The Geometry of Anticoherent Spin States

Jason Crann

Department of Mathematics \& Statistics, University of Guelph
Canadian Quantum Information Student Conference, 2009

UNIVERSITY of GUELPH

(1) 18 Mn Mm
(R) ITOMAMOM
statistics

Outline

(1) Anticoherence

- Definition
- The Majorana Representation
(2) Spherical Designs
- Symmetric Designs
- Connection to Anticoherence
(3) Application
- Symmetric State Entanglement

Coherent States

- The most "classical" spin sates.
- Can be identified with a classical spin direction: $\left|\psi_{\mathbf{n}}\right\rangle \sim \mathbf{n}$.
- For a spin-s system in the coherent state $\left|\psi_{\mathbf{n}}\right\rangle$,

$$
\langle\mathbf{S}\rangle=\left(\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{z}\right\rangle\right)=s \hbar \mathbf{n} .
$$

Anticoherent States

- Cannot be associated with a classical spin direction.
- Point "nowhere" in the mean: $\langle\mathbf{S}\rangle=\langle\psi| \mathbf{S}|\psi\rangle=\mathbf{0} \Leftrightarrow\langle\mathbf{n} \cdot \mathbf{S}\rangle$ being independent of \mathbf{n}.

Anticoherent States

- Cannot be associated with a classical spin direction.
- Point "nowhere" in the mean: $\langle\mathbf{S}\rangle=\langle\psi| \mathbf{S}|\psi\rangle=\mathbf{0} \Leftrightarrow\langle\mathbf{n} \cdot \mathbf{S}\rangle$ being independent of \mathbf{n}.

Definition

A state $|\psi\rangle$ is anticoherent if $\langle\mathbf{n} \cdot \mathbf{S}\rangle$ is independent of \mathbf{n}.

Example: $|\psi\rangle=\left|s=1, m_{z}=0\right\rangle$ satisfies $\langle\mathbf{S}\rangle=\mathbf{0}$.

Higher Orders of Anticoherence

- Two labs L_{1} and L_{2} :
- L_{1} measures $\mathbf{n}_{1} \cdot \mathbf{S}$ many times on a system prepared in the anticoherent state $\left|s=1, m_{z}=0\right\rangle$.
- L_{2} measures $\mathbf{n}_{2} \cdot \mathbf{S}$ many times on the same type of system prepared in the same state.
- Directional dependence of $\left\langle(\mathbf{n} \cdot \mathbf{S})^{2}\right\rangle$.

Higher Orders of Anticoherence

- Two labs L_{1} and L_{2} :
- L_{1} measures $\mathbf{n}_{1} \cdot \mathbf{S}$ many times on a system prepared in the anticoherent state $\left|s=1, m_{z}=0\right\rangle$.
- L_{2} measures $\mathbf{n}_{2} \cdot \mathbf{S}$ many times on the same type of system prepared in the same state.
- Directional dependence of $\left\langle(\mathbf{n} \cdot \mathbf{S})^{2}\right\rangle$.

Definition

A state $|\psi\rangle$ is anticoherent to order t if $\left\langle(\mathbf{n} \cdot \mathbf{S})^{k}\right\rangle$ is independent of \mathbf{n} for $k=1, \ldots, t$.

THE MAJORANA REPRESENTATION

Spin-1/2

$$
|\psi\rangle=a_{\uparrow}|\uparrow\rangle+a_{\downarrow}|\downarrow\rangle
$$

ratio $\quad r=\frac{a_{\downarrow}}{a_{\uparrow}}$
root of $\quad M(z)=a_{\uparrow} z-a_{\downarrow}$

Stereographic projection:

$\mathbf{V}(r)=\left(\frac{2 \Re(r)}{1+|r|^{2}}, \frac{2 \Im(r)}{1+|r|^{2}}, \frac{1-|r|^{2}}{1+|r|^{2}}\right)$

Spin-1/2

$$
\begin{gathered}
|\psi\rangle=a_{\uparrow}|\uparrow\rangle+a_{\downarrow}|\downarrow\rangle \\
\text { ratio } \quad r=\frac{a_{\downarrow}}{a_{\uparrow}}
\end{gathered}
$$

$$
\text { root of } \quad M(z)=a_{\uparrow} z-a_{\downarrow}
$$

Stereographic projection:
$\mathbf{V}(r)=\left(\frac{2 \Re(r)}{1+|r|^{2}}, \frac{2 \Im(r)}{1+|r|^{2}}, \frac{1-|r|^{2}}{1+|r|^{2}}\right)$

Spin-1

$$
|\psi\rangle=a_{1}|1\rangle+a_{0}|0\rangle+a_{-1}|-1\rangle
$$

$$
\Uparrow
$$

$$
M(z)=a_{1} z^{2}-\sqrt{2} a_{0} z+a_{-1}
$$

two roots: r_{1}, r_{2}
\Uparrow
two points on $\mathcal{S}^{2}: \mathbf{V}\left(r_{1}\right), \mathbf{V}\left(r_{2}\right)$

