Density matrices with and without symmetry

Mary Beth Ruskai marybeth.ruskai@tufts.edu

Tufts University

July 29, 2009

Quantum marginal problem

ρ denotes density matrix (density operator) in $\mathcal{B}(\mathcal{H})$

$$
\operatorname{Tr} \rho=1 \text { and } \rho \geq 0 \text { pos semi-def }
$$

Basic Hilbert space \mathcal{H} and consider $\mathcal{H} \otimes \mathcal{H} \otimes \ldots \mathcal{H}=\mathcal{H}^{\otimes m}$

$$
\text { e.g., qubit } \mathcal{H}=\mathbf{C}_{2} \text { spin- } \frac{1}{2} \text { particle }
$$

$\infty-\operatorname{dim} \rho(x ; y)$ or $\rho\left(x_{1}, x_{2}, \ldots x_{m} ; y_{1}, y_{2}, \ldots y_{m}\right)$ is integral kernel
Quant marginal asks: given $\rho_{A}, \rho_{A B}, \ldots$ does
$\exists \rho_{A B C} \ldots$ such that $\operatorname{Tr}_{B C} \rho_{A B C}=\rho_{A}$ etc?

Quantum marginal problem

ρ denotes density matrix (density operator) in $\mathcal{B}(\mathcal{H})$

$$
\operatorname{Tr} \rho=1 \text { and } \rho \geq 0 \text { pos semi-def }
$$

Basic Hilbert space \mathcal{H} and consider $\mathcal{H} \otimes \mathcal{H} \otimes \ldots \mathcal{H}=\mathcal{H}^{\otimes m}$ e.g., qubit $\mathcal{H}=\mathbf{C}_{2}$ spin- $\frac{1}{2}$ particle
$\infty-\operatorname{dim} \rho(x ; y)$ or $\rho\left(x_{1}, x_{2}, \ldots x_{m} ; y_{1}, y_{2}, \ldots y_{m}\right)$ is integral kernel
Quant marginal asks: given $\rho_{A}, \rho_{A B}, \ldots$ does
$\exists \rho_{A B C} \ldots$ such that $\operatorname{Tr}_{B C} \rho_{A B C}=\rho_{A}$ etc ?
Some versions have simple solutions
Given $\rho_{A}, \rho_{B C}$ does \exists pure $\rho_{A B C}$
Answer: $\Leftrightarrow \rho_{A}$ and $\rho_{B C}$ have same non-zero evals.

Quantum marginal problem

ρ denotes density matrix (density operator) in $\mathcal{B}(\mathcal{H})$

$$
\operatorname{Tr} \rho=1 \text { and } \rho \geq 0 \text { pos semi-def }
$$

Basic Hilbert space \mathcal{H} and consider $\mathcal{H} \otimes \mathcal{H} \otimes \ldots \mathcal{H}=\mathcal{H}^{\otimes m}$ e.g., qubit $\mathcal{H}=\mathbf{C}_{2}$ spin- $\frac{1}{2}$ particle
$\infty-\operatorname{dim} \rho(x ; y)$ or $\rho\left(x_{1}, x_{2}, \ldots x_{m} ; y_{1}, y_{2}, \ldots y_{m}\right)$ is integral kernel
Quant marginal asks: given $\rho_{A}, \rho_{A B}, \ldots$ does
$\exists \rho_{A B C} \ldots$ such that $\operatorname{Tr}_{B C} \rho_{A B C}=\rho_{A}$ etc?
Some versions have simple solutions
Given $\rho_{A}, \rho_{B C}$ does \exists pure $\rho_{A B C}$
Answer: $\Leftrightarrow \rho_{A}$ and $\rho_{B C}$ have same non-zero evals.
for class prob dist $p(x, y), p(x)=\int p(x, y) d y$ etc. called marginal

Different types of symmetry

regard N -rep as special case since perm symmetry $\Rightarrow \rho_{A}=\rho_{B}$ etc.
Assume finite dims $\mathcal{H}=\mathbf{C}^{n}$ or $\operatorname{span}\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ fixed O.N. $\in \mathcal{H}$.
$d_{j_{1} j_{2} \ldots j_{m}, k_{1} k_{2} \ldots k_{m}}$ matrix els, $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ in prod basis for $\mathcal{H}^{\otimes m}$
Let $\mathcal{P}\left(j_{1} j_{2} \ldots j_{m}\right)$ denotes perm of indices, e.g., $j_{2} j_{1} j_{3} \ldots j_{m}$

