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What is "Large Deviations" ?

Stochastic model

Mathematical Model with noise or randomness in it.

Questions do not have "yes" or "no" answers.

Instead we have probabilities for "yes" and "no".
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Small probability is almost "no"

The mathematical model tells us what the
probability is.
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Small probability is almost "no"

The mathematical model tells us what the
probability is.

Hard or nearly impossible to compute if the "size" is
large.

Asymptotic methods are needed.
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Laws of large numbers.

Certain questions have either very high or very low
probabilities. Near certainty.

Fluctuation theory. Small deviations are always
possible, there are nontrivial probabilities associated
with them.

Significant or "large" deviations are less likely and
have only small probabilities of happening.

How small?
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Often exponentially small in the "size"
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cases.
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Often exponentially small in the "size"

The exponential constant is computable in many
cases.

There is a universal way of computing it and that is
the main thrust of "Large Deviations" theory.

Let us look at some examples.
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The simplest one is "flipping coins"
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The simplest one is "flipping coins"

Toss a coinn times.

Let ξn be the proportion of heads.

If n is largeP [ξn ≃ 1
2] is nearly1.

P [ξn ≃ p] → 0 if p 6= 1
2

At what rate?
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Can computeP [ξ ≃ p] ≃ ( n
np)
2n = e−nH(p)+o(n)

Large Deviations – p. 7/26



Can computeP [ξ ≃ p] ≃ ( n
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Can computeP [ξ ≃ p] ≃ ( n
np)
2n = e−nH(p)+o(n)

Stirling’s formula.n! = exp[n log n − n + o(n)]

H(p) = p log(2p) + (1 − p) log(2(1 − p))
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Can computeP [ξ ≃ p] ≃ ( n
np)
2n = e−nH(p)+o(n)

Stirling’s formula.n! = exp[n log n − n + o(n)]

H(p) = p log(2p) + (1 − p) log(2(1 − p))

H(p) ≥ 0. H(p) = 0 ⇔ p = 1
2
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Can computeP [ξ ≃ p] ≃ ( n
np)
2n = e−nH(p)+o(n)

Stirling’s formula.n! = exp[n log n − n + o(n)]

H(p) = p log(2p) + (1 − p) log(2(1 − p))

H(p) ≥ 0. H(p) = 0 ⇔ p = 1
2

Is there a recipe for computingH(p)?
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Entropy is King

What is the secret recipe?
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Entropy is King

What is the secret recipe?

Relative Entropy.

Model introduces a probability measureµ on some
space.

The event we are looking for has small probability.

Change the model
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In such a way that the probability is now nearly one
as the sizen → ∞.
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In such a way that the probability is now nearly one
as the sizen → ∞.

Changes the measureµn → λn

Hn =

∫

log
dλn

dµn

dλn
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In such a way that the probability is now nearly one
as the sizen → ∞.

Changes the measureµn → λn

Hn =

∫

log
dλn

dµn

dλn

Hn is additive and grows linearly inn, i.e.
Hn ≃ nH.

P ≃ e−nH+o(n)
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P (A) =

∫

A

e− log dQ
dP dQ

Large Deviations – p. 10/26



P (A) =

∫

A

e− log dQ
dP dQ

If Q(A) ≃ 1,

P (A) ≥ Q(A) exp[− 1

Q(A)

∫

A

dQ

dP
dQ] ≃ e−H(Q,P )
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P (A) =

∫

A

e− log dQ
dP dQ

If Q(A) ≃ 1,

P (A) ≥ Q(A) exp[− 1

Q(A)

∫

A

dQ

dP
dQ] ≃ e−H(Q,P )

For coin tossing, let the coin be biased with
P [head] = p

µ(k) =
(

n
k

)

2−k
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λ(k) =
(

n
k

)

pk(1 − p)n−k
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λ(k) =
(

n
k

)

pk(1 − p)n−k

∑

k log λ(k)
µ(k)λ(k) = nH(p)
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λ(k) =
(

n
k

)

pk(1 − p)n−k

∑

k log λ(k)
µ(k)λ(k) = nH(p)

More generally if we add i.i.d.r.v’sSn =
∑n

i=1 Xi,
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k log λ(k)
µ(k)λ(k) = nH(p)

