Bosonic N-representability problem is also QMA-complete

Tzu-Chieh Wei
Michele Mosca & Ashwin Nayak

Institute for Quantum Computing

Motivations

- Fermion problems seem intractable:
 e.g. "fermion sign problem" in Quantum Monte Carlo
- □ (fermionic) N-representability problem is QMA-complete
- Boson problems seem tractable: no "sign problem"
- □ Interesting phenomena and models assoc. with bosons: BEC, superfluidity/supersoilidity, Bose-Hubbard models, etc

Can bosonic problems be hard?

Main results

- Solving ground-state energy of interacting bosons
 - → QMA-hard (actually QMA-complete)

□ Bosonic *N*-representability problem is QMA-complete

Complexity class: QMA

QMA = Quantum Merlin-Arthur
 an analog of NP in quantum setting

[Kitaev]

- \triangleright L \in QMA: \exists quantum poly-time verifier V and poly p
- □ Problems easy to check YES with a quantum computer

$$\forall x \in L, \exists |\xi\rangle \in \mathbf{B}^{p(|x|)}, \Pr[(V(|x\rangle|\xi\rangle)=1] \geq 2/3$$

□ For No instance, not likely to be convinced otherwise

$$\forall x \notin L, \forall |\xi\rangle \in \mathbf{B}^{p(|x|)}, \Pr[(V(|x|\xi\rangle)=1] \le 1/3$$

[To show containment in QMA, suffice to have gap ~1/poly(N)]

Fermions vs Bosons

N-particle state:
$$|\psi\rangle=\sum_{n_1+..+n_m=N}c_{n_1,...,n_m}(a_1^\dagger)^{n_1}...(a_m^\dagger)^{n_m}|\Omega\rangle$$

$$\{a_i, a_j^{\dagger}\} \equiv a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij}$$
$$\{a_i, a_j\} = 0$$

same state

$$|n_i\rangle$$
, $n_i=0$ or 1

$$\{a_i, a_j^{\dagger}\} \equiv a_i \, a_j^{\dagger} + a_j^{\dagger} \, a_i = \delta_{ij}$$

$$\{a_i, a_j\} = 0$$

$$[a_i, a_j^{\dagger}] \equiv a_i \, a_j^{\dagger} - a_j^{\dagger} \, a_i = \delta_{ij}$$

$$[a_i, a_j] = 0$$

 No two fermions occupy
 Many bosons can occupy same state

$$|n_i\rangle, \quad n_i=0,1,2,\ldots,N$$

- Particle-hole duality for fermions → used to show N-rep convex region is big enough
 No such duality for bosons → need other approach to show N-rep convex region is big enough

First Result:

 Solving ground-state energy of interacting bosons is QMA-hard

QMA-hardness of interacting bosons: reduction from Local Hamiltonian problem

- Our strategy: construct a bosonic Hamiltonian whose
 GS energy = answer to a hard problem
- □ [Oliveira & Terhal '05]:
 Solving ground-state energy of spin-1/2 *H* is QMA-hard:

$$\mathcal{H} = \sum_{\langle i,j \rangle} \sum_{\mu,\nu=0}^{3} c_{ij}^{\mu\nu} \sigma_i^{(\mu)} \otimes \sigma_j^{(\nu)} \qquad \begin{array}{l} \sigma^{(0)} = \mathbb{1}, \ \sigma^{(1)} = \sigma^x, \\ \sigma^{(2)} = \sigma^y, \ \sigma^{(3)} = \sigma^z \end{array}$$

can also use the real Hamiltonian by [Biamonte and Love '08]
 see next talk

QMA-hardness--- from Local Hamiltonian

$$\mathcal{H} = \sum_{\langle i,j \rangle} \sum_{\mu,\nu=0}^{3} c_{ij}^{\mu\nu} \sigma_i^{(\mu)} \otimes \sigma_j^{(\nu)}$$

 □ Spin → Bosons mapping: use KLM linear-optics dual-rail encoding, a.k.a. Schwinger representation

$$|1\rangle_i \leftrightarrow |n_a = 1, n_b = 0\rangle_i \qquad |0\rangle_i \leftrightarrow |n_a = 0, n_b = 1\rangle_i$$

$$\sigma_i^x \leftrightarrow a_i^{\dagger} b_i + b_i^{\dagger} a_i, \ \sigma_i^y \leftrightarrow i(b_i^{\dagger} a_i - a_i^{\dagger} b_i), \ \sigma_i^z \leftrightarrow a_i^{\dagger} a_i - b_i^{\dagger} b_i$$

$$\mathcal{H} \leftrightarrow \widetilde{\mathcal{H}} = \text{quartic} + \text{quadratic terms in } a^{\dagger}, b^{\dagger}, a, b,$$

QMA-hardness--- from Local Hamiltonian

Constrain one boson per site (total *N* bosons)---penalty in Hamiltonian:

$$\mathcal{H}_B = \widetilde{\mathcal{H}} + c \sum_i (a_i^{\dagger} a_i + b_i^{\dagger} b_i - 1)^2, \quad c \sim \text{poly}(N)$$

- □ Solve GS energy of H_B → GS energy of the spin H
 - solve QMA-hard problem
- □ Actually QMA-complete for *k*-body interacting Hamiltonian

Second result:

 ■ Bosonic N-representability problem is QMA-complete

Bosonic N-representability

- Inspired by the paper: [Liu, Christandl & Verstraete, PRL '07] on fermions
- N-representability problem:

Given a two-particle density matrix $\rho^{(2)}$, determine whether there is an N-particle state $\sigma^{(N)}$ such that

$$\rho^{(2)} = \operatorname{Tr}_{N-2}(\sigma^{(N)}) \longleftarrow \text{ (tracing out N-2 bosons)}$$

> in terms of matrix elements of $\rho^{(2)} = \sum_{ijkl} \rho^{(2)}_{ij;kl} \, |1_i 1_j \rangle \langle 1_k 1_l |$

$$\rho_{ij;kl}^{(2)} = \frac{1}{N(N-1)} \operatorname{Tr}(a_k^{\dagger} a_l^{\dagger} a_i a_j \sigma^{(N)})$$

(Normalization st $Tr(\rho)=1$)

N-representability: examples

> 2 bosons at two sites/modes, p and q

■ Example 1:

$$\rho^{(2)}=|2_p0_q\rangle\langle 2_p0_q|\qquad\longleftarrow\qquad |\psi^{(3)}\rangle=|3_p0_q\rangle\qquad {\color{red}\checkmark} \mbox{3-representable}$$
 tracing out 1 particle

□ Example 2:

$$\rho^{(2)} = \frac{2}{3} |1_p 1_q\rangle \langle 1_p 1_q| + \frac{1}{3} |2_p 0_q\rangle \langle 2_p 0_q| \quad \longleftarrow \quad |\psi^{(3)}\rangle = |2_p 1_q\rangle$$

□ Example 3:

$$|\psi^{(2)}\rangle = \frac{1}{\sqrt{2}}(|2_p0_q\rangle + |0_p2_q\rangle)$$
 Q: 3-representable?

Bosonic N-rep: QMA-hard

 □ N-representability algorithm enables determination of ground-state energy of (2-body) interacting bosons

$$\mathcal{H} = \sum_{ijkl} f_{ijkl} \, a_k^\dagger a_l^\dagger a_i a_j \qquad \text{Recall:}$$

$$\rho_{ij;kl}^{(2)} = \frac{1}{N(N-1)} \mathrm{Tr}(a_k^\dagger a_l^\dagger a_i a_j \, \sigma^{(N)})$$
 GS energy:
$$E_0^{(N)} = \min_{\sigma^{(N)}} \mathrm{Tr} \left(\sigma^{(N)} \mathcal{H}\right)$$

$$= N(N-1) \, \min_{\rho^{(2)}} \sum_{ijkl} f_{ijkl} \, \rho_{ij;kl}^{(2)} \sim \vec{f} \cdot \vec{\rho}$$
 Linear function
$$\mathrm{Convex \ constraint:} \ \rho^{(2)} = \mathrm{Tr}_{N-2} \left(\sigma^{(N)}\right)$$

Convex optimization: can be solved efficiently if given algorithm for N-representability (membership)

Convex optimization → membership

Need to make sure that

$$\rho^{(2)} = Z_L + \sum_{I \prec L} \alpha_{Z_I} (Z_I - Z_L) + \frac{1}{2} \sum_{I \prec J} \alpha_{(X_{IJ})} X_{IJ} + \alpha_{(Y_{IJ})} Y_{IJ}$$

- Convex N-rep region is contained in a ball of radius R centered at origin
- Convex region contains a ball of radius r
- Require: R/r = poly(N)
 - > Run time ~ poly(log(R/r)) but precision ~ 1/poly(R/r)

Convex N-rep region

□ A complete set *P* of two-particle observables (P's)

$$a_{I} \equiv a_{i_{2}}a_{i_{1}}$$
, for all pairs $I = (i_{1}, i_{2})$, $i_{1} \leq i_{2}$ an ordering $X_{IJ} \equiv \frac{1}{(n_{I}n_{J})^{1/2}}(a_{I}^{\dagger}a_{J} + a_{J}^{\dagger}a_{I})$, for $I \prec J$, $n_{I} = 1$ if $i_{1} \neq i_{2}$ $n_{I} = 2$ if $i_{1} = i_{2}$ $n_{I} = 2$ if $i_{1} = i_{2}$ $n_{I} = 2$ if $i_{1} = i_{2}$ $n_{I} = 2$ if $i_{2} = 2$ if $i_{3} = 2$ if $i_{4} = 2$ if $i_{5} = 2$ if $i_{$

 \square N-rep region contains a ball with radius $\ge 1/\text{poly}(N)$

- Via constructing N-boson states to make<P> as large and as small as possible
 - Convex region defined by orthogonal "sticks"

Convex N-rep region (details)

 \triangleright Sufficient to show that center of mass X_{cm} has distance to every outer face $\geq 1/\text{poly}(N)$

$$ec{e}_k$$
 $ec{X}_{cm} = rac{1}{2\mathcal{N}} \sum_{k=1}^{2\mathcal{N}} ec{X}_k$ — extremal points

> If otherwise, all extremal points lie in an exponentially small thin slab -> contradicting construction by "sticks"

$$\vec{u} = \sum_{k=1}^{\mathcal{N}} (\vec{u} \cdot \hat{e}_k) \hat{e}_k \longrightarrow \sum_{k=1}^{\mathcal{N}} |\hat{e}_k \cdot \hat{u}|^2 = 1$$

$$\longrightarrow \exists k \ s.t. \ |\hat{e}_k \cdot \hat{u}| \ge 1/\sqrt{\mathcal{N}}$$

Bosonic N-rep: inside QMA

□ First need a mapping from bosons to spins (a la Holstein-Primakoff)

$$a_i \leftrightarrow \frac{1}{\sqrt{s + S_i^z}} S_i^+, \quad a_i^{\dagger} \leftrightarrow \frac{1}{\sqrt{s + S_i^z + 1}} S_i^-$$

$$|n\rangle \in \{|0\rangle, |1\rangle, ..., |2s\rangle\} \leftrightarrow |s_n\rangle \in \{|s\rangle, |s - 1\rangle, ..., |-s\rangle\}, \quad \text{with } 2s \ge N$$

If consistent within error → output representable, otherwise → not representable

Bosonic N-rep: QMA-complete

- □ If N-representable (YES instance), prover gives the correct N-particle state → verifier always answers yes
- □ If not *N*-representable (No instance), can show that (using Markov argument) prover cannot cheat even if he hands in an entangled state (among different blocks)
 - → With probability ≥ 1/poly(N), verifier answers No
- □ Thus inside QMA (not harder than QMA)
 - → QMA-complete

Bosonic rep: given only diagonals?

Full N-rep is QMA complete, but what about a simplified version? ---given only diagonal elements in ρ⁽²⁾

$$\rho^{(2)} = Z_L + \sum_{I \prec L} \alpha_{Z_I} (Z_I - Z_L) + \frac{1}{2} \sum_{I \prec J} \alpha_{(X_{IJ})} X_{IJ} + \alpha_{(Y_{IJ})} Y_{IJ}$$

We don't fix off-diagonals

- Using same argument of mapping spin-1/2 to bosons via Schwinger representation
 - → The restricted N-rep can solve the ground state energy of H_{Ising}, which is NP-hard

$$\mathcal{H}_{Ising} = \sum_{\langle i,j
angle} c_{ij} \, \sigma^z_i \otimes \sigma^z_j$$
 [Barahona '82]

Interacting Bosons: QMA-complete

- Holstein-Primakoff mapping from bosons to spins (plus penalty to constrain total number of bosons)
 - maps k-body interacting boson H to a k-local spin-(N/2) H
 - > at most O(k log(N))-local spin-1/2 H
 - → Inside QMA [Kitaev; Aharonov]
- We showed this is QMA-hard
 - → Thus *k*-body interacting bosons are QMA-complete

Summary

Main results:

- Solving ground-state energy of interacting bosons
 - → QMA-hard (complete for *k*-body interaction)
- Bosonic N-representability problem is QMA-complete
 - as hard as fermionic problem

(Bosonic N-representability problem given only diagonal elements is NP-hard)