Different types of symmetry

regard N -rep as special case since perm symmetry $\Rightarrow \rho_{A}=\rho_{B}$ etc.
Assume finite dims $\mathcal{H}=\mathbf{C}^{n}$ or $\operatorname{span}\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ fixed O.N. $\in \mathcal{H}$.
$d_{j_{1} j_{2} \ldots j_{m}, k_{1} k_{2} \ldots k_{m}}$ matrix els, $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ in prod basis for $\mathcal{H}^{\otimes m}$
Let $\mathcal{P}\left(j_{1} j_{2} \ldots j_{m}\right)$ denotes perm of indices, e.g., $j_{2} j_{1} j_{3} \ldots j_{m}$
Fermions: want anti-symmetric if either set of indices permuted

$$
d_{\mathcal{P}\left(j_{1} j_{2} \ldots j_{m}\right), k_{1} k_{2} \ldots k_{m}}=d_{j_{1} j_{2} \ldots j_{m}, \mathcal{P}\left(k_{1} k_{2} \ldots k_{m}\right)}=(-)^{\mathcal{P}} d_{j_{1} j_{2} \ldots j_{m}, k_{1} k_{2} \ldots k_{m}}
$$

Bosons: want symmetric if either set of indices permuted

$$
d_{\mathcal{P}\left(j_{1} j_{2} \ldots j_{m}\right), k_{1} k_{2} \ldots k_{m}}=d_{j_{1} j_{2} \ldots j_{m}, \mathcal{P}\left(k_{1} k_{2} \ldots k_{m}\right)}=d_{j_{1} j_{2} \ldots j_{m}, k_{1} k_{2} \ldots k_{m}}
$$

N-representability problem:

Given m-particle D.M. ρ of right perm symmetry, when does \exists

- anti-symmetric N-particle pure state ψ such that

$$
\operatorname{Tr}_{m+1, \ldots N}|\psi\rangle\langle\psi|=\rho ? ?
$$

- N-particle fermionic mixed state $\rho_{1,2 \ldots N}=\sum_{k} a_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ s.t

$$
\operatorname{Tr}_{m+1, \ldots N} \rho_{1,2 \ldots N}=\rho ? ?
$$

- symmetric N-particle pure state ψ such that

$$
\operatorname{Tr}_{m+1, \ldots N}|\psi\rangle\langle\psi|=\rho ? ?
$$

- N-particle bosonic mixed state $\rho_{1,2 \ldots N}=\sum_{k} a_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ s.t

$$
\operatorname{Tr}_{m+1, \ldots N} \rho_{1,2 \ldots N}=\rho ? ?
$$

Most interest is $m=2$; mixed $m=1$ solved by Coleman (≈ 1963)
pure state $m=1$ solved by Klyachko (2005) for any symmetry

diFinettit theorems - exchangeable systems

Simultaneous perms $d_{\mathcal{P}\left(j_{1} j_{2} \ldots j_{m}\right), \mathcal{P}\left(k_{1} k_{2} \ldots k_{m}\right)}=d_{j_{11} j_{2} \ldots j_{m}, k_{1} k_{2} \ldots k_{m}}$ ρ could be convex comb. of boson and fermion states or even more general

diFinettit theorems - exchangeable systems

Simultaneous perms $d_{\mathcal{P}\left(j_{1} j_{2} \ldots j_{m}\right), \mathcal{P}\left(k_{1} k_{2} \ldots k_{m}\right)}=d_{j_{1} j_{2} \ldots j_{m}, k_{1} k_{2} \ldots k_{m}}$ ρ could be convex comb. of boson and fermion states or even more general
perm symmetry plays two roles in N-rep of two particle RDM
a) Pauli principle itself
b) can use reduced Ham for 2-matrix with simul or "exchangeable" perm symmetry, still have (b)

$$
\begin{gathered}
H_{N}=\sum_{k=1}^{N} T_{k}+\sum_{j<k} V_{j k} \quad \widehat{H}_{N}=N T_{1}+\binom{N}{2} V_{12} \\
\left\langle\Psi, H_{N} \Psi\right\rangle=\operatorname{Tr} H_{N} \rho_{1,2 \ldots N}=\operatorname{Tr} \widehat{H}_{N} \rho_{12}
\end{gathered}
$$

Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed
real electron $\mathcal{H}=L_{2}\left(\mathbf{R}_{3}\right) \otimes \mathbf{C}_{2}$
quant info - consider pure state arbitrary vector in $\mathbf{C}_{2}^{\otimes n}$ or $\mathbf{C}_{d}^{\otimes n}$

Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed
real electron $\mathcal{H}=L_{2}\left(\mathbf{R}_{3}\right) \otimes \mathbf{C}_{2}$
quant info - consider pure state arbitrary vector in $\mathbf{C}_{2}^{\otimes n}$ or $\mathbf{C}_{d}^{\otimes n}$
$|01\rangle$ for "qubit $|0\rangle$ in Alice's lab and qubit $|1\rangle$ in Bob's lab" means

Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed
real electron $\mathcal{H}=L_{2}\left(\mathbf{R}_{3}\right) \otimes \mathbf{C}_{2}$
quant info - consider pure state arbitrary vector in $\mathbf{C}_{2}^{\otimes n}$ or $\mathbf{C}_{d}^{\otimes n}$
$|01\rangle$ for "qubit $|0\rangle$ in Alice's lab and qubit $|1\rangle$ in Bob's lab" means
$\psi\left(x_{1}, x_{2}\right)=f_{A}\left(\mathbf{r}_{1}\right) \uparrow \otimes f_{B}\left(\mathbf{r}_{2}\right) \downarrow-f_{B}\left(\mathbf{r}_{1}\right) \downarrow \otimes f_{A}\left(\mathbf{r}_{2}\right) \uparrow$
with f_{A} and f_{B} supported in Alice and Bob's labs resp. product corresponds to Slater det for full wave functions

Alice and Bob share entangled state $|01\rangle+|10\rangle$
symmetric not anti-sym - can still be done with electrons

$$
\begin{aligned}
\psi\left(x_{1}, x_{2}\right)= & f_{A}\left(\mathbf{r}_{1}\right) \uparrow \otimes f_{B}\left(\mathbf{r}_{2}\right) \downarrow-f_{B}\left(\mathbf{r}_{1}\right) \downarrow \otimes f_{A}\left(\mathbf{r}_{2}\right) \uparrow \\
& +f_{A}\left(\mathbf{r}_{1}\right) \downarrow \otimes f_{B}\left(\mathbf{r}_{2}\right) \uparrow-f_{B}\left(\mathbf{r}_{1}\right) \uparrow \otimes f_{A}\left(\mathbf{r}_{2}\right) \downarrow \\
= & (|01\rangle+|10\rangle)\left[f_{A}\left(\mathbf{r}_{1}\right) f_{B}\left(\mathbf{r}_{2}\right)-f_{B}\left(\mathbf{r}_{1}\right) f_{A}\left(\mathbf{r}_{2}\right)\right]
\end{aligned}
$$

actually superposition of Slater dets.

Alice and Bob share entangled state $|01\rangle+|10\rangle$
symmetric not anti-sym - can still be done with electrons

$$
\begin{aligned}
\psi\left(x_{1}, x_{2}\right)= & f_{A}\left(\mathbf{r}_{1}\right) \uparrow \otimes f_{B}\left(\mathbf{r}_{2}\right) \downarrow-f_{B}\left(\mathbf{r}_{1}\right) \downarrow \otimes f_{A}\left(\mathbf{r}_{2}\right) \uparrow \\
& +f_{A}\left(\mathbf{r}_{1}\right) \downarrow \otimes f_{B}\left(\mathbf{r}_{2}\right) \uparrow-f_{B}\left(\mathbf{r}_{1}\right) \uparrow \otimes f_{A}\left(\mathbf{r}_{2}\right) \downarrow \\
= & (|01\rangle+|10\rangle)\left[f_{A}\left(\mathbf{r}_{1}\right) f_{B}\left(\mathbf{r}_{2}\right)-f_{B}\left(\mathbf{r}_{1}\right) f_{A}\left(\mathbf{r}_{2}\right)\right]
\end{aligned}
$$

actually superposition of Slater dets.
Have $\psi=($ spin $) \times[$ spatial $]$
General case - space and spin transform as dual Young tableux

Aside: polar cones

Thm: If ρ_{12} is not N-rep, then $\exists H_{N} \geq 0$ s.t. $\operatorname{Tr} \widehat{H}_{N} \rho_{12}<0$.
Thm: If ρ_{12} is entangled, then \exists positivity preserving map

$$
\Gamma: \mathcal{B}(\mathcal{H}) \mapsto \mathcal{B}(\mathcal{H}) \text { such that }(I \otimes \Gamma)\left(\rho_{12}\right)<0
$$

Aside: polar cones

Thm: If ρ_{12} is not N-rep, then $\exists H_{N} \geq 0$ s.t. $\operatorname{Tr} \widehat{H}_{N} \rho_{12}<0$.
Thm: If ρ_{12} is entangled, then \exists positivity preserving map

$$
\Gamma: \mathcal{B}(\mathcal{H}) \mapsto \mathcal{B}(\mathcal{H}) \text { such that }(I \otimes \Gamma)\left(\rho_{12}\right)<0
$$

set of (mixed) N-rep D.M. is convex subset of all m-particle D.M.
set of separable states is convex subset of all states
separable means not entangled or convex comb of prod entanglement witness Γ detects not separable