More generally if we add i.i.d.r.v’sSn =
∑n

i=1 Xi,

Common distribution isα. Eα[Xi] = m

P [Sn

n
= x] ≃ e−nI(x)
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k log λ(k)
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More generally if we add i.i.d.r.v’sSn =
∑n

i=1 Xi,

Common distribution isα. Eα[Xi] = m

P [Sn

n
= x] ≃ e−nI(x)
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λ(k) =
(

n
k

)

pk(1 − p)n−k

∑

k log λ(k)
µ(k)λ(k) = nH(p)

More generally if we add i.i.d.r.v’sSn =
∑n

i=1 Xi,

Common distribution isα. Eα[Xi] = m

P [Sn

n
= x] ≃ e−nI(x)

Changeα to β so thatEβ[X] = x

H(β) =
∫

log dβ
dα

dβ

Large Deviations – p. 11/26



β is not unique.
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β is not unique.

I(x) = infβ:Eβ [X ]=x H(β)
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β is not unique.

I(x) = infβ:Eβ [X ]=x H(β)

Change the model, but do it frugally!
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General Formulation

X is a Polish space.
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General Formulation

X is a Polish space.

Pn → δx

Pn(A) = exp[−c(A)n + o(n)]

c(A ∪ B) = inf{c(A), c(B)}
c(A) = infx∈A I(x)
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General Formulation

For closed setsC,

lim sup
n→∞

1

n
log Pn(C) ≤ − inf

x∈C
I(x)
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General Formulation

For closed setsC,

lim sup
n→∞

1

n
log Pn(C) ≤ − inf

x∈C
I(x)

For open setsG,

lim inf
n→∞

1

n
log Pn(G) ≥ − inf

x∈G
I(x)

If infx∈Ao I(x) = infx∈Ā I(x)

lim
n→∞

1

n
log Pn(A) = − inf

x∈A
I(x)
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Some simple facts

F : X → Y
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Some simple facts

F : X → Y

Qn = PnF
−1

J(y) = inf
x∈F−1(y)

I(x)
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Some simple facts

F : X → Y

Qn = PnF
−1

J(y) = inf
x∈F−1(y)

I(x)

∫

exp[nF (x)]dPn = exp[n sup
x

[F (x)−I(x)]+o(n)]
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Ventcell-Freidlin Theory

dx(t) = b(x(t))dt, x(0) = x
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Ventcell-Freidlin Theory

dx(t) = b(x(t))dt, x(0) = x

Perturb by Brownian Motion

dx(t) = b(x(t))dt +
√

ǫdβ(t)

Pǫ → δx(·)

Exponential

exp[−1

ǫ
I(f(·))]
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What isI(f)?
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What isI(f)?

Perturb the ODE to

dx(t) = f ′(t)dt +
√

ǫdβ(t)
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What isI(f)?

Perturb the ODE to

dx(t) = f ′(t)dt +
√

ǫdβ(t)

Qǫ → δf(·)

dQǫ

dPǫ

= exp[
1

ǫ

∫ T

0

(f ′(t) − b(x(t))(dx(t) − b(x(t)dt)

− 1

2ǫ

∫ T

0

‖f ′(t) − b(x(t))‖2dt]
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Exit problem

I(f(·)) =
1

2

∫ T

0

‖f ′(t) − b(x(t)‖2dt
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Exit problem

I(f(·)) =
1

2

∫ T

0

‖f ′(t) − b(x(t)‖2dt

V (x) = inf
T,f(0)=x0

f(T )=x∈δG

IT (f)
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Exit problem

I(f(·)) =
1

2

∫ T

0

‖f ′(t) − b(x(t)‖2dt

V (x) = inf
T,f(0)=x0

f(T )=x∈δG

IT (f)

inf
x∈δG

V (x)
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Feynamn-Kac and eigen-values

π(x, y) is a Markov Chain.
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Feynamn-Kac and eigen-values

π(x, y) is a Markov Chain.