Spin-1

$$
|\psi\rangle=a_{1}|1\rangle+a_{0}|0\rangle+a_{-1}|-1\rangle
$$

$$
\Uparrow
$$

$$
M(z)=a_{1} z^{2}-\sqrt{2} a_{0} z+a_{-1}
$$

two roots: r_{1}, r_{2}

two points on $\mathcal{S}^{2}: \mathbf{V}\left(r_{1}\right), \mathbf{V}\left(r_{2}\right)$

States \Leftrightarrow points on \mathcal{S}^{2}

\[

\]

2 s points on \mathcal{S}^{2} via stereographic projection

Definition

The Majorana Representation

Spin-1: special examples

Basis sates: $|1\rangle,|0\rangle,|-1\rangle$
$|1\rangle \quad|0\rangle$
anticoherent

$|-1\rangle$
spin down - coherent

Majorana Picture

- Coherent states: one point with multplicity $2 s$.
- Anticoherent states: points are "nicely" spread over the sphere.

SPHERICAL DESIGNS

Equivalent Definitions

Definition

Let $t \in \mathbb{N}$. A finite (non-empty) subset $X \subset \mathcal{S}^{2}$ is a spherical t-design if

$$
\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})=\frac{1}{\mu\left(\mathcal{S}^{2}\right)} \int_{\mathcal{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x})
$$

holds for any polynomial $f(\mathbf{x})$ of deg $\leq t$.

Equivalent Definitions

Definition

Let $t \in \mathbb{N}$. A finite (non-empty) subset $X \subset \mathcal{S}^{2}$ is a spherical t-design if

$$
\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})=\frac{1}{\mu\left(\mathcal{S}^{2}\right)} \int_{\mathcal{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x})
$$

holds for any polynomial $f(\mathbf{x})$ of deg $\leq t$.

Observation

$X \subset \mathcal{S}^{2}$ is a spherical t-design if the k th moments of X are invariant under $\mathcal{O}(3)$ for $k=1, \ldots, t$.

A spherical 1-design is a set whose vector sum is zero.

Spherical Designs vs. Anticoherent States

Definition

A state $|\psi\rangle$ is anticoherent to order t if $\left\langle(\mathbf{n} \cdot \mathbf{S})^{k}\right\rangle$ is independent of \mathbf{n} for $k=1, \ldots, t$.

$$
\Uparrow \text { via Majorana Representation? }
$$

Observation

$X \subset \mathcal{S}^{2}$ is a spherical t-design if the k th moments of X are invariant under $\mathcal{O}(3)$ for $k=1, \ldots, t$.

Orbits

Can generate spherical designs using orbits of finite subgroups of $\mathcal{O}(3)$. Take $G=\left\{I, R_{2 \pi / 3}, R_{4 \pi / 3}\right\}$ and $\mathbf{x}=(1,0,0)$.

$$
\{\mid \mathbf{x}\} \quad\left\{\mid \mathbf{x}, R_{2 \pi / 3} \mathbf{x}\right\}
$$

$$
\left\{\mid \mathbf{x}, R_{2 \pi / 3} \mathbf{x}, R_{4 \pi / 3} \mathbf{x}\right\}
$$

Main Result

Theorem

Let $\mathbf{x} \in \mathcal{S}^{2}$ and let G be a (non-empty) finite subgroup of $\mathcal{O}(3)$. If $G \mathbf{x}$ is a spherical t-design, then the state $|\psi\rangle$ whose Majorana representation is $G \mathbf{x}$ is anticoherent to order t.

Some Curious Geometry

Spin-2

- $G=\operatorname{Sym}(T)$
- $G \mathbf{x}$ is a spherical 2-design for all $\mathbf{x} \in \mathcal{S}^{2}$.
- Gives anticoherent states of order 2.
- Example:

$$
|\psi\rangle=\frac{1}{\sqrt{3}}(\sqrt{2}|1\rangle-|-2\rangle)
$$

Some Curious Geometry

Spin-4

- $G=\operatorname{Sym}(C)$
- $G \mathbf{x}$ is a spherical 3-design for all $\mathbf{x} \in \mathcal{S}^{2}$.
- Gives anticoherent states of order 3.
- Example:

$$
\frac{1}{2 \sqrt{6}}(\sqrt{5}|4\rangle+\sqrt{14}|0\rangle+\sqrt{5}|-4\rangle)
$$

Some Curious Geometry

Spin-10

- $G=\operatorname{Sym}(D)$
- $G \mathbf{x}$ is a spherical 5-design for all $\mathbf{x} \in \mathcal{S}^{2}$.
- Gives anticoherent states of order 5.
- Example:

$$
a|10\rangle+b|5\rangle+|0\rangle-b|-5\rangle+a|-10\rangle)
$$

SYMMETRIC STATE ENTANGLEMENT

Symmetric States

Symmetric states on n qubits:

$$
\left|\psi_{\text {sym }}\right\rangle=N \sum_{\sigma \in \mathcal{S}_{n}}\left|r_{\sigma(1)}\right\rangle\left|r_{\sigma(2)}\right\rangle \cdots\left|r_{\sigma(n)}\right\rangle
$$

