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Estimating Partition Functions

let Ω be a set whose elements x correspond the states
of some physical system

let E : Ω → R denote the energy function, assigning
each state x its energy E(x)

given the desired (inverse) temperature β, the task is to
estimate the partition function Z(β)

Z(β) =
∑

x∈Ω

e−βE(x)
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Computational Complexity

the problem of estimating Z(β) with high degree of
accuracy for general E : Ω → R and high β is #P-hard
(eg. 3-SAT with E(x) as number of violated clauses.)

=⇒ It is unlikely that there are efficient (classical and
quantum) algorithms for this task
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FPRAS

we consider fully polynomial randomized approximation
schemes (FPRAS)

a FPRAS

outputs a random number Ẑ satisfying

Pr
(

(1 − ǫ)Z(β) ≤ Ẑ ≤ (1 + ǫ)Z(β)
)

≥ 3/4

where ǫ ∈ (0, 1) determines the desired accuracy

runs in time polynomial in problem size (that is
log |Ω|) and 1/ǫ
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Simulated Annealing

choose a cooling schedule β0 < β1 < · · · < βℓ with
β0 = 0 and βℓ = β

express the desired quantity as a telescoping product

Z(β) =
Z(βℓ)

Z(βℓ−1)
· Z(βℓ−1)

Z(βℓ−2)
· · · Z(β1)

Z(β0)
· Z(β0)

observe that Z(β0) is trivial since Z(β0) = |Ω|

⇒ estimate the ratios αi := Z(βi+1)/Z(βi)
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Estimation via Boltzmann Sampling I

denote by πi =
(

πi(x) : x ∈ Ω
)

the Boltzmann

distribution at inverse temperature βi

πi(x) =
e−βiE(x)

Z(βi)

assume we can sample from πi

assume we can find a short cooling schedule so that
each ratio αi := Z(βi+1)/Z(βi) is bounded from below by
a constant, say 1/2

⇒ by Chebyshev inequality it suffices to take O(1/ǫ2)
samples ∼ πi to estimate αi
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Estimation via Boltzmann Sampling II

let Xi ∼ πi (that is P (Xi = σ) = πi(σ))

let ∆βi = βi+1 − βi

define a new random variable

Yi = e−∆βiE(Xi)

the expected value E(Yi) is equal to

∑

x∈Ω

πi(x)e
−∆βiE(x) =

∑

x∈Ω

e−βiE(x)

Z(βi)
e(−βi+1+βi)E(x) = αi

⇒ Yi is an unbiased estimator for αi
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Estimation via Boltzmann Sampling III

draw O(ℓ/ǫ2) samples of Xi and compute the mean Ȳi

⇒ the random variable Ȳ = Ȳ0Ȳ1 · · · Ȳℓ satisfies

Pr
(

(1 − ǫ)α < Ȳ < (1 + ǫ)α
)

≥ 7/8

where α = α0α1 · · ·αℓ

⇒ the total number of samples is

O
(

ℓ2/ǫ2
)
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Sampling with Markov Chains

in general, we are not able to sample directly from πi

for some E : Ω → R, we can construct a Markov chain
Pi such that

its stationary distribution is equal to πi

its spectral gap δ is large

⇒ we simulate

Õ(1/δ)

steps of Pi to obtain one sample from π̃i, which is
sufficiently close to πi
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QuantumWalk

the quantum walk W (Pi) is a unitary such that its
unique eigenvector with eigenvalue 1 is

|πi〉 =
∑

x∈Ω

√

πi(x)|x〉

|πi〉 is a coherent version of the limiting distribution πi
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Quadratic Relation

the phase gap ∆ of W (Pi) is

min{|ϕ| : eiϕ is an eigenvalue of W (Pi), e
iϕ 6= 1}

the quadratic relation between the phase and spectral
gaps

∆ ≥
√
δ

is at the heart of quantum speed-ups of many search
problems

this makes it possible to realize the 2|πi〉〈πi| − I by

invoking W (Pi) O( 1√
δ
) times.
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Structure of the Quantum Algorithm