Consider
π(x, y)eV (y)

Spectral radius isρ(V ) andλ(V ) = log ρ(V )

λ(V ) = lim
n→∞

1

n
log Ex[exp[V (X1) + · · · + V (Xn)]]
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Y = M(X)
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Y = M(X)

(X1, X2, . . . , Xn) → 1
n

∑n
i=1 δXi

= νn(ω)
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Y = M(X)

(X1, X2, . . . , Xn) → 1
n

∑n
i=1 δXi

= νn(ω)

1
n

∑n
i=1 δXi

→ λ

P [νn(ω) ≃ µ] = exp[−nI(µ) + o(n)]
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Y = M(X)

(X1, X2, . . . , Xn) → 1
n

∑n
i=1 δXi

= νn(ω)

1
n

∑n
i=1 δXi

→ λ

P [νn(ω) ≃ µ] = exp[−nI(µ) + o(n)]

λ(V ) = supµ[
∫

V (x)µ(dx) − I(µ)]
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Y = M(X)

(X1, X2, . . . , Xn) → 1
n

∑n
i=1 δXi

= νn(ω)

1
n

∑n
i=1 δXi

→ λ

P [νn(ω) ≃ µ] = exp[−nI(µ) + o(n)]

λ(V ) = supµ[
∫

V (x)µ(dx) − I(µ)]

I(µ) = supV [
∫

V (x)µ(dx) − λ(V )]
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Changeπ(x, y) → π′(x, y)
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Changeπ(x, y) → π′(x, y)

µπ′ = µ
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Changeπ(x, y) → π′(x, y)

µπ′ = µ

Now νn → µ
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Changeπ(x, y) → π′(x, y)

µπ′ = µ

Now νn → µ

1

n
log

dQn

dPn

=
1

n

∑

i

log
π′(Xi, Xi+1)

π(Xi, Xi+1)
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Changeπ(x, y) → π′(x, y)

µπ′ = µ

Now νn → µ

1

n
log

dQn

dPn

=
1

n

∑

i

log
π′(Xi, Xi+1)

π(Xi, Xi+1)

H(π′) =
∑

x,y

µ(x)π′(x, y) log
π′(x, y)

π(x, y)
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Changeπ(x, y) → π′(x, y)

µπ′ = µ

Now νn → µ

1

n
log

dQn

dPn

=
1

n

∑

i

log
π′(Xi, Xi+1)

π(Xi, Xi+1)

H(π′) =
∑

x,y

µ(x)π′(x, y) log
π′(x, y)

π(x, y)

I(µ) = inf
π′:µπ′=µ

H(π′)
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Continuous time

GeneratorA

Large Deviations – p. 22/26



Continuous time

GeneratorA

λ(V ) = lim
t→∞

1

t
log Ex[exp[

∫ t

0

V (x(s))ds]]
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Continuous time

GeneratorA

λ(V ) = lim
t→∞

1

t
log Ex[exp[

∫ t

0

V (x(s))ds]]

λ(V ) ⇔ I(µ)

Large Deviations – p. 22/26



Continuous time

GeneratorA

λ(V ) = lim
t→∞

1

t
log Ex[exp[

∫ t

0

V (x(s))ds]]

λ(V ) ⇔ I(µ)

I(µ) = sup
u>0

−
∫ Au

u
dµ
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Reversible case

A is self adjoint with respect toα.
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Reversible case

A is self adjoint with respect toα.

I(µ) = D(

√

dµ

dα
)
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Reversible case

A is self adjoint with respect toα.

I(µ) = D(

√

dµ

dα
)

λ(V ) = sup
g:‖g‖2,α=1

[
∫

V g2dα −D(g)

]
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Reversible case

Topology ofX.
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Reversible case

Topology ofX.

Smoothing.
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Reversible case

Topology ofX.

Smoothing.

d = 1, Brownian motion,L1 or similar.
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Future

Scaling limits of Interacting particles
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Future

Scaling limits of Interacting particles

Random walks in a random environment
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Future

Scaling limits of Interacting particles

Random walks in a random environment

Homogenization of Hamilton Jacobi equations
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Future

Scaling limits of Interacting particles

Random walks in a random environment

Homogenization of Hamilton Jacobi equations

Random graphs, Random matrices

Large Deviations – p. 25/26



THE END
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