Aside: polar cones

Thm: If ρ_{12} is not N -rep, then $\exists H_{N} \geq 0$ s.t. $\operatorname{Tr} \widehat{H}_{N} \rho_{12}<0$.
Thm: If ρ_{12} is entangled, then \exists positivity preserving map $\Gamma: \mathcal{B}(\mathcal{H}) \mapsto \mathcal{B}(\mathcal{H})$ such that $(I \otimes \Gamma)\left(\rho_{12}\right)<0$.
set of (mixed) N-rep D.M. is convex subset of all m-particle D.M.
set of separable states is convex subset of all states
separable means not entangled or convex comb of prod entanglement witness Γ detects not separable

Both results special cases of well known convex duality results

N-rep of 1-matrix as constrained version of Weyl's problem

Thm: (Ando-Coleman)The 1 -matrix γ is pure N-rep with preimage $\Leftrightarrow \quad \gamma=\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \gamma_{2}$
with $\gamma_{1} N$-1-rep with pre-image $\Phi_{1}: \gamma_{2} N$-rep with pre-image Φ_{2} and strong orthog $\left\langle\phi_{1}, \Phi_{1}\right\rangle_{1}=\left\langle\phi_{1}, \Phi_{2}\right\rangle_{1}=\left\langle\Phi_{1}, \Phi_{2}\right\rangle_{2,3 \ldots N}=0$ pre-image

$$
|\Psi\rangle=\sqrt{\lambda}_{k} \mathcal{A}\left|\phi_{1}\right\rangle \otimes\left|\Phi_{1}\right\rangle+\sqrt{1-\lambda_{1}}\left|\Phi_{2}\right\rangle
$$

N-rep of 1-matrix as constrained version of Weyl's problem

Thm: (Ando-Coleman)The 1 -matrix γ is pure N-rep with preimage $\Leftrightarrow \quad \gamma=\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \gamma_{2}$
with $\gamma_{1} N$-1-rep with pre-image $\Phi_{1}: \gamma_{2} N$-rep with pre-image Φ_{2} and strong orthog $\left\langle\phi_{1}, \Phi_{1}\right\rangle_{1}=\left\langle\phi_{1}, \Phi_{2}\right\rangle_{1}=\left\langle\Phi_{1}, \Phi_{2}\right\rangle_{2,3 \ldots N}=0$ pre-image $\quad|\Psi\rangle=\sqrt{\lambda}{ }_{k} \mathcal{A}\left|\phi_{1}\right\rangle \otimes\left|\Phi_{1}\right\rangle+\sqrt{1-\lambda_{1}}\left|\Phi_{2}\right\rangle$

Consider special case $R=N+3$ even, and
assume γ_{2} has e-vec g_{1} strong. orthog. to Φ_{1} with eval 1 not wlog, but simplifies notation

$$
\gamma-\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|-\left(1-\lambda_{1}\right)\left|g_{1}\right\rangle\left\langle g_{1}\right|=\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \widetilde{\gamma}_{2} .
$$

Write

$$
\begin{aligned}
\left|\Phi_{1}\right\rangle & =\sum_{2 \leq k_{1}<k_{2}<\ldots k_{N-1}} x_{k_{1} k_{2} \ldots k_{N-1}}\left[g_{k_{1}}, g_{k_{2}}, \ldots g_{k_{N-1}}\right] \\
\left|\Phi_{2}\right\rangle & =\sum_{2 \leq k_{1}<k_{k_{2}}<\ldots k_{k_{N-1}}} y_{k_{1} k_{k_{2}} \ldots k_{k_{N-1}}}\left[g_{1}, g_{k_{1}} g_{k_{2}}, \ldots g_{k_{N-1}}\right]
\end{aligned}
$$

For anti-sym tensors let $x_{j, K} \equiv x_{j, k_{2}, k_{3} \ldots k_{M}}$

$$
X Z^{\dagger}=\sum_{k_{2}, k_{3} \ldots k_{M}} x_{i, k_{2}, \ldots k_{M}} \bar{z}_{j, k_{2}, \ldots k_{M}}
$$

$$
\gamma-\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|-\left(1-\lambda_{1}\right)\left|g_{1}\right\rangle\left\langle g_{1}\right|=\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \widetilde{\gamma}_{2} .
$$

