The Geometry of Anticoherent Spin States

Jason Crann

Department of Mathematics & Statistics, University of Guelph

Canadian Quantum Information Student Conference, 2009

Outline

- Anticoherence
 - Definition
 - The Majorana Representation
- 2 Spherical Designs
 - Symmetric Designs
 - Connection to Anticoherence
- 3 Application
 - Symmetric State Entanglement

Coherent States

- The most "classical" spin sates.
- Can be identified with a classical spin direction: $|\psi_{\bf n}\rangle \sim {\bf n}$.
- For a spin-s system in the coherent state $|\psi_{\mathbf{n}}\rangle$,

$$\langle \mathbf{S} \rangle = (\langle S_x \rangle, \langle S_y \rangle, \langle S_z \rangle) = s \hbar \mathbf{n}.$$

Anticoherent States

- Cannot be associated with a classical spin direction.
- Point "nowhere" in the mean: $\langle \mathbf{S} \rangle = \langle \psi | \mathbf{S} | \psi \rangle = \mathbf{0} \Leftrightarrow \langle \mathbf{n} \cdot \mathbf{S} \rangle$ being independent of \mathbf{n} .

Anticoherent States

- Cannot be associated with a classical spin direction.
- Point "nowhere" in the mean: $\langle \mathbf{S} \rangle = \langle \psi | \mathbf{S} | \psi \rangle = \mathbf{0} \Leftrightarrow \langle \mathbf{n} \cdot \mathbf{S} \rangle$ being independent of \mathbf{n} .

Definition

A state $|\psi\rangle$ is anticoherent if $\langle \mathbf{n} \cdot \mathbf{S} \rangle$ is independent of \mathbf{n} .

Example: $|\psi\rangle = |s = 1, m_z = 0\rangle$ satisfies $\langle \mathbf{S} \rangle = \mathbf{0}$.

Higher Orders of Anticoherence

- Two labs L_1 and L_2 :
 - L_1 measures $\mathbf{n}_1 \cdot \mathbf{S}$ many times on a system prepared in the anticoherent state $|s=1,m_z=0\rangle$.
 - L_2 measures $\mathbf{n}_2 \cdot \mathbf{S}$ many times on the same type of system prepared in the same state.
- Directional dependence of $\langle (\mathbf{n} \cdot \mathbf{S})^2 \rangle$.

Higher Orders of Anticoherence

- Two labs L_1 and L_2 :
 - L_1 measures $\mathbf{n}_1 \cdot \mathbf{S}$ many times on a system prepared in the anticoherent state $|s=1,m_z=0\rangle$.
 - L_2 measures $\mathbf{n}_2 \cdot \mathbf{S}$ many times on the same type of system prepared in the same state.
- Directional dependence of $\langle (\mathbf{n} \cdot \mathbf{S})^2 \rangle$.

Definition

A state $|\psi\rangle$ is anticoherent to order t if $\langle (\mathbf{n}\cdot\mathbf{S})^k\rangle$ is independent of \mathbf{n} for k=1,...,t.

THE MAJORANA REPRESENTATION

Spin-1/2

$$|\psi
angle = a_\uparrow|\uparrow
angle + a_\downarrow|\downarrow
angle$$
 ratio $r=rac{a_\downarrow}{a_\uparrow}$

root of
$$M(z) = a_{\uparrow}z - a_{\downarrow}$$

Stereographic projection:

$$\mathbf{V}(r) = (\frac{2\Re(r)}{1+|r|^2}, \frac{2\Im(r)}{1+|r|^2}, \frac{1-|r|^2}{1+|r|^2})$$

Spin-1/2

$$|\psi \rangle = a_{\uparrow} |\uparrow \rangle + a_{\downarrow} |\downarrow \rangle$$
 ratio $r = \frac{a_{\downarrow}}{a_{\uparrow}}$

root of
$$M(z) = a_{\uparrow}z - a_{\downarrow}$$

Stereographic projection:

$$\mathbf{V}(r) = \left(\frac{2\Re(r)}{1+|r|^2}, \frac{2\Im(r)}{1+|r|^2}, \frac{1-|r|^2}{1+|r|^2}\right)$$

