Density matrices with and without symmetry

Mary Beth Ruskai marybeth.ruskai@tufts.edu

Tufts University

July 29, 2009

Quantum marginal problem

```
ho denotes density matrix (density operator) in \mathcal{B}(\mathcal{H}) Tr 
ho=1 and 
ho\geq 0 pos semi-def Basic Hilbert space \mathcal{H} and consider \mathcal{H}\otimes\mathcal{H}\otimes\ldots\mathcal{H}=\mathcal{H}^{\otimes m} e.g., qubit \mathcal{H}=\mathbf{C}_2 spin-\frac{1}{2} particle \infty-dim 
ho(x;y) or 
ho(x_1,x_2,\ldots x_m;y_1,y_2,\ldots y_m) is integral kernel Quant marginal asks: given 
ho_A,
ho_{AB},\ldots does \exists \; 
ho_{ABC}... such that \mathrm{Tr}_{BC}\; 
ho_{ABC}=
ho_A\; \mathrm{etc}?
```

Quantum marginal problem

ho denotes density matrix (density operator) in $\mathcal{B}(\mathcal{H})$

$$\operatorname{Tr}\rho=1 \text{ and } \rho\geq 0 \text{ pos semi-def}$$

Basic Hilbert space \mathcal{H} and consider $\mathcal{H}\otimes\mathcal{H}\otimes\ldots\mathcal{H}=\mathcal{H}^{\otimes m}$

e.g., qubit
$$\mathcal{H} = \mathbf{C}_2$$
 spin- $\frac{1}{2}$ particle

$$\infty$$
-dim $\rho(x; y)$ or $\rho(x_1, x_2, \dots x_m; y_1, y_2, \dots y_m)$ is integral kernel

Quant marginal asks: given ρ_A, ρ_{AB}, \dots does

$$\exists \rho_{ABC...}$$
 such that $\text{Tr}_{BC} \rho_{ABC} = \rho_A$ etc?

Some versions have simple solutions

Given
$$\rho_A$$
, ρ_{BC} does \exists pure ρ_{ABC}

Answer: $\Leftrightarrow \rho_A$ and ρ_{BC} have same non-zero evals.

Quantum marginal problem

 ρ denotes density matrix (density operator) in $\mathcal{B}(\mathcal{H})$

 $\operatorname{Tr}\rho=1 \text{ and } \rho\geq 0 \text{ pos semi-def}$

Basic Hilbert space $\mathcal H$ and consider $\mathcal H\otimes\mathcal H\otimes\ldots\mathcal H=\mathcal H^{\otimes m}$

e.g., qubit $\mathcal{H} = \mathbf{C}_2$ spin- $\frac{1}{2}$ particle

 ∞ -dim $\rho(x; y)$ or $\rho(x_1, x_2, \dots x_m; y_1, y_2, \dots y_m)$ is integral kernel

Quant marginal asks: given ρ_A, ρ_{AB}, \dots does

 $\exists \rho_{ABC...}$ such that $\text{Tr}_{BC} \rho_{ABC} = \rho_A$ etc?

Some versions have simple solutions

Given ρ_A , ρ_{BC} does \exists pure ρ_{ABC}

Answer: $\Leftrightarrow \rho_A$ and ρ_{BC} have same non-zero evals.

for class prob dist $p(x,y), \ p(x) = \int p(x,y) dy$ etc. called marginal

Different types of symmetry

regard N-rep as special case since perm symmetry $\Rightarrow \rho_A = \rho_B$ etc.

Assume finite dims $\mathcal{H} = \mathbf{C}^n$ or span $\{f_1, f_2, \dots f_n\}$ fixed O.N. $\in \mathcal{H}$.

 $d_{j_1j_2...j_m,k_1k_2...k_m}$ matrix els, $ho=\sum_k p_k |\psi_k
angle \langle \psi_k|$ in prod basis for $\mathcal{H}^{\otimes m}$

Let $\mathcal{P}(j_1 j_2 \dots j_m)$ denotes perm of indices, e.g., $j_2 j_1 j_3 \dots j_m$

Different types of symmetry

regard N-rep as special case since perm symmetry $\Rightarrow \rho_A = \rho_B$ etc.

Assume finite dims $\mathcal{H} = \mathbf{C}^n$ or span $\{f_1, f_2, \dots f_n\}$ fixed O.N. $\in \mathcal{H}$.