Example:

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)=N \sum_{\sigma \in \mathcal{S}_{3}}\left|r_{\sigma(1)}\right\rangle\left|r_{\sigma(2)}\right\rangle\left|r_{\sigma(3)}\right\rangle
$$

where

$$
\begin{gathered}
\left|r_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\left|r_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 2 \pi / 3}|1\rangle\right) \\
\left|r_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 4 \pi / 3}|1\rangle\right)
\end{gathered}
$$

Geometric Measure of Entanglement

$$
E_{G}(|\psi\rangle)=1-\max _{|\phi\rangle \in \operatorname{Prod}}|\langle\psi \mid \phi\rangle|^{2}
$$

- $E_{G} \geq 0$ with equality iff $|\psi\rangle$ is a product state.
- Maximum product state $|\phi\rangle$ can be found in symmetric subspace.
- Maximum product state $|\phi\rangle$ is necessarily symmetric. [Hübener, Kleinmann, et. al, 2009]

Maximum Entanglement

- For symmetric states $|\psi\rangle$ and symmetric product states $|\phi\rangle=|a\rangle|a\rangle \cdots|a\rangle$,

$$
|\langle\psi \mid \phi\rangle|^{2} \propto \prod_{i=1}^{n}\left|\left\langle r_{i} \mid a\right\rangle\right|^{2}=\prod_{i=1}^{n} \frac{\left\|\mathbf{V}\left(r_{i}\right)-\mathbf{V}\left(a^{*}\right)\right\|^{2}}{4}
$$

Maximum Entanglement

- For symmetric states $|\psi\rangle$ and symmetric product states $|\phi\rangle=|a\rangle|a\rangle \cdots|a\rangle$,

$$
|\langle\psi \mid \phi\rangle|^{2} \propto \prod_{i=1}^{n}\left|\left\langle r_{i} \mid a\right\rangle\right|^{2}=\prod_{i=1}^{n} \frac{\left\|\mathbf{V}\left(r_{i}\right)-\mathbf{V}\left(a^{*}\right)\right\|^{2}}{4}
$$

- For fixed n, symmetric states $|\psi\rangle$ which maximize $E_{G}(|\psi\rangle)$ satisfy

$$
\min _{|\psi\rangle \in \operatorname{Sym}(\mathcal{H})} \max _{\mathbf{x} \in \mathcal{S}^{2}} \prod_{i=1}^{n}\left\|\mathbf{V}\left(r_{i}\right)-\mathbf{x}\right\|^{2}
$$

3-qubits

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

- "Maximally entangled" via E_{G}. [Tamaryan, Wei, Park, 2009]

$$
\begin{gathered}
\left|r_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\left|r_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 2 \pi / 3}|1\rangle\right) \\
\left|r_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 4 \pi / 3}|1\rangle\right) \\
\text { roots: } 1, e^{i 2 \pi / 3}, e^{i 4 \pi / 3}
\end{gathered}
$$

3-qubits

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

|GHZ

- "Maximally entangled" via E_{G}. [Tamaryan, Wei, Park, 2009]

$$
\begin{gathered}
\left|r_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\left|r_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 2 \pi / 3}|1\rangle\right) \\
\left|r_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 4 \pi / 3}|1\rangle\right) \\
\text { roots: } 1, e^{i 2 \pi / 3}, e^{i 4 \pi / 3} \\
\quad \text {-of unity! }
\end{gathered}
$$

Spherical 1-design

Final Conjecture

- Symmetric state with highest geometric entanglement is that whose n points are mutually maximally distant $(n>3)$. [Markham, 2007]

Final Conjecture

- Symmetric state with highest geometric entanglement is that whose n points are mutually maximally distant $(n>3)$. [Markham, 2007]

Conjecture

Fix $n \in \mathbb{N}$. Let τ_{n} be the largest value of t for which an n-point spherical t-design exists. Symmetric states that are spherical τ_{n}-designs maximize E_{G}.

For Further Reading I

目 J. Zimba.
"Anticoherent" Spin States via the Majorana Representation. Electronic Journal of Theoretical Physics, No.10, 143-156, 2006.
R. R. Hübener, M. Kleinmann, T.C. Wei, C. González-Guillén and
O. Gühne.
The geometric measure of entanglement for symmetric states arXiv:0905.4822v2, 2009.

三
S. Tamaryan, T.C. Wei, D. Park.

Maximally entangled three-qubit states via geometric measure of entanglement
arXiv:0905.3791v2, 2009.

For Further Reading II

D. Markham

Symmetric State Entanglement in the Majorana Representation
http://www.pps.jussieu.fr/ djhm

Thank you

- Rajesh Pereira
- David Kribs
- NSERC
- Fields Institute

```
F
```

- Thank you all!