Spin-1

two points on S^2 : $\mathbf{V}(r_1), \mathbf{V}(r_2)$

Spin-1

$$|\psi\rangle=a_1|1\rangle+a_0|0\rangle+a_{-1}|-1\rangle$$

$$\updownarrow$$

$$M(z)=a_1z^2-\sqrt{2}a_0z+a_{-1}$$
 two roots: r_1,r_2 \updownarrow

two points on S^2 : $\mathbf{V}(r_1), \mathbf{V}(r_2)$

States \Leftrightarrow points on \mathcal{S}^2

$$Spin - s: \quad |\psi\rangle = \sum_{m=-s}^{s} a_m |m\rangle \in \mathcal{H}_{2s+1}$$

$$\updownarrow$$

$$M(z) = \sum_{m=-s}^{s} a_m (-1)^{m-s} \sqrt{\binom{2s}{s+m}} z^{s+m} \quad degree = 2s$$

$$\updownarrow$$

$$\{r_i\}_{i=1}^{2s}$$

$$\updownarrow$$

2s points on \mathcal{S}^2 via stereographic projection

Spin-1: special examples

Basis sates: $|1\rangle, |0\rangle, |-1\rangle$

Majorana Picture

- Coherent states: one point with multplicity 2s.
- Anticoherent states: points are "nicely" spread over the sphere.

SPHERICAL DESIGNS

Equivalent Definitions

Definition

Let $t \in \mathbb{N}$. A finite (non-empty) subset $X \subset S^2$ is a spherical t-design if

$$\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x}) = \frac{1}{\mu(S^2)} \int_{S^2} f(\mathbf{x}) d\mu(\mathbf{x})$$

holds for any polynomial $f(\mathbf{x})$ of deg $\leq t$.

Equivalent Definitions

Definition

Let $t \in \mathbb{N}$. A finite (non-empty) subset $X \subset S^2$ is a spherical t-design if

$$\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x}) = \frac{1}{\mu(S^2)} \int_{S^2} f(\mathbf{x}) d\mu(\mathbf{x})$$

holds for any polynomial $f(\mathbf{x})$ of deg $\leq t$.

Observation

 $X \subset S^2$ is a spherical t-design if the kth moments of X are invariant under $\mathcal{O}(3)$ for k = 1, ..., t.

A spherical 1-design is a set whose vector sum is zero.

Spherical Designs vs. Anticoherent States

Definition

A state $|\psi\rangle$ is anticoherent to order t if $\langle (\mathbf{n}\cdot\mathbf{S})^k\rangle$ is independent of \mathbf{n} for k=1,...,t.

Observation

 $X \subset S^2$ is a spherical t-design if the kth moments of X are invariant under $\mathcal{O}(3)$ for k=1,...,t.

Orbits

Can generate spherical designs using orbits of finite subgroups of $\mathcal{O}(3)$. Take $G = \{I, R_{2\pi/3}, R_{4\pi/3}\}$ and $\mathbf{x} = (1, 0, 0)$.

Main Result

Theorem

Let $\mathbf{x} \in \mathcal{S}^2$ and let G be a (non-empty) finite subgroup of $\mathcal{O}(3)$. If $G\mathbf{x}$ is a spherical t-design, then the state $|\psi\rangle$ whose Majorana representation is $G\mathbf{x}$ is anticoherent to order t.

Some Curious Geometry

Spin-2

- G = Sym(T)
- $G\mathbf{x}$ is a spherical 2-design for all $\mathbf{x} \in \mathcal{S}^2$.
- Gives anticoherent states of order 2.
- Example:

$$|\psi
angle=rac{1}{\sqrt{3}}(\sqrt{2}|1
angle-|-2
angle)$$

Some Curious Geometry

Spin-4

- G = Sym(C)
- $G\mathbf{x}$ is a spherical 3-design for all $\mathbf{x} \in \mathcal{S}^2$.
- Gives anticoherent states of order 3.
- Example:

$$\frac{1}{2\sqrt{6}}(\sqrt{5}|4\rangle+\sqrt{14}|0\rangle+\sqrt{5}|-4\rangle)$$

Some Curious Geometry

Spin-10

- G = Sym(D)
- $G\mathbf{x}$ is a spherical 5-design for all $\mathbf{x} \in \mathcal{S}^2$.
- Gives anticoherent states of order 5.
- Example:

$$a|10\rangle+b|5\rangle+|0\rangle-b|-5\rangle+a|-10\rangle$$

SYMMETRIC STATE ENTANGLEMENT

Symmetric States

Symmetric states on n qubits:

$$|\psi_{\mathit{sym}}\rangle = N \sum_{\sigma \in \mathcal{S}_n} |r_{\sigma(1)}\rangle |r_{\sigma(2)}\rangle \cdots |r_{\sigma(n)}\rangle$$

Example:

$$|\mathit{GHZ}
angle = rac{1}{\sqrt{2}}(|000
angle + |111
angle) = N \sum_{\sigma \in \mathcal{S}_3} |r_{\sigma(1)}
angle |r_{\sigma(2)}
angle |r_{\sigma(3)}
angle$$

where

$$|r_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

 $|r_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i2\pi/3}|1\rangle)$
 $|r_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i4\pi/3}|1\rangle)$

Geometric Measure of Entanglement

$$E_G(|\psi\rangle) = 1 - \max_{|\phi\rangle \in Prod} |\langle \psi | \phi \rangle|^2$$

- $E_G \ge 0$ with equality iff $|\psi\rangle$ is a product state.
- Maximum product state $|\phi\rangle$ can be found in symmetric subspace.
- Maximum product state $|\phi\rangle$ is necessarily symmetric. [Hübener, Kleinmann, et. al, 2009]

Maximum Entanglement

• For symmetric states $|\psi\rangle$ and symmetric product states $|\phi\rangle = |a\rangle|a\rangle\cdots|a\rangle$.

$$|\langle \psi | \phi \rangle|^2 \propto \prod_{i=1}^n |\langle r_i | a \rangle|^2 = \prod_{i=1}^n \frac{||\mathbf{V}(r_i) - \mathbf{V}(a^*)||^2}{4}$$

Maximum Entanglement

• For symmetric states $|\psi\rangle$ and symmetric product states $|\phi\rangle = |a\rangle|a\rangle\cdots|a\rangle$,

$$|\langle \psi | \phi \rangle|^2 \propto \prod_{i=1}^n |\langle r_i | a \rangle|^2 = \prod_{i=1}^n \frac{||\mathbf{V}(r_i) - \mathbf{V}(a^*)||^2}{4}$$

• For fixed n, symmetric states $|\psi\rangle$ which maximize $E_G(|\psi\rangle)$ satisfy

$$\min_{|\psi\rangle \in Sym(\mathcal{H})} \max_{\mathbf{x} \in S^2} \prod_{i=1}^n ||\mathbf{V}(r_i) - \mathbf{x}||^2$$

3-qubits

$$|\mathit{GHZ}
angle = rac{1}{\sqrt{2}}(|000
angle + |111
angle)$$

 "Maximally entangled" via E_G. [Tamaryan, Wei, Park, 2009]

$$|r_1\rangle=rac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$$

 $|r_2\rangle=rac{1}{\sqrt{2}}(|0\rangle+e^{i2\pi/3}|1\rangle)$
 $|r_3\rangle=rac{1}{\sqrt{2}}(|0\rangle+e^{i4\pi/3}|1\rangle)$
roots: $1,e^{i2\pi/3},e^{i4\pi/3}$

3-qubits

$$|\mathit{GHZ}
angle = rac{1}{\sqrt{2}}(|000
angle + |111
angle)$$

 "Maximally entangled" via E_G. [Tamaryan, Wei, Park, 2009]

$$|r_1
angle=rac{1}{\sqrt{2}}(|0
angle+|1
angle) \ |r_2
angle=rac{1}{\sqrt{2}}(|0
angle+e^{i2\pi/3}|1
angle) \ |r_3
angle=rac{1}{\sqrt{2}}(|0
angle+e^{i4\pi/3}|1
angle) \ ext{roots:} \ 1,e^{i2\pi/3},e^{i4\pi/3} \ - ext{of unity!}$$

 $|GHZ\rangle$

Spherical 1-design

Final Conjecture

• Symmetric state with highest geometric entanglement is that whose n points are mutually maximally distant (n > 3). [Markham, 2007]

Final Conjecture

• Symmetric state with highest geometric entanglement is that whose n points are mutually maximally distant (n > 3). [Markham, 2007]

Conjecture

Fix $n \in \mathbb{N}$. Let τ_n be the largest value of t for which an n-point spherical t-design exists. Symmetric states that are spherical τ_n -designs maximize E_G .

For Further Reading I

J. Zimba.

"Anticoherent" Spin States via the Majorana Representation. *Electronic Journal of Theoretical Physics*, No.10, 143-156, 2006.

R. Hübener, M. Kleinmann, T.C. Wei, C. González-Guillén and O. Gühne.

The geometric measure of entanglement for symmetric states arXiv:0905.4822v2, 2009.

S. Tamaryan, T.C. Wei, D. Park.

Maximally entangled three-qubit states via geometric measure of entanglement

arXiv:0905.3791v2, 2009.

For Further Reading II

D. Markham

Symmetric State Entanglement in the Majorana Representation

http://www.pps.jussieu.fr/ djhm

Thank you

- Rajesh Pereira
- David Kribs
- NSERC

Fields Institute

• Thank you all!