 $d_{j_1j_2...j_m,k_1k_2...k_m}$ matrix els, $ho=\sum_k p_k |\psi_k
angle \langle \psi_k|$ in prod basis for $\mathcal{H}^{\otimes m}$

Let $\mathcal{P}(j_1 j_2 \dots j_m)$ denotes perm of indices, e.g., $j_2 j_1 j_3 \dots j_m$

Fermions: want anti-symmetric if either set of indices permuted

$$d_{\mathcal{P}(j_1j_2...j_m),k_1k_2...k_m} = d_{j_1j_2...j_m,\mathcal{P}(k_1k_2...k_m)} = (-)^{\mathcal{P}} d_{j_1j_2...j_m,k_1k_2...k_m}$$

Bosons: want symmetric if either set of indices permuted

$$d_{\mathcal{P}(j_1j_2...j_m),k_1k_2...k_m} = d_{j_1j_2...j_m,\mathcal{P}(k_1k_2...k_m)} = d_{j_1j_2...j_m,k_1k_2...k_m}$$

N-representability problem:

Given *m*-particle D.M. ρ of right perm symmetry, when does \exists

ullet anti-symmetric \emph{N} -particle pure state ψ such that

$$\operatorname{Tr}_{m+1,\ldots N} |\psi\rangle\langle\psi| = \rho$$
 ??

• N-particle fermionic mixed state $\rho_{1,2...N} = \sum_k a_k |\psi_k\rangle\langle\psi_k|$ s.t

$$\operatorname{Tr}_{m+1,...N} \rho_{1,2...N} = \rho$$
 ??

 \bullet symmetric N-particle pure state ψ such that

$$\operatorname{Tr}_{m+1,...N} |\psi\rangle\langle\psi| = \rho$$
 ??

• *N*-particle bosonic mixed state $\rho_{1,2...N} = \sum_k a_k |\psi_k\rangle \langle \psi_k|$ s.t

$$\text{Tr}_{m+1,...N} \rho_{1,2...N} = \rho$$
 ??

Most interest is m=2 ; mixed m=1 solved by Coleman (≈ 1963)

pure state m=1 solved by Klyachko (2005) for any symmetry

diFinettit theorems – exchangeable systems

Simultaneous perms $d_{\mathcal{P}(j_1j_2...j_m),\mathcal{P}(k_1k_2...k_m)} = d_{j_1j_2...j_m,k_1k_2...k_m}$ ρ could be convex comb. of boson and fermion states or even more general

diFinettit theorems - exchangeable systems

Simultaneous perms $d_{\mathcal{P}(j_1j_2...j_m),\mathcal{P}(k_1k_2...k_m)}=d_{j_1j_2...j_m,k_1k_2...k_m}$ ρ could be convex comb. of boson and fermion states or even more general

perm symmetry plays two roles in N-rep of two particle RDM

- a) Pauli principle itself
- b) can use reduced Ham for 2-matrix

with simul or "exchangeable" perm symmetry, still have (b)

$$H_N = \sum_{k=1}^{N} T_k + \sum_{j < k} V_{jk}$$
 $\widehat{H}_N = NT_1 + \binom{N}{2} V_{12}$

$$\langle \Psi, H_N \Psi \rangle = \operatorname{Tr} H_N \, \rho_{1,2...N} = \operatorname{Tr} \widehat{H}_N \, \rho_{12}$$

Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed

real electron
$$\mathcal{H} = L_2(\textbf{R}_3) \otimes \textbf{C}_2$$

quant info – consider pure state arbitrary vector in $\mathbf{C}_2^{\otimes n}$ or $\mathbf{C}_d^{\otimes n}$

Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed

real electron
$$\mathcal{H} = L_2(\textbf{R}_3) \otimes \textbf{C}_2$$

quant info – consider pure state arbitrary vector in $\mathbf{C}_2^{\otimes n}$ or $\mathbf{C}_d^{\otimes n}$

 $|01\rangle$ for "qubit $|0\rangle$ in Alice's lab and qubit $|1\rangle$ in Bob's lab" means

Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed real electron $\mathcal{H} = L_2(\mathbf{R}_3) \otimes \mathbf{C}_2$ quant info – consider pure state arbitrary vector in $\mathbf{C}_{2}^{\otimes n}$ or $\mathbf{C}_{d}^{\otimes n}$ $|01\rangle$ for "qubit $|0\rangle$ in Alice's lab and qubit $|1\rangle$ in Bob's lab" means $\psi(\mathbf{x}_1, \mathbf{x}_2) = f_A(\mathbf{r}_1) \uparrow \otimes f_B(\mathbf{r}_2) \downarrow -f_B(\mathbf{r}_1) \downarrow \otimes f_A(\mathbf{r}_2) \uparrow$ with f_A and f_B supported in Alice and Bob's labs resp. product corresponds to Slater det for full wave functions