|π0〉 α̃0

|π0〉 → |π̃1〉 α̃1

|π0〉 → |π̃1〉 → · · · → |π̃ℓ−1〉 α̃ℓ−1
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Quantum Estimation of the Ratios

|0〉 H •

DFT†
... · · ·

|0〉 H •

|0〉 H •

|ψi〉 G20

G21

G2t−1
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Preparation of Quantum Samples I

the fact that the ratios αi are bounded from below by
1/2 implies

|〈πi|πi+1〉|2 ≥ 1

2

⇒ we can drive |πi〉 to |π̃i+1〉 by applying W (Pi) and
W (Pi+1)

Õ
( 1√

δ

)

times

this is based on Grover’s π
3 -fixed point search
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Preparation of Quantum Samples II

starting from |π0〉 (uniform superposition), we can
prepare any |π̃i〉 by

|π0〉 → |π̃1〉 → · · · → |π̃i〉 → · · · → |π̃ℓ−1〉

⇒ it suffices to apply operators in {W (Pk) : k = 0, . . . , i}

Õ
( i√

δ

)

times

⇒ the complexity of preparing |π̃0〉, . . ., and |π̃ℓ−1〉 is

Õ
( ℓ2√

δ

)
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Quantum Estimation of the Ratios I

let Ai be the observable

Ai =
∑

x∈Ω

e−∆βiE(x)|x〉〈x|

we have

〈πi|Ai|πi〉 = αi

where

|πi〉 =
∑

x∈Ω

√

πi(x)|x〉
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Quantum Estimation of the Ratios II

let

Vi :=
∑

x∈Ω

|x〉〈x| ⊗
( √

e−∆βiE(x)
√

1 − e−∆βiE(x)

−
√

1 − e−∆βiE(x)
√
e−∆βiE(x)

)

let

|ψi〉 = Vi

(

|πi〉 ⊗ |0〉
)

and Γ := I ⊗ |0〉〈0|

⇒ we have

〈ψi|Γ|ψi〉 = 〈πi|Ai|πi〉
= αi
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Quantum Estimation of the Ratios III

we obtain a random variable Qi with

Pr
((

1 − ǫ

2ℓ

)

αi ≤ Qi ≤
(

1 +
ǫ

2ℓ

)

αi

)

≥ 1 − 1

8ℓ

by applying quantum phase estimation to

Gi =
(

2|ψi〉〈ψi) − I
)(

2Γ − I
)

to achieve the desired accuracy, we have to apply Gi

Õ

(

ℓ

ǫ

)

while Gi invokes Õ(1/
√
δ) Walk operator W (Pi).
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Quantum Estimation of the Ratios IV

consider the random variable Q0Q1 · · ·Qℓ−1

⇒ we have

Pr
(

(1 − ǫ)α ≤ Q ≤ (1 + ǫ)α
)

≥ 7

8

the success probability decreases to ≥ 3/4 due to
imperfections (|π̃i〉 and 2|π̃i〉〈π̃i| − I)

to obtain the desired accuracy, it suffices to apply
operators in {W (Pk) : k = 0, . . . , ℓ− 1}

O
( ℓ2√

δǫ

)

times
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Summary: Quantum Speed-Up

classical complexity

Õ
(

ℓ2/
(

δǫ2
)

)

quantum complexity

Õ
(

ℓ2/
(
√
δǫ
)

)

1/δ → 1/
√
δ is due to the quadratic relation between the

spectral gaps of Pi and the phase gaps of the
corresponding quantum walks W (Pi)

ǫ2 → ǫ is due to quantum estimation of expected values
of observables
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Future Research

improving upon Chebyshev sampling on a quantum
computer?

quantum speed-up of

estimating permanents of matrices with
non-negative entries?

quantum speed-up of estimating the volume of a
convex polytope?

quantum speed-up of other classical approximation
algorithms?

estimating partition functions of quantum Hamiltonians
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