Zero discord

Aharon Brodutch

Macquarie University

August 2009

SYDNEY ~AUSTRALIA

Quantum statistics and local measurements
Discord

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

Local quantum vs classical statistics

- A classical probability distribution (mixed state) ρ_{i}

Conclusions

Local quantum vs classical statistics

- A classical probability distribution (mixed state) $\rho_{i} \Rightarrow$ measurement \Rightarrow

Conclusions

Local quantum vs classical statistics

- A classical probability distribution (mixed state) $\rho_{i} \Rightarrow$ measurement $\Rightarrow \rho_{f}=\rho_{i}$
- A quantum state

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow|
$$

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{x} \Rightarrow
$$

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{x} \Rightarrow \rho_{f}=\frac{1}{2}[|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|]
$$

- But

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{x} \Rightarrow \rho_{f}=\frac{1}{2}[|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|]
$$

- But

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow|
$$

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{x} \Rightarrow \rho_{f}=\frac{1}{2}[|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|]
$$

- But

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{z} \Rightarrow
$$

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{x} \Rightarrow \rho_{f}=\frac{1}{2}[|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|]
$$

- But

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{z} \Rightarrow \rho_{i}=\rho_{f}
$$

Local quantum vs classical statistics

- A classical probability distribution (mixed state)

$$
\rho_{i} \Rightarrow \text { measurement } \Rightarrow \rho_{f}=\rho_{i}
$$

- A quantum state

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{x} \Rightarrow \rho_{f}=\frac{1}{2}[|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|]
$$

- But

$$
\rho_{i}=\alpha|\uparrow\rangle_{z}\langle\uparrow|+\beta|\downarrow\rangle_{z}\langle\downarrow| \Rightarrow \sigma_{z} \Rightarrow \rho_{i}=\rho_{f}
$$

Quantum measurements on a bipartite system

A classical bipartite system

Quantum measurements on a bipartite system

A classical bipartite system

Quantum measurements on a bipartite system

A quantum bipartite system

Quantum measurements on a bipartite system

A quantum bipartite system

Entropy: $H(A)=\rho^{\mathcal{A}} \log _{2} \rho^{\mathcal{A}}, H(A, B)=\rho^{\mathcal{A}, \mathcal{B}} \log _{2} \rho^{\mathcal{A}, \mathcal{B}}$ Conditional Entropy: $H\left(\mathcal{A} \mid \mathcal{B}_{\left\{\square_{i}^{\mathcal{K}}\right\}}\right)=\sum_{i} p\left(\Pi_{i}^{\mathcal{B}}\right) H\left(A \mid \Pi_{i}^{\mathcal{B}}\right)$

Mutual information

Classical Mutual information, two equivalent expressions

$$
\begin{gather*}
\mathcal{I}(A: B)=H(A)+H(B)-H(A, B) \tag{1}\\
\mathfrak{J}(A: B)=H(A)-H(A \mid B) \tag{2}
\end{gather*}
$$

Mutual information

Classical Mutual information, two equivalent expressions

$$
\begin{gather*}
\mathcal{I}(A: B)=H(A)+H(B)-H(A, B) \tag{1}\\
\mathfrak{J}(A: B)=H(A)-H(A \mid B) \tag{2}
\end{gather*}
$$

For a quantum system the expression for 2 should be revised

$$
\begin{equation*}
\mathfrak{J}(\mathcal{A}: \mathcal{B})_{\left\{\square_{j}^{\mathcal{B}}\right\}}=H(\mathcal{A})-H\left(\mathcal{A} \mid\left\{\square_{j}^{\mathcal{B}}\right\}\right) \tag{3}
\end{equation*}
$$

${ }^{1}$ H. Ollivier and W. H. Zurek PRL 88 (2002)

Mutual information

Classical Mutual information, two equivalent expressions

$$
\begin{gather*}
\mathcal{I}(A: B)=H(A)+H(B)-H(A, B) \tag{1}\\
\mathfrak{J}(A: B)=H(A)-H(A \mid B) \tag{2}
\end{gather*}
$$

