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Errors in QIT

Errors occur in the realization of gates in quantum information
theory. There are two kinds of error mechanisms

1 Classical: phase shift
2 Quantum: spontaneous decay

If the error occurring is classical, the mathematical formulation
is that it can be described by a mixture of unitary maps.
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Quantum Channels

Let the linear map Φ : Mn 7−→Mn, then
Φ is Hermitian if it maps Hermitian matrices to Hermitian
matrices
Φ is completely positive (CP) if Φ⊗ In is positive ∀n ∈ N
Φ is positive if Φ(A) ≥ 0 whenever A ≥ 0 is positive

A linear map Φ that is positive (or respectively CP);
Φ is stochastic if it is trace preserving (TP); Tr[Φ(A)]=Tr[A],
∀A ∈Mn

Φ is doubly stochastic if Φ(I) = I and is TP
A linear map Φ that is CPT is called a Quantum Channel.
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Quantum Channels

Choi-Kraus Representation

A linear map Φ : Mn 7−→Mn is CP iff it admits the following form

Φ(A) =
R∑
i

ViAV ∗i (1)

For completeness;
∑R

i=1 V ∗i Vi = I. The map Φ is unital and
hence UCPT if

Φ(I) =
R∑
i

ViV ∗i = I

The set of UPCT maps CPI is a compact convex set and by
Krein-Milman is therefore represented as the convex hull of its
extreme points.
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Convexity

Convexity

Convex Set
A set C∈ C (or R) is convex if ∀ x1, x2 ∈ C,

λx1 + (1− λ)x2 ∈ C

Face
F⊆ C is a face if

F = C ∩ H

where H is the separating hyperplane.

Extreme point
A face F of dimension 0 is an extreme point of C.
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Convexity

Examples

Fig.1. Platonic solids

Now we can discuss an important concept...
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Extremal Quantum Maps

Generalization of Choi’s Theorem

Choi’s Theorem

The map Φ(A) =
∑R

i ViAV ∗i is extremal in CPK iff the following
hold∑R

i ViV ∗i = K
{ViV ∗j } 1 ≤ i , j ≤ R is a L.I set

Corollary to L.S. Theorem

The map Φ(A) =
∑R

i ViAV ∗i is extremal in CPI iff the following
hold∑R

i ViV ∗i = I∑R
i V ∗i Vi = I

{ViV ∗j } and {V ∗i Vj} 1 ≤ i , j ≤ R are L.I sets
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Question:

Given a UCPT map, how do we determine whether the map
can be decomposed as a convex combination of unitary maps?

i.e

A −→ Φ(A) =
R∑
i

piUiAU∗i

UCPT maps that can be decomposed in this way are called
random unitary maps.
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Bloch Vector Formalism

Any 2 x 2 Hermitian matrix H ∈ C2can be represented as a real
linear combination of the Pauli matrices σx , σy , σz and the
identity;

⇒ H = span{I, σx , σy , σz}

The requirement that for a density matrix, Tr(ρ) = 1, forces the
coefficient of the first basis vector, the identity I, be 1

2 . This in
effect means we can expresses the 4 point basis with a
3-dimensional real vector subspace.
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Bloch Vector Formalism

An arbitrary density matrix ρ for a qubit can be represented by

ρ =
I + r · σ

2

ρ =
1
2

[
1 + rz rx − iry
rx + iry 1− rz

]
(2)

where r is known as the Bloch vector. The set of permissible
density matrices ρ are represented by the ball ‖r‖ ≤ 1, the
Bloch Sphere.
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Bloch Vector Formalism

Example

Play
Fig.2. The Bloch Sphere representation of a single qubit state before and after the bit flip error

It turns out random unitary channels have a nice geometric
interpretation in terms of the bloch sphere...
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Bloch Vector Formalism

What is the bloch vector of a density matrix representing a R.U
map?

It is a well known result that using the maximally entangled
state vector

|I〉 :=
1√
d

d∑
i=1

|i〉 ⊗ |i〉

we obtain the Choi matrix via the Jamiolkowski isomorphism;

J(Φ) = ρΦ = (Φ⊗ I)(|I〉〈I|) (3)

where I is the identity map.
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Bloch Vector Formalism

So using Φ(A) =
∑R

i piUiAU∗i , we obtain that the map Φ is a
random unitary map if its Choi matrix has the form;

ρΦ =
R∑
i

pi(Ui ⊗ I)(|I〉〈I|)(U†i ⊗ I) =
R∑
i

pi |ψ〉〈ψ|

i.e. A convex combination of maximally entangled pure states.