Write

$$
\begin{aligned}
\left|\Phi_{1}\right\rangle & =\sum_{2 \leq k_{1}<k_{2}<\ldots k_{N-1}} x_{k_{1} k_{2} \ldots k_{N-1}}\left[g_{k_{1}}, g_{k_{2}}, \ldots g_{k_{N-1}}\right] \\
\left|\Phi_{2}\right\rangle & =\sum_{2 \leq k_{1}<k_{k_{2}}<\ldots k_{k_{N-1}}} y_{k_{1} k_{k_{2}} \ldots k_{k_{N-1}}}\left[g_{1}, g_{k_{1}} g_{k_{2}}, \ldots g_{k_{N-1}}\right]
\end{aligned}
$$

For anti-sym tensors let $x_{j, K} \equiv x_{j, k_{2}, k_{3} \ldots k_{M}}$

$$
X Z^{\dagger}=\sum_{k_{2}, k_{3} \ldots k_{M}} x_{i, k_{2}, \ldots k_{M}} \bar{z}_{j, k_{2}, \ldots k_{M}}
$$

Rewrite above $\quad \gamma-\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|-\left(1-\lambda_{1}\right)\left|g_{1}\right\rangle\left\langle g_{1}\right|=X X^{\dagger}+Y Y^{\dagger}$ with constraint $X Y^{\dagger}=0$ from strong orthog.
constrained version Weyl's prob, $A=X X^{\dagger}, B=Y Y^{\dagger}, C=L H S$
General case, constraints more complex to write out

Aside

Klyachko (2005) announced sol'n of pure state N-rep of 1-matrix
Recovers Borland-Dennis conditions for $N=3, R=6$

$$
\begin{aligned}
& \lambda_{1}+\lambda_{6}=\lambda_{2}+\lambda_{5}=\lambda_{3}+\lambda_{4}=1 \quad \lambda_{k} \text { dec. } \\
& \text { and } \lambda_{1}+\lambda_{2} \leq \lambda_{3}+1
\end{aligned}
$$

Klyachko remarked no progress for over 30 years since.
Ruskai unpublished - use Coleman double induct to prove $=1$ part proof of $\lambda_{1}+\lambda_{2} \leq \lambda_{3}+1$ reduce to Weyl's problem for 2×2
encouraged by Klyachko - wrote and submitted to J Phys A

Aside

Klyachko (2005) announced sol'n of pure state N-rep of 1-matrix
Recovers Borland-Dennis conditions for $N=3, R=6$

$$
\begin{aligned}
& \lambda_{1}+\lambda_{6}=\lambda_{2}+\lambda_{5}=\lambda_{3}+\lambda_{4}=1 \quad \lambda_{k} \text { dec. } \\
& \text { and } \lambda_{1}+\lambda_{2} \leq \lambda_{3}+1
\end{aligned}
$$

Klyachko remarked no progress for over 30 years since.
Ruskai unpublished - use Coleman double induct to prove $=1$ part proof of $\lambda_{1}+\lambda_{2} \leq \lambda_{3}+1$ reduce to Weyl's problem for 2×2
encouraged by Klyachko - wrote and submitted to J Phys A published as Fast Track Communication (2007).

Aside on SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall $B^{*} B=\sum_{k} \mu_{k}^{2}\left|b_{k}\right\rangle\left\langle b_{k}\right| \equiv|B|^{2}$
Then $B=U|B|=\sum_{k} \mu_{k}\left|a_{k}\right\rangle\left\langle b_{k}\right| \quad\left|a_{k}\right\rangle=U\left|b_{k}\right\rangle$
U partial isometry - restriction to $(\operatorname{ker} B)^{\perp}$ unique unitary

Aside on SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall $B^{*} B=\sum_{k} \mu_{k}^{2}\left|b_{k}\right\rangle\left\langle b_{k}\right| \equiv|B|^{2}$ Then $B=U|B|=\sum_{k} \mu_{k}\left|a_{k}\right\rangle\left\langle b_{k}\right| \quad\left|a_{k}\right\rangle=U\left|b_{k}\right\rangle$ U partial isometry - restriction to $(\operatorname{ker} B)^{\perp}$ unique unitary Isomorphism $\mathcal{B}(\mathcal{H}) \simeq \mathcal{H} \otimes \mathcal{H} \quad|v\rangle\langle w| \leftrightarrow|v \otimes w\rangle$ apply SVD + iso to $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H} \quad|\psi\rangle=\sum_{k} \mu_{k}\left|\alpha_{k} \otimes \beta_{k}\right\rangle$