For a quantum system the expression for 2 should be revised

$$
\begin{equation*}
\mathfrak{J}(\mathcal{A}: \mathcal{B})_{\left\{\square_{j}^{\mathcal{B}}\right\}}=H(\mathcal{A})-H\left(\mathcal{A} \mid\left\{\square_{j}^{\mathcal{B}}\right\}\right) \tag{3}
\end{equation*}
$$

Discord ${ }^{1}$

$$
\delta(\mathcal{A}: \mathcal{B})_{\left\{\square_{j}^{\mathcal{K}}\right\}}=\mathcal{I}-\mathfrak{J}(\mathcal{A}: \mathcal{B})_{\left\{\Pi_{j}^{\mathcal{K}}\right\}}
$$

${ }^{1}$ H. Ollivier and W. H. Zurek PRL 88 (2002)

Aharon Brodutch
 Zero discord

Discord

- Discord is the difference in the MI before and after a measurement
- The expression (3) can be used to measure classical correlation ${ }^{2}$
- Usually some sort of optimization over all possible local measurements is used to get the Discord

$$
\begin{equation*}
\delta(\mathcal{A}: \mathcal{B})_{\left\{\Pi_{j}^{\mathcal{B}}\right\}}=\min _{\left\{\Pi_{j}^{\mathcal{B}}\right\}}\left[H(\mathcal{B})-H(\mathcal{A}, \mathcal{B})+H\left(\mathcal{A} \mid\left\{\Pi_{j}^{\mathcal{B}}\right\}\right)\right] \tag{4}
\end{equation*}
$$

- Separable systems can have non zero discord.
- Discord is not symmetric
${ }^{2}$ L. Henderson and V. Vedral, J Phys 34 (2001).

Examples of discord

(1) $\frac{1}{2}[|00\rangle\langle 00|+|1+\rangle\langle 1+|]$

Examples of discord

(1) $\frac{1}{2}[|00\rangle\langle 00|+|1+\rangle\langle 1+|] \delta(\mathcal{A}: \mathcal{B}) \approx 0.2 ; \delta(\mathcal{B}: \mathcal{A})_{0,1}=0$

Examples of discord

(1) $\frac{1}{2}[|00\rangle\langle 00|+|1+\rangle\langle 1+|] \delta(\mathcal{A}: \mathcal{B}) \approx 0.2 ; \delta(\mathcal{B}: \mathcal{A})_{0,1}=0$
(2) $\frac{1}{2}[|00\rangle\langle 00|+|++\rangle\langle++|]$

Examples of discord

(1) $\frac{1}{2}[|00\rangle\langle 00|+|1+\rangle\langle 1+|] \delta(\mathcal{A}: \mathcal{B}) \approx 0.2 ; \delta(\mathcal{B}: \mathcal{A})_{0,1}=0$
(2) $\frac{1}{2}[|00\rangle\langle 00|+|++\rangle\langle++|] \delta(\mathcal{A}: \mathcal{B})=\delta(\mathcal{B}: \mathcal{A}) \approx 0.14$

Using discord

- Measure of classical correlations.
- Quantum Maxwell's demons - Zurek (2003), Oppenheim, Horodecki, Horodecki, and Horodecki (2002).
- Correlations in DQC1 - Datta,Shaji and Caves (2008)
- The most interesting results involve zero discord.
- Zero discord defines a Pointer basis.
- CP evolution - Jordan, Shaji and Sudarshan (2007)

Motivation

A zero discord systems can be as a sum of (orthogonal) systems of the type

$$
\begin{equation*}
\rho_{\mathcal{A}, \mathcal{B}}=\sum_{j} a_{j} \rho_{j}^{\mathcal{A}} \otimes \Pi^{\mathcal{B}} \tag{5}
\end{equation*}
$$

Zero discord between a system and the environment is essential for CP evolution. ${ }^{3}$
${ }^{3}$ Shabani and Lidar PRL 102 (2009)

Calculating zero discord

- Calculating discord requires optimization.