Alice and Bob share entangled state $|01\rangle+|10\rangle$ symmetric not anti-sym – can still be done with electrons

$$\psi(\mathbf{x}_{1}, \mathbf{x}_{2}) = f_{A}(\mathbf{r}_{1}) \uparrow \otimes f_{B}(\mathbf{r}_{2}) \downarrow -f_{B}(\mathbf{r}_{1}) \downarrow \otimes f_{A}(\mathbf{r}_{2}) \uparrow$$
$$+f_{A}(\mathbf{r}_{1}) \downarrow \otimes f_{B}(\mathbf{r}_{2}) \uparrow -f_{B}(\mathbf{r}_{1}) \uparrow \otimes f_{A}(\mathbf{r}_{2}) \downarrow$$
$$= (|01\rangle + |10\rangle) [f_{A}(\mathbf{r}_{1})f_{B}(\mathbf{r}_{2}) - f_{B}(\mathbf{r}_{1})f_{A}(\mathbf{r}_{2})]$$

actually superposition of Slater dets.

Alice and Bob share entangled state $|01\rangle + |10\rangle$ symmetric not anti-sym – can still be done with electrons

$$\psi(\mathbf{x}_{1}, \mathbf{x}_{2}) = f_{A}(\mathbf{r}_{1}) \uparrow \otimes f_{B}(\mathbf{r}_{2}) \downarrow -f_{B}(\mathbf{r}_{1}) \downarrow \otimes f_{A}(\mathbf{r}_{2}) \uparrow$$
$$+f_{A}(\mathbf{r}_{1}) \downarrow \otimes f_{B}(\mathbf{r}_{2}) \uparrow -f_{B}(\mathbf{r}_{1}) \uparrow \otimes f_{A}(\mathbf{r}_{2}) \downarrow$$
$$= (|01\rangle + |10\rangle) [f_{A}(\mathbf{r}_{1})f_{B}(\mathbf{r}_{2}) - f_{B}(\mathbf{r}_{1})f_{A}(\mathbf{r}_{2})]$$

actually superposition of Slater dets.

Have
$$\psi = (\text{ spin }) \times [\text{ spatial }]$$

General case – space and spin transform as dual Young tableux

Aside: polar cones

Thm: If ρ_{12} is not N-rep, then $\exists H_N \geq 0$ s.t. $\text{Tr } \widehat{H}_N \, \rho_{12} < 0$.

Thm: If ρ_{12} is entangled, then \exists positivity preserving map

 $\Gamma: \mathcal{B}(\mathcal{H}) \mapsto \mathcal{B}(\mathcal{H}) \text{ such that } (I \otimes \Gamma)(\rho_{12}) < 0.$

Aside: polar cones

Thm: If ρ_{12} is not N-rep, then $\exists H_N \geq 0$ s.t. $\text{Tr } \widehat{H}_N \, \rho_{12} < 0$.

Thm: If ρ_{12} is entangled, then \exists positivity preserving map $\Gamma: \mathcal{B}(\mathcal{H}) \mapsto \mathcal{B}(\mathcal{H})$ such that $(I \otimes \Gamma)(\rho_{12}) < 0$.

set of (mixed) N-rep D.M. is convex subset of all m-particle D.M. set of separable states is convex subset of all states separable means not entangled or convex comb of prod entanglement witness Γ detects not separable

Aside: polar cones

Thm: If ρ_{12} is not N-rep, then $\exists H_N \geq 0$ s.t. $\text{Tr } \widehat{H}_N \, \rho_{12} < 0$.

Thm: If ρ_{12} is entangled, then \exists positivity preserving map $\Gamma: \mathcal{B}(\mathcal{H}) \mapsto \mathcal{B}(\mathcal{H})$ such that $(I \otimes \Gamma)(\rho_{12}) < 0$.

set of (mixed) N-rep D.M. is convex subset of all m-particle D.M. set of separable states is convex subset of all states separable means not entangled or convex comb of prod entanglement witness Γ detects not separable

Both results special cases of well known convex duality results

N-rep of 1-matrix as constrained version of Weyl's problem

Thm: (Ando-Coleman) The 1-matrix γ is pure N-rep with preimage $\Rightarrow \gamma = