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History

Historically, the classical numerical range has been studied

extensively by mathematicians interested in the areas of

functional analysis and matrix analysis [2].

Originally Toeplitz and Hausdorff called it the Wetvorrat of a

bilinear form, the Russian community has referred to it as the

Hausdorff domain, Murnaghan called it many things,

eventually settling on calling it the field of values and finally

Marshall Stone in his influential book on operator theory

cemented the name numerical range [2].

Even now there is a fair degree of interest in the classical

numerical range, in particular in the areas such as

C �−algebras, operator theory, dilation theory, matrix analysis

etc. [2].
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History Ctd...

However, only recently has there been any interest given to

the higher-rank numerical range.

While researchers have bee studying quantum information

theory, they have also been making significant contributions

with ground breaking mathematics

One of the most recent discoveries is the higher-rank

numerical range. By ‘recent’, we mean within the last 5

years!

The higher rank numerical range was first studied in two

papers co-authored by M.D.Choi, D.W.Kribs and

K.Życkowski. It was only during a conference in Calgary in

2006 that they announced this amazing discovery to the

world. They are the first noted people to present the

higher-rank numerical range.
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History Ctd...

This got the scientific community interested in expanding on

the researchers’ initial findings.

Even more recently, the connection between the higher-rank

numerical range and quantum data error correction has been

established, and this is why it is of particular interest to us.

This area is so recent that there has not even been a single

textbook published on it. The resources available at present

are about 15 - 20 papers (Most of which are written by

authors that are present at this conference) and another

handful of papers awaiting publishing.
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History Ctd...

So there really isn’t a history of the higher-rank numerical

range. This interesting discovery started with our professors

and it continues with us!

We are what will be the history of the higher-rank numerical

range!
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Introduction

Introduction
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Notation

ℋ - A (finite dimensional) Hilbert space

ℒ(ℋ) - The space of linear operators of Hilbert space ℋ

C - The field of complex numbers

P - A projection operator

H - A Hermitian Operator

U - A Unitary operator

T - A normal operator

A - An arbitrary operator

Λk(A) - The rank-k numerical range of operator A, k 2 Z+
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The Numerical Range

The (classical) numerical range of an operator A is the set of

complex numbers given by:

W (A) = {< Ax , x >, x 2 ℋ, ||x || = 1}

Geometrically, it can be considered as the intersection of

closed half-planes given by:

{λ 2 C|e iθλ+ e−iθλ̄ � λ1(e
iθA+ e−iθA�)} where θ 2 [0, 2π) [4]

This brings us to the following important theorem:

Theorem (Toeplitz − Hausdorff)

The numerical range of an operator is convex.
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Preliminary Definitions

Before we introduce the higher rank numerical range, recall

the following definitions:

Definition (Dimension)

The dimension of a (finite-dimensional) complex Hilbert space ℋ

is the number of vectors that span any basis of ℋ.

Definition (Rank)

Let M : ℋ1 → ℋ2 be a linear transformation from Hilbert space

ℋ1 to Hilbert space ℋ2. The dimension of the range of M is

called the rank of M.
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Preliminary Definitions Ctd...

Definition (Projection)

Let P 2 ℒ(ℋ) for Hilbert Space ℋ. P is called a projection if:

P = P2 = P�

A rank − k projection P (more precisely a rank − k

orthogonal projection operator P) in a Hilbert space ℋ of

dimension N has the form:

P =

"
1k 0k�(N−k)

0(N−k)�k 0(N−k)�(N−k)

#
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The Higher Rank Numerical Range

Definition

Let k be a positive integer. Let ℋ be a finite dimensional Hilbert

space with dimension at least k; and let operator A 2 ℒ(ℋ).

The rank − k numerical range of A is defined as:

Λk(A) := {λ 2 C|PAP = λA}

for some rank − k orthogonal projection P.

Notice the similarity to the familiar eigenvalue problem.