Calculating zero discord

- Calculating discord requires optimization. It's hard work

Calculating zero discord

- Calculating discord requires optimization. It's hard work
- The marginals are diagonal in the zero discord basis.

$$
\rho^{\mathcal{B}}=\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \tag{6}\\
0 & a_{2} & \ldots & 0 \\
. & \ldots & \ldots & 0 \\
\vdots & & a_{j} & \\
0 & \ldots & \ldots & a_{d}
\end{array}\right)
$$

Calculating zero discord

Given a density matrix $\rho^{\mathcal{A B}}$
(1) Find the marginal $\rho^{\mathcal{B}}=\operatorname{tr}_{\mathcal{A}} \rho^{\mathcal{A B}}$
(2) Find the eigenstates $|j\rangle^{\mathcal{B}}$
(3) Use the eigenstates to build a projector basis $\Pi_{j}^{\mathcal{B}}=|j\rangle^{\mathcal{B}}\langle j|$
(4) Calculate the discord in this basis $\delta(\mathcal{A}: \mathcal{B})_{\left\{\square_{j}^{\mathcal{K}}\right\}}=H(\mathcal{B})-H(\mathcal{A}, \mathcal{B})+H\left(\mathcal{A} \mid\left\{\Pi_{j}^{\mathcal{B}}\right\}\right)$
(3) If and only if $\delta(\mathcal{A}: \mathcal{B})_{\Pi_{j}^{\mathcal{R}}}=0$, the state is a zero discord state.

Calculating zero discord

Given a density matrix $\rho^{\mathcal{A B}}$
(1) Find the marginal $\rho^{\mathcal{B}}=\operatorname{tr}_{\mathcal{A}} \rho^{\mathcal{A B}}$
(2) Find the eigenstates $|j\rangle^{\mathcal{B}}$
(3) Use the eigenstates to build a projector basis $\Pi_{j}^{\mathcal{B}}=|j\rangle^{\mathcal{B}}\langle j|$
(4) Calculate the discord in this basis $\delta(\mathcal{A}: \mathcal{B})_{\left\{\square_{j}^{\mathcal{K}}\right\}}=H(\mathcal{B})-H(\mathcal{A}, \mathcal{B})+H\left(\mathcal{A} \mid\left\{\Pi_{j}^{\mathcal{B}}\right\}\right)$
(0) If and only if $\delta(\mathcal{A}: \mathcal{B})_{\Pi_{j}^{\mathcal{B}}}=0$, the state is a zero discord state.

Does not work for maximally mixed marginals :(

Quantum statistics and local measurements
Discord
Zero discord
Conclusions

Locally distinguishable states

Non-locality without entanglement ${ }^{4}$

${ }^{4}$ Bennett et al PRA 59 (1999)

Locally distinguishable states

Non-locality without entanglement ${ }^{4}$
There is no simple relation between discord and distinguishability.

[^0]
Locally distinguishable states

\section*{Non-locality without entanglement ${ }^{4}$
 There is no simple relation between discord and distinguishability. Examples:
 | State | Discord | Distinguishability |
| :---: | :---: | :---: |
| Equal mixture of locally orthogonal states | DZero | Local |
| Equal mixture of the 9 Bennett states | DZero | Non local |
| $\|00\rangle\langle 00\|$ and $\|++\rangle\langle++\|$ | Non zero | Impossible |
| A singlet and a $\|11\rangle$ state | Non zero | Local |}

${ }^{4}$ Bennett et al PRA 59 (1999)

Conclusions

(1) Discord is a measure of quantum correlations.
(2) Zero discord can be verified easily using the local diagonal basis.
(3) There is no simple way to define distinguishability using discord.
(4) Completely mixed marginals are strange.

The end

Questions?

Aharon Brodutch

[^0]: ${ }^{4}$ Bennett et al PRA 59 (1999)

