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What is "Large Deviations" ?

Stochastic model

Mathematical Model with noise or randomness in |
Questions do not have "yes" or "no" answers.
Instead we have probabilities for "yes" and "no".
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Small probabillity is almost "no"

The mathematical model tells us what the
orobabillity Is.

Hard or nearly impossible to compute if the "size" |
arge.

Asymptotic methods are needed.
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Certain questions have either very high or very low
orobabilities. Near certainty.

~luctuation theory. Small deviations are always

possible, there are nontrivial probabilities associat
with them.

Significant or "large" deviations are less likely and
have only small probabillities of happening.
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Often exponentially small in the "size"

The exponential constant is computable in many
cases.

There Is a universal way of computing it and that is
the main thrust of "Large Deviations" theory.

Let us look at some examples.
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The simplest one is "flipping coins"
Toss a coim times.

Let &, be the proportion of heads.
If nis largeP[¢,, ~ 3] is nearlyl.

Pl¢, ~p] — 0if p #£ 2
At what rate?
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Can compute® |§ ~ p| ~ (72;”;) —lip)rol)

L o=
Stirling’s formula.n! = exp[nlogn — n + o(n)]
H(p) = plog(2p) + (1 — p)log(2(1 — p))

H(p) > 0. H(p) =0 p=;

Is there a recipe for computing (p)?
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Relative Entropy.

Model introduces a probability measuyien some
space.

The event we are looking for has small probability.
Change the model



In such a way that the probabillity iIs now nearly ont
as the sizes — oc.
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Changes the measuig — )\,

i

H,, is additive and grows linearly in, I.e.
H, ~nH.

P ~ 6—nH+0(n)
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P(A) = / e~ 1837 4
A
If Q(A) ~ 1,

P(A) > Q(A) exp| Q(l 7y /A j—id@] ~ ¢ H(@:P)

For coin tossing, let the coin be biased with
Plhead| = p

p(k) = (7)27
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A(k) = ()p"(1 —p)"

> log 2\ (k) = nH (p)

More generally if we add i.i.d.r.v's, = > ", X,
Common distribution isv. E,|X;| =m

P[2r = g] ~ @)

n

Changex to 5 so thatEs| X| ==
H(B) = [log Gd

eviations — n. 11
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£ 1S not unique.
I(x) = infs.p,x)1= H ()
Change the model, but do it frugally!
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Gener al Formulation

= X Is a Polish space.

m P — ),

® By (A) = exp|—c(A)n + o(n)]
mc(AUB) =inf{c(A),c(B)}
wc(A) =infcqa [(x)
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Gener al Formulation

m For closed set§’,

|
lim sup — log P,,(C') <
n

= For open setss,

1
liminf —log P, (G) >

n—oo N
w f inf,c0 [(x) = inf, 7 [(x)
1

lim —log P,(A) =

n—oo N,

~

~ i)

— inf I(x)

rcA
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simple facts

X —Y
= P F1

J(y) = inf I(x)

reF~1(y)

expnF'(x)|dP, = exp|n Sl;p[F(ZE) —I(x)]+o(n)]
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L
dx(t) = b(xz(t))dt, x(0) = x
= Perturb by Brownian Motion

dz(t) = b(x(t))dt + VedB(t)
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Ventcell-Fredlin Theory

dx(t) = b(xz(t))dt, x(0) = x
= Perturb by Brownian Motion
dx(t) = b(x(t))dt + /edB(t)

Pe — 0y

= Exponential

expl——1(f()
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hatisI(f)?
rturb the ODE to
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What is/(f)?
Perturb the ODE to

dx(t) = f'(t)dt + /edB(t)
Qe — 0y

Zi: :exp[lf (f'(t) — b(x(t))(dx(t) — b(x(t)dt)

——/ £ () — b(x(t))]|2dt]
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m m(z,y) is a Markov Chain.

m Consider
(z,y)e’ W

» Spectral radius ig(V') and (V') = log p(V)

1

A(V) = lim —log E,[exp[V(X1) +--- + V(X,)]]

n—oo N,















Plin(w) ~ ] = expl-nI(s) + o(n)]
A(V) = sup, [V ()u(dz) — 1)
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Plin(w) ~ ] = expl-nI(s) + o(n)]
A(V) = sup, [V ()u(dz) — 1)
(1) = supy [ V (@)pu(d) = (V)
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Changer(z,y) — m'(z, y)

pr = g

Now v,, — u
L. dQ 1 ' (Xi, Xit1)
—1 = — ]
n e dPn nz e 7T(X7;,X7;+1)
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nuoustime

oneratord

A(V) = lim ~log B, fex] /O V(2(s))ds]

t—>oo

AV) & I(p)



Continuoustime

m Generatord

A(V) = Tim %log E, lexp| /O V(x(s))ds]

{—00

ARSI

) = sup — /&d,u

u>0
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IS self adjoint with respect to.

dp



Rever sible case

= A is self adjoint with respect to.

I(u) = D(y/ 2
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Rever sible case

= Topology of X.
= Smoothing.
® d = 1, Brownian motion,L; or similar.
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Scaling limits of Interacting particles
Random walks in a random environment

Larae Deviations — p. 2F



Scaling limits of Interacting particles
Random walks in a random environment
Homogenization of Hamilton Jacobi equations
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Scaling limits of Interacting particles

Random walks Iin a random environment
Homogenization of Hamilton Jacobi equations
Random graphs, Random matrices
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THE END
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