Elements of Λk(A) are called “compression values”.

When k = 1, we get W (A), which is the classical numerical

range of A.
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Geometry of The Higher Rank Numerical Range

Geometry of The Higher Rank
Numerical Range
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Geometric Representation

The compression values are all complex numbers, and take the

form of x + yi where x , y 2 R and i2 = −1.

As such, we can represent the higher rank numerical range on

the complex plane.

The geometric representation of Λk(A) will depend on the

nature of operator the operator A.

For this talk, we will discuss the geometry of 3 types of

operators:

1 Hermitian operators

2 Unitary operators

3 Normal operators
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Geometric Properties

The following properties were discovered by Choi, kribs and

Życkowski:

1 Λk(αA + βI ) = αΛk(A) + β 8α,β 2 C

2 Λk(A
�) = Λk(A)

3 Λ(A) � Λk(Re A) + iΛk(Im A)

4 Λk(A� B) � Λk(A) [Λk(B)

5 Λk1+k2(A� B) � Λk1(A) \Λk2(B)

6 Λ1(A) � Λ2(A) � Λ3(A) � . . . � ΛN(A)
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Geometric Properties Ctd...

We will prove item 6 as it will become more evident as this

talk progresses.

To do this, we make use of the following property of

projections:

Property

Let P1 be a projection onto Hilbert space ℋ1 and let P2 be a

projection onto Hilbert space ℋ2, where ℋ2 � ℋ1. Then:

P1P2 = P2P1 = P2

is a projection onto ℋ1 \ℋ2.
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Proof of Property 6

We wish to prove that for A 2 ℒ(ℋ) for Hilbert Space ℋ:

Λ1(A) � Λ2(A) � Λ3(A) � . . . � ΛN(A)

Proof:

If we can show:

Λk(A) � Λk−1(A)

for arbitrary k, then we are done.

Let λ 2 Λk(A), where λ is complex. Suppose 9 a rank-k

projection P1 onto Hilbert space ℋ1 � ℋ such that:

P1AP1 = λP1 (*)

Let P2 be a rank-(k-1) projection such that

P1P2 = P2P1 = P2 (From Property)
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Proof of Property 6 Ctd...

Proof Ctd:

Apply P2 to the left and right of (*):

P2P1︸ ︷︷ ︸
=P2

A P1P2︸ ︷︷ ︸
=P2

= P2λP1P2︸ ︷︷ ︸
=P2

P2AP2 = P2λP2

P2AP2 = λP2P2

P2AP2 = λ(P2)
2

P2AP2 = λP2

⇒ λ 2 Λk−1(A)⇒ Λk � Λk−1(A)
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Geometry of Hermitian Operators

The eigenvalues of Hermitian operators are always real, so the

higher-rank numerical range will form nested intervals on the

real line.

A general description is given by the following theorem:

Theorem ([1])

Let H be an N �N Hermitian operator with non-degenerate spec-

trum given by Spec(H) = {λ1, λ2, . . . λN } where λ1 � λ2 � . . . �

λN . Let k 2 Z+ be fixed with 1 � k � N. The rank-k numerical

range of H is:

1 A non-degenerate closed interval if λk < λN−k+1

2 A singleton set if λk = λN−k+1

3 An empty set if λk > λN−k+1
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Examples: Hermitian Operators

This theorem is easier to see with some examples:

When N = 1, k = {1}

k N − k + 1

1 1

When N = 2, k = {1, 2}

k N − k + 1

1 2

2 1
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Examples of Theorem Ctd...

When N = 3, k = {1, 2, 3}

k N − k + 1

1 3

2 2

3 3

When N = 4, k = {1, 2, 3, 4}

k N − k + 1

1 4

2 3

3 2

4 1
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Hermitian Operators Ctd...

With this construction, the following proposition becomes

evident:

Proposition ([1])

Let A be an NxN matrix and and suppose 2k � N. Then the

rank − k numerical range Λk(A) is an empty set or a singleton.

This proposition is true for all types of operators.

This proposition however does not guarantee non-emptiness.

So an interesting question is under what conditions is Λk(A)

guaranteed to be non-empty?

Answer:...to be revealed!
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Normal Operators (Including Unitary Operators)

These operators can have complex spectra.

Choi et al introduced the following theorem regarding the

convexity of the higher-rank numerical range.

Theorem ([1])

For a normal operator T 2 ℒ(ℋ) of dimension N:

Λk(T ) = \ conv (Γ), Γ � {Eigenvalues of T}

|Γ | = N − k + 1

Γ is the set of points in C that coincides with all N − k + 1

points of Spec(T ). This theorem presents an interesting way

to construct Λk(T ) by examining the intersection of the

convex hulls of point subsets.
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Unitary and Normal Operators

The following theorem proved by Li and Sze is actually

another way of stating the previous theorem:

Theorem ([4])

For an NxN normal matrix T , Λk(T ) coincides with the inter-

section of convex hulls conv (Γ), where Γ is an (N + 1− k)−point

subset of the spectrum of T .

This theorem shows that Λk(T ) is convex whenever Λk(T ) ia

non-empty and T is normal.

We will look at some examples to get a better idea.
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Examples: Unitary Operators

We will begin with some examples of unitary operators.

A very nice property of unitary operators is that their

eigenvalues lie on the unit circle D in the complex plane.

For the moment, we will assume non-degenerate spectra. The

cases where N=1, N=2 and N=3 are not that interesting.

N=1 N=2 N=3
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Example: N=4, k=1

The case of N=4 is only slightly interesting:
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Example: N=5, k=1

Things start to get more interesting at N=5. We’ll start by

constructing Λ1(U) of a unitary operator U 2 ℒ(C5):
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Example: N=5, k=1 Ctd...
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Example: N=5, k=1 Ctd...



History Introduction Geometry of The Higher Rank Numerical Range Discussion and New Results Applications in Quantum Data Error Correction Bibliography Acknowledgements

Example: N=5, k=2

Let’s now construct Λ2(U). Since k = 2, N − k + 1 = 4, so we

consider the intersection of the convex hulls of all 4-tupples.
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...



History Introduction Geometry of The Higher Rank Numerical Range Discussion and New Results Applications in Quantum Data Error Correction Bibliography Acknowledgements

Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=2 Ctd...
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Example: N=5, k=3

We will see for N=5, the rank-3 numerical range is an empty

set. To do this geometrically, we consider the convex hulls of

all triples (N − k + 1 = 3):
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Example: N=5, k=3 Ctd...
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Example: N=5, k=3 Ctd...
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Example: N=5, k=3 Ctd...
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Example: N=5, k=3 Ctd...
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Example: N=5, k=3 Ctd...
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Example: N=5, k=3 Ctd...

We already see that there is no common intersection of these

4 triples.
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Examples: Normal Operators

We will move onto the more general case of normal operators.

The spatial arrangement in C is not fixed, so we may end up

with a figure such as the one below for some normal T :
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Example: Normal Operators Ctd...

Let’s construct Λ1(T ) in the usual way:

Does anyone see the problem here?
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Example: Normal Operators Ctd...

This picture of Λ1(T ) is not convex, so let’s make it convex:

Constructing Λ1(T ) in this manner gives us a convex hull.
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Example: Normal Operators Ctd...

So Λ1(T ) is:

Notice that there are eigenvalues in the interior of Λ1(T ).
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Discussion and New Results

Discussion and New Results
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Discussion

What happens to the geometry of of the higher rank

numerical range when we have degenerate spectra?

What interesting conclusions about the geometry of the

higher rank numerical range can we arrive at?

Given N and k, when are we guaranteed that Λk(A) is

non-empty for some operator A?

Are there any bounds on the number of sides of the convex

polygon of Λk(A).

Are there any other interesting ways to construct Λk(A)?
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Degeneracy

If we get a Hermitian operator with a degenerate spectrum,

then some of the nested intervals will not be proper subsets

but equal sets.

In the unitary case, the number of sides of the convex polygon

decreases. We may also have dimension reduction.

For instance, consider a unitary U 2 ℒ(C6), and lets say

Z1 = Z2, Z3 = Z4 = Z5 and Z6 is unique.



History Introduction Geometry of The Higher Rank Numerical Range Discussion and New Results Applications in Quantum Data Error Correction Bibliography Acknowledgements

Degeneracy Ctd...

Suppose their spatial arrangement in C is:
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Degeneracy Ctd...

Λ1(U) is a hull with 3 sides
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Degeneracy Ctd...

Λ2(U) is a line:
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Degeneracy Ctd...

Λ3(U) is empty:
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Non-emptiness

Choi, Kribs, Holbrook and Życkowski presented the following

theorem regarding non-emptiness for the unitary case:

Theorem ([3])

Let unitary U 2 ℒ(CN) with non-degenerate spectrum and let

k � 1. Then the following are true for Λk(U):

1 If 2k > N, then Λk(U) = ;.

2 If 2k = N, then Λk(U) is empty if the line segments

[zj , zj+1] do not intersect. If they do intersect, then we get a

singleton set.

3 If 2k < N < 3k − 2, then Λk(U) can be either or non-empty.

4 If 3k − 2 � N, then Λk(U) is always non-empty, whether

the eigenvalues are distinct or not.
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Bounds on the Convex Polygon

Gau, Li, Poon, and Sze showed that the rank-k numerical

range of a normal matrix with N distinct eigenvalues is a

polygon with at most N sides [5].

The presenter also proved it in an entirely different way:
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Bounds on the Convex Polygon Ctd...

Sketch of (my) proof:

We looked at the intersection of half-planes and used the

axioms of Euclidean geometry and a counting argument.
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Bounds on the Convex Polygon Ctd...

A nice result which we obtained while proving this result:

Proposition

Let unitary U 2 ℒ(CN) with non-degenerate spectrum given by

Spec(U) = {z1, z2, . . . zN } such that arg(zj) = θj and 0 � θ1 <

θ2 < . . . < θN < 2π are arranged counterclockwise on D. Any

line segment of the boundary of Λk(U) must lie on one of the

line segments zj zj+k for some integer j between 1 and N, provided

that 3k − 2 � N.

(Note that addition is performed modulo N in the subscript).
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Interesting Ways to Construct Λk(U)

We already saw how to construct of Λk(U) by intersecting the

convex hulls of N − k + 1 point subsets for a unitary U.

Now suppose 9q 2 Z+ such that N = q � k, then Λk(U) can

be constructed by intersecting k polygons, each with q sides.

We can associate each polygon to a permutation group; there

will be k groups with q elements in each group:

k groups


(1, 1 + k, . . . 1 + (q − 1)k)

(2, 2 + k, . . . 2 + (q − 1)k)
...

...
...

...

(k, 2k, . . . qk)︸ ︷︷ ︸
q elements
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Example: N=12, k=3

Example: N=12, k=3.

12 = 4 � 3, so there will be 3 groups with 4 elements in each

group:

1 (1, 4, 7, 10)

2 (2, 5, 8, 11)

3 (3, 6, 9, 12)

Let’s construct Λ3(U) by looking at the intersection of these

3 polygons.
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Example: N=12, k=3

Assume non-degenerate spectra for some unitary U 2 ℒ(C12):
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Example: N=12, k=3 Ctd...

(1, 4, 7, 10)
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Example: N=12, k=3 Ctd...

(1, 4, 7, 10), (2, 5, 8, 11)
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Example: N=12, k=3 Ctd...

Intersection of (1, 4, 7, 10), (2, 5, 8, 11)
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Example: N=12, k=3 Ctd...

(1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12)
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Example: N=12, k=3 Ctd...

Intersection of (1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12)
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Example: N=12, k=4

Example: N=12, k=4.

12 = 3 � 4, so there will be 4 groups with 3 elements in each

group:

1 (1, 5, 9)

2 (2, 6, 10)

3 (3, 7, 11)

4 (4, 8, 12)

Let’s construct Λ4(U) by looking at the intersection of these

4 polygons.
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Example: N=12, k=4

Assume non-degenerate spectra for some unitary U 2 ℒ(C12):
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Example: N=12, k=4 Ctd...

(1, 5, 9)
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Example: N=12, k=4 Ctd...

(1, 5, 9), (2, 6, 10)
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Example: N=12, k=4 Ctd...

intersection of (1, 5, 9), (2, 6, 10)
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Example: N=12, k=4 Ctd...

(1, 5, 9), (2, 6, 10), (3, 7, 11)
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Example: N=12, k=4 Ctd...

Intersection of (1, 5, 9), (2, 6, 10), (3, 7, 11)
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Example: N=12, k=4 Ctd...

(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)
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Example: N=12, k=4 Ctd...

Intersection of (1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)
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Interesting Ways to Construct Λk(U) Ctd...

Suppose @q 2 Z+ such that N = q � k, then Λk(U) can be

constructed by drawing a continuous succession of N line

segments between eigenvalues and looking at the intersection

of the half-planes formed by these line segments.

The associated permutation group of this construction will

have N elements:

(1, 1 + k, . . . 1 + (N − 1)k)︸ ︷︷ ︸
N elements

A consequence from elementary number theory is that we can

construct Λk(U) this way whenever N is prime.

Example: N = 7, k = 2. The associated permutation group is:

(1, 3, 5, 7, 2, 4, 6)
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Example: N=7, k=2

Assume non-degenerate spectra for some unitary U 2 ℒ(C7):
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Applications in Quantum Data Error Correction

Applications in Quantum Data
Error Correction



History Introduction Geometry of The Higher Rank Numerical Range Discussion and New Results Applications in Quantum Data Error Correction Bibliography Acknowledgements

Introduction to Quantum Data Error Correction

Quantum data error correction is a research area that’s still in

its infancy. It was only recently that researchers realized that

data correction was possible (at least theoretically) with

qubits.

The reason we are interested in quantum data error correction

is because several things can go wrong when transmitting

qubits along a quantum channel:

1 Bit flip errors

α|0i+ β|1i −→ α|1i+ β|0i

2 Phase flip errors

α|0i+ β|1i −→ α|0i− β|1i

3 Both bit flip and phase flip errors

α|0i+ β|1i −→ α|1i− β|0i
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Introduction to Quantum Data Error Correction Ctd...

Bit flip errors can be corrected are by applying the Pauli-X

operator σx .

Phase flip errors can be corrected are by applying the Pauli-Z

operator σz .

Some error correction techniques that work (in theory) are:

1 The 3-qubit code [3]

2 The 5-qubit code [3]

3 Shor’s 9-qubit code [3]

4 The concatenated code [3]

We will not discuss there techniques, but mention them so

that the reader is aware that some techniques for quantum

data error correction already exist.
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Introduction to Quantum Data Error Correction Ctd...

The way that they work is that ancilla qubits (extra qubits)

are added to each |0i and |1i to get the encoded qubits |0enci

and |1enci.

Then a Von Neumann measurement will detect if a phase-flip

has occurred or if a bit-flip occurred on |0enci or |1enci.

Since ancilla bits are added, the error correcting technique will

determine which bit has flipped. This is called the error

syndrome.

After that the appropriate recovery operation is performed to

recover the original state.
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The Non-trivial Nature of Quantum Data Error

Using classical methods for correcting encoded bits fails in a

quantum setting for several main reasons:

1 Classical error correction can not correct phase flips.

2 The No-Cloning Theorem:

Theorem (The No-Cloning Theorem)

There does not exist a superoperator OS which can perform

|ψihψ|
N

|ψ
0

ihψ
0

|
OS−−→ |ψihψ|

N
|ψihψ|

where |ψ
0

i is a fixed state of ancilla (extra) bits.

This means that given a fixed state |ψ
0

i there does not exist

any unitary operator U that can encode a super-position state

as U |ψi|ψ
0

i = |ψi|ψi
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The Non-trivial Nature of Quantum Data Error Ctd...

3 The Heisenberg Uncertainty Principle:

Principle (Heisenberg Uncertainty)

∆x∆px �
h̄
2

where:

∆x - is the uncertainty in the x-coordinate of the particle (posi-

tion)

∆px - the uncertainty in the x-component of the particle’s mo-

mentum

h̄ - The reduced Planck constant, 6.626068 � 10−34/2π m2kg/s
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The Non-trivial Nature of Quantum Data Error Ctd...

For us, it suffices to interpret item 3 as stating that any

precise measurement on the atomic scale will cause some

disturbance in the state of a quantum system.

The (accurate) measurement of qubits in a quantum channel

will cause a disturbance which will upset the integrity of the

quantum system.

Example: Think of trying to study a drop of ink or a coloured

dye-crystal diffusing in a container of water using a

microscope.
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Correctable Code

Quantum data error correction relies on being able to

distinguish the different errors associated with an encoded |0i

and |1i (We shall call them |0enci and |1enci respectively).

We achieve this by having having a code C, where C is the set

C = {|0enci, |1enci} and the errors associated with the encoded

qubits project into disjoint sets.

P. Kaye, R. La Flamme, M. Mosca, An Introduction to Quantum Computing (2007)
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Correctable Code Ctd...

We say that a code is correctable if:

Theorem (Knill-Laflamme)

A subspace C � ℋ is correctable for ℰ(ρ) =
∑

i EiρE �

i iff

9Λ = (λij) (a scalar matrix) such that 8i , j :

PCE �

i Ej PC = λij PC.

Notice the similarity between the definition of correctable and

the definition of the rank-k numerical range.

In terms of operators, we can restate this definition to imply

that a code C is correctable for state ρ which has associated

error operator ℰ iff 9 a recovery operation ℛ such that

ℛ(ℰ(ρ)) = ρ.
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An Application in Quantum Data Error Correction

A quantum data error correction technique which uses the

higher rank numerical range involves using bi-unitary channels

(BUC’s).

Definition ([1])

A bi-unitary channel is a randomized unitary channel ℰ = {V ,W }

on a Hilbert space ℋ with an operator-sum representations con-

sisting of two unitaries; so

ℰ(σ) = pVσV � + (1 − p)WσW �, 8σ 2 ℒ(ℋ)

for a fixed p with 0 � p � 1.

The p mentioned here is associated with the probability of an

error occurring, and it is fixed.
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An Application in Quantum Data Error Correction Ctd...

Choi, Kribs and Życkowski presented the following theorem

regarding the correctable code:

Theorem ([4])

Let C = V ,W be a BUC on a Hilbert space ℋ with dim(ℋ) � 4.

Then there are 2-dimensional code subspaces C of ℋ such that C

is correctable for ℰ.

After identifying the correctable qubit codes for such channels,

it is possible to solve the error correction problem for BUC’s

on a four-dimensional Hilbert space C4 .
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An Application in Quantum Data Error Correction Ctd...

It turns out that after several steps, the problem reduces down

to a single normalized equation of the form PUP = λP for λ

and P where U is a single unitary on ℋ.

The important aspect to realize is that after reducing to the

form mentioned above, the eigenvalues of the unitary matrix

U will be on the unit circle, which brings us back to the

geometry of the higher-rank numerical range.
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End

Thank You

Questions or Comments?
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