta x(1)-\int_{0}^{1} h\left(\frac{x(s)}{\epsilon}, b(s, x(s), \omega), \omega\right) d s\right]
$$

With $T=\epsilon^{-1}$, and rescaling space and time
$v_{T}(0,0, \omega)=$
$\sup _{b=b(s, x, \omega)} E\left[\theta \frac{x(T)}{T}-\frac{1}{T} \int_{0}^{T} h(x(s), b(s, x(s), \omega), \omega) d s\right]$

- Covariant stationary controls are asymptotically efficient.
- Covariant stationary controls are asymptotically efficient.
\square Take $\left(\Omega, \mathcal{F}, T_{x}, P\right)$.
$f(x, v, \omega)=f\left(v, T_{x} \omega\right)$ and $h(x, b, \omega)=h\left(b, T_{x} \omega\right)$
Then $b(s, x, \omega)$ can be taken to be a stationary process $b\left(T_{x} \omega\right)$.
- Covariant stationary controls are asymptotically efficient.
\square Take $\left(\Omega, \mathcal{F}, T_{x}, P\right)$.
$f(x, v, \omega)=f\left(v, T_{x} \omega\right)$ and $h(x, b, \omega)=h\left(b, T_{x} \omega\right)$
Then $b(s, x, \omega)$ can be taken to be a stationary process $b\left(T_{x} \omega\right)$.
$\square v_{T} \rightarrow v$ which is non random.
- Covariant stationary controls are asymptotically efficient.
\square Take $\left(\Omega, \mathcal{F}, T_{x}, P\right)$.
$f(x, v, \omega)=f\left(v, T_{x} \omega\right)$ and $h(x, b, \omega)=h\left(b, T_{x} \omega\right)$
Then $b(s, x, \omega)$ can be taken to be a stationary process $b\left(T_{x} \omega\right)$.
$\square v_{T} \rightarrow v$ which is non random.

$$
v(0,0)=\sup _{\left(b, P_{b}\right)} E^{P_{b}}[\theta b(\omega)-h(b(\omega), \omega)]
$$

Last Slide

THE END