Aside on SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall $B^{*} B=\sum_{k} \mu_{k}^{2}\left|b_{k}\right\rangle\left\langle b_{k}\right| \equiv|B|^{2}$ Then $B=U|B|=\sum_{k} \mu_{k}\left|a_{k}\right\rangle\left\langle b_{k}\right| \quad\left|a_{k}\right\rangle=U\left|b_{k}\right\rangle$ U partial isometry - restriction to $(\operatorname{ker} B)^{\perp}$ unique unitary Isomorphism $\mathcal{B}(\mathcal{H}) \simeq \mathcal{H} \otimes \mathcal{H} \quad|v\rangle\langle w| \leftrightarrow|v \otimes w\rangle$ apply SVD + iso to $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H} \quad|\psi\rangle=\sum_{k} \mu_{k}\left|\alpha_{k} \otimes \beta_{k}\right\rangle$ pure $\rho_{A B}=|\psi\rangle\langle\psi| \Rightarrow$ reduced density matrices $\rho_{A} \equiv \operatorname{Tr}_{B} \rho_{A B}$ etc.

$$
\rho_{A}=\sum_{k}\left|\mu_{k}\right|^{2}\left|\alpha_{k}\right\rangle\left\langle\alpha_{k}\right| \quad \rho_{B}=\sum_{k}\left|\mu_{k}\right|^{2}\left|\beta_{k}\right\rangle\left\langle\beta_{k}\right|
$$

Cor: $\rho_{A B}=|\psi\rangle\langle\psi|$ pure $\Rightarrow \rho_{A}, \rho_{B}$ have same non-zero e-vals
Can reverse to get "purification" start with $\rho=\sum_{k} \lambda_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|$
Define $|\psi\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k} \otimes \phi_{k}\right\rangle \in \mathcal{H} \otimes \mathcal{H} \quad \operatorname{Tr}_{B}|\psi\rangle\langle\psi|=\rho$
some view: mystical result of Schmidt about tensor products
SVD for matrices back to 1870's (R. Horn \& C. Johnson, Chap. 3) Schmidt(1907) equiv. result interp $K(x, y)$ as kernal of op.

$$
g(y) \mapsto f(x)=\int K(x, y) g(y) d y
$$

some view: mystical result of Schmidt about tensor products
SVD for matrices back to 1870's (R. Horn \& C. Johnson, Chap. 3) Schmidt(1907) equiv. result interp $K(x, y)$ as kernal of op.

$$
g(y) \mapsto f(x)=\int K(x, y) g(y) d y
$$

Rediscovered by Carleson-Keller (1961)
some view: mystical result of Schmidt about tensor products
SVD for matrices back to 1870's (R. Horn \& C. Johnson, Chap. 3) Schmidt(1907) equiv. result interp $K(x, y)$ as kernal of op.

$$
g(y) \mapsto f(x)=\int K(x, y) g(y) d y
$$

Rediscovered by Carleson-Keller (1961) John Coleman (1963) pointed out due to Schmidt OK interp $\psi(x, y)=\psi\left(x_{1} \ldots x_{m}, y_{1} \ldots y_{n}\right) \in L_{2}\left(\mathbf{R}^{m+n}\right)$ wave func. can not really expect extension to higher order tensor products by same iso would also apply to maps $\mathcal{H}^{\otimes m} \mapsto \mathcal{H}^{\otimes n}$
some view: mystical result of Schmidt about tensor products
SVD for matrices back to 1870's (R. Horn \& C. Johnson, Chap. 3)
Schmidt(1907) equiv. result interp $K(x, y)$ as kernal of op.

$$
g(y) \mapsto f(x)=\int K(x, y) g(y) d y
$$

Rediscovered by Carleson-Keller (1961)
John Coleman (1963) pointed out due to Schmidt
OK interp $\psi(x, y)=\psi\left(x_{1} \ldots x_{m}, y_{1} \ldots y_{n}\right) \in L_{2}\left(\mathbf{R}^{m+n}\right)$ wave func.
can not really expect extension to higher order tensor products by same iso would also apply to maps $\mathcal{H}^{\otimes m} \mapsto \mathcal{H}^{\otimes n}$

More info: See Appendix A of King and Ruskai
IEEE Trans. Info. Theory 47, 192-209 (2001) quant-ph/9911079

Aside on group representation terminology

Connect reps of $S U(n)$ and $S_{n} \quad \mathbf{C}_{d}^{\otimes n}=\bigoplus_{\lambda} U_{\lambda} \otimes V_{\lambda}$
For any group $\quad R_{\lambda} \times R_{\mu}=\sum_{\nu} g_{\lambda \mu \nu} R_{\nu}$
The coefficients $g_{\lambda \mu \nu}$ called
For $S U(n) \quad$ Littlewood-Richardson coefficients (math) or Clebsch-Gordon coefficients (physics)

Symmetric group $S_{n} \quad$ Kronecker coefficients
duality leads to sol'n of Weyl's prob in terms of coef. for $S U(n)$ sol'n of quant marg prob in terms of coef. for S_{n} discussed in Christandl's talk

Open Problem 1

- N -rep for 1-matrix depends only on eigenvalues
- N -rep for 2-matrix also depends on eigenvectors

In gen, N-rep conds don't depend on choice of 1-particle basis
N -rep conditions for m-matrix can be expressed in terms of
quantities invariant under unitaries of form $U^{\otimes m}$
$U \otimes U \otimes \ldots \otimes U$ called "local unitaries" in quantum info

Open Problem 1

- N -rep for 1-matrix depends only on eigenvalues
- N-rep for 2-matrix also depends on eigenvectors

In gen, N-rep conds don't depend on choice of 1-particle basis
N-rep conditions for m-matrix can be expressed in terms of
quantities invariant under unitaries of form $U^{\otimes m}$
$U \otimes U \otimes \ldots \otimes U$ called "local unitaries" in quantum info

Challenge: Find a "full, minimal" set of invariants for 2-matrix?

Open Problem 2

Can Klyachko's results for pure N-rep of one-matrix possibly combined with Ando-Coleman Theorem
be used to make Configuration Interaction more feasable?

Open Problem 2

Can Klyachko's results for pure N-rep of one-matrix possibly combined with Ando-Coleman Theorem
be used to make Configuration Interaction more feasable?
Ex: for $N=3, R=6$ in principle need $\binom{6}{3}=20$ Slater dets but actually 4 will suffice

Open Problem 2

Can Klyachko's results for pure N-rep of one-matrix possibly combined with Ando-Coleman Theorem
be used to make Configuration Interaction more feasable?
Ex: for $N=3, R=6$ in principle need $\binom{6}{3}=20$ Slater dets but actually 4 will suffice
can one reduce number of coeffs in Cl in other situations?
Klyachko ineq assume arbitrary coeff, but might give hints
Can reduce effective R, N by assuming some $\lambda_{k}=1$?
When is this a good approximation?

Open Problem 3: Conjectured gen of A. Horn's Lemma

Φ is quantum channel or completely pos, trace-pres (CPT) map
Conj 1: Let $\Phi: M_{d_{1}} \mapsto M_{d_{2}}$ be a CPT map. Then $\exists d_{2}$ CPT maps Φ_{m} with Choi rank $\leq d_{1}$ such that $\Phi=\sum_{m=1}^{d_{2}} \frac{1}{d_{2}} \Phi_{m}$.

Open Problem 3: Conjectured gen of A. Horn's Lemma

Φ is quantum channel or completely pos, trace-pres (CPT) map
Conj 1: Let $\Phi: M_{d_{1}} \mapsto M_{d_{2}}$ be a CPT map. Then $\exists d_{2}$ CPT maps Φ_{m} with Choi rank $\leq d_{1}$ such that $\Phi=\sum_{m=1}^{d_{2}} \frac{1}{d_{2}} \Phi_{m}$.

Conj 2: Let $\Phi: M_{d_{2}} \mapsto M_{d_{1}}$ be a CP map with $\Phi\left(I_{2}\right)=I_{1}$. Then $\exists d_{2}$ unital CP maps Φ_{m} with Choi rank $\leq d_{1}$ s.t. $\Phi=\sum_{m=1}^{d_{2}} \frac{1}{d_{2}} \Phi_{m}$

Conjectures of K.M.R. Audenaert and M.B. Ruskai strongly supported by numerical work of Audenaert

Can prove for $d_{1}=1$ or $d_{2}=2$ using block matix version.
Using only true extreme points need up to $d_{1} d_{2}$ maps

Block Matrix forms of Audenaert-Ruskai conjecture

Conj 3: Let \mathbf{A} be a $d_{1} d_{2} \times d_{1} d_{2}$ pos semi-def. matrix with $d_{2} \times d_{2}$ blocks $A_{j k}$ each $d_{1} \times d_{1}$, with $\sum_{j} A_{j j}=M . \exists d_{2}$ block matrices
\mathbf{B}_{m}, each of rank $\leq d_{1}$, s.t. $\sum_{j} B_{j j}=M$, and $\mathbf{A}=\sum_{m=1}^{d_{2}} \frac{1}{d_{2}} \mathbf{B}_{m}$.

Block Matrix forms of Audenaert-Ruskai conjecture

Conj 3: Let \mathbf{A} be a $d_{1} d_{2} \times d_{1} d_{2}$ pos semi-def. matrix with $d_{2} \times d_{2}$ blocks $A_{j k}$ each $d_{1} \times d_{1}$, with $\sum_{j} A_{j j}=M . \exists d_{2}$ block matrices
\mathbf{B}_{m}, each of rank $\leq d_{1}$, s.t. $\sum_{j} B_{j j}=M$, and $\mathbf{A}=\sum_{m=1}^{d_{2}} \frac{1}{d_{2}} \mathbf{B}_{m}$.
Restate using vectors of matrices $\mathbf{X}_{m}^{\dagger}=\left(\begin{array}{llll}X_{1 m}^{\dagger} & X_{2 m}^{\dagger} & \ldots & X_{d_{2} m}^{\dagger}\end{array}\right)$ with each block $X_{j m} d_{1} \times d_{1}$.
Conj 4: Let \mathbf{A} be a $d_{1} d_{2} \times d_{1} d_{2}$ pos semi-def. matrix with $d_{2} \times d_{2}$ blocks $A_{j k}$ each $d_{1} \times d_{1}$, with $\sum_{j} A_{j j}=M$. Then $\exists d_{2}$ vectors \mathbf{X}_{m} composed of d_{2} blocks $X_{j m}$ of size $d_{1} \times d_{1}$ such that

$$
\mathbf{A}=\sum_{m=1}^{d_{2}} \frac{1}{d_{2}} \mathbf{X}_{m} \mathbf{X}_{m}^{\dagger}, \quad \text { and } \quad \sum_{k} X_{k m} X_{k m}^{\dagger}=M \quad \forall m
$$

Horn's Lemma and Corollary

Def: For sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$ of length n in non-increasing order, a_{k} majorizes b_{k}, written $a_{k} \succ b_{k}$ means

$$
a_{1} \geq b_{1} \quad \sum_{k=1}^{m} a_{k} \geq \sum_{k=1}^{m} b_{k} \quad \sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} b_{k}
$$

Horn's Lemma: Given positive sequences $\left\{\lambda_{k}\right\},\left\{d_{k}\right\}$ of length n, there exists a positive semi-definite $n \times n$ matrix A with e-vals λ_{k} and diagonal elements d_{k} if and only if $\lambda_{k} \succ d_{k}$.

Horn's Lemma and Corollary

Def: For sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$ of length n in non-increasing order, a_{k} majorizes b_{k}, written $a_{k} \succ b_{k}$ means

$$
a_{1} \geq b_{1} \quad \sum_{k=1}^{m} a_{k} \geq \sum_{k=1}^{m} b_{k} \quad \sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} b_{k}
$$

Horn's Lemma: Given positive sequences $\left\{\lambda_{k}\right\},\left\{d_{k}\right\}$ of length n, there exists a positive semi-definite $n \times n$ matrix A with e-vals λ_{k} and diagonal elements d_{k} if and only if $\lambda_{k} \succ d_{k}$.

Any seq of n els with $\lambda_{k} \geq 0$ and $\sum_{k} \lambda_{k}=1$ majorizes $d_{k}=\frac{1}{n}$
Cor: Let A be a $n \times n$ pos semi-def matrix with $\operatorname{Tr} A=1$. Then \exists n normalized (not nec orthog) vectors \mathbf{x}_{m} s. t. $A=\sum_{m=1}^{n} \frac{1}{n} \mathbf{x}_{m} \mathbf{x}_{m}^{\dagger}$
See Ruskai, arXiv:0708.1902 Some Open Problems in Quant Info.

Open Problem 4:

Most interesting when $v \nsucc w$
Answer \#1 there is a z such that $v \otimes z \succ v \otimes w$
Answer \#2 there is an n such that $v^{\otimes n} \succ w^{\otimes n}$
Arise in "entanglement catalysis"

Open Problem 4:

Most interesting when $v \nsucc w$
Answer \#1 there is a z such that $v \otimes z \succ v \otimes w$
Answer \#2 there is an n such that $v^{\otimes n} \succ w^{\otimes n}$
Arise in "entanglement catalysis"
\exists nice characterizations in terms of $\|v\|_{p} \equiv\left(\sum_{k} v_{k}^{p}\right)^{1 / p}$
See Ion \& Nechita - talk at last workshop and arxiv + refs therein

Open Problem 4:

Most interesting when $v \nsucc w$
Answer \#1 there is a z such that $v \otimes z \succ v \otimes w$
Answer \#2 \quad there is an n such that $v^{\otimes n} \succ w^{\otimes n}$
Arise in "entanglement catalysis"
\exists nice characterizations in terms of $\|v\|_{p} \equiv\left(\sum_{k} v_{k}^{p}\right)^{1 / p}$
See Ion \& Nechita - talk at last workshop and arxiv + refs therein
Is there a natural question in Schubert calculus framework?