⇒ random unitary maps are in fact a convex set with rank 1
UCPT maps as the extreme points.

⇒ Denote this set RU .
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Bloch Vector Formalism

Furthermore, Audenaert and Scheel proved that a pure state is
maximally entangled and hence an extreme point of RU iff

|ψ〉〈ψ| = (I/
√

d ⊗ I)|I〉〈I|(I⊗ I/
√

d)

→ TrB|ψ〉〈ψ| =
I
d

That is, it is equivalent to saying that the reduced bloch vector
is the zero vector;

Tr [τiTrB|ψ〉〈ψ|] = Tr [τiTrρ] = 0, 1 ≤ i ≤ d2 − 1
or = 〈ψ|τi ⊗ I|ψ〉 = 0, 1 ≤ i ≤ d2 − 1
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Schur map
A UCPT map Φ is a Schur map iff it has the form

ΦC : A −→ A ◦ C

which operates as;
[aij ] −→ [aijcij ]

ΦC is CP iff C is PSD. ΦC is unital iff ΦC is TP iff Cii = 1
A map ΦC(A) that is CP and unital corresponds to C being a
correlation matrix.

Nomenclature
The set of Schur maps and correlation matrices both form
compact convex sets we denote DΦ and εnxn, respectively.
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Correlation Matrices

Describe correlation between two spin random variables.

Fig.3. 2x2 correlation describing the random variables {X,Y}
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Correlation Matrices

Convex structure of ε3x3

Fig.4. Convex structure of the set of 3x3 real correlation matrices we call ε3x3
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Results

It is useful to consider the result proved by Landau and Streater
which states that;

Landau-Streater
a) If Φ is a 3x3 Schur map, then it is a convex combination of
rank 1 Schur complex maps.
b) Any rank 2 UCPT map is unitarily equivalent to a Schur map
and hence is a convex combo of rank 1 complex Schur maps.

Which brings us to the first result;

Theorem 1
The UCPT Schur map ΦC is extremal in the set of UCPT maps
CPI iff the correlation matrix C is extremal in εnxn.
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Results

Corollary 1
There exists an isomorphism f : C −→ ΦC ∀ C∈ εnxn.

This finally brings us to the connection to the set of random
unitary channels, RU .

Theorem (Bhat, Pati, Sunder)
Let ΦC ∈ C be a Schur map. ΦC is a random unitary channel iff
C =

∑r
i piWi

where each Wi = viv∗i , a rank 1 correlation matrix.
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Results

Idea of Proof: Follows from the diagonal invariance of the Schur
map that

ΦC(A)jk = Cjk ◦ Ajk =
r∑
α

Vα
ij AimVα∗

mk

⇒ Cjkδijδmk =
r∑
α

Vα
ij Vα∗

mk

⇒
r∑
α

|Vα
ij |2 = 0

⇒ Cjk =
r∑
α

λαj λ̄
α
k

i.e. C is composed of the rank 1 matrices formed by the
diagonal vector elements of the Kraus operators.



Motivation Background Random Unitary Maps Schur Maps Summary

Results

BTS Cont’d

Since a random unitary operator has the form

Φ(A) =
R∑
i

piUiAU∗i

Using the fact that each Kraus operator is diagonal for a Schur
map we find that;

Cjk =
r∑
α

pαλαj λ̄αk �

Corollary 2
For d≤3; Uε(n) = F (RU)
For d≥4; Uε(n)r1 = F (RU)

where Uε(n)r1 is the convex hull of only the rank 1 Schur maps.
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Results

The Schur map ΦC is CP Hermitian if and only if the correlation
matrix C ∈ R. What kind of generalizations can we make about
Hermitian quantum maps?

Theorem 2
Every 2x2 Hermitian UCPT map Φ can be expressed as;

ΦH(A) =
r∑
i

piRi(A)Ri

where each Ri is a Hermitian unitary matrix.

NOTE: This satisfies the result that all 2x2 qubit maps are
precisely the set of random unitary maps as reflection matrices
are both Hermitian and unitary.
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Results

More Bloch sphere interpretation

This form of quantum map effects the Bloch sphere in an
interesting way...
⇒ Only a compression with no rotation to the Bloch vector.

Fig.5. Convex combination of the Pauli Channels with pi = 1/3
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Summary

Random unitary channels describe classical errors in
information processing.
Schur maps provide a useful geometric picture in analyzing
mathematical properties of random unitary channels

Outlook
Examine the more general notion of Hermitian maps for
d > 2
Look at other applications of Schur maps
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Thank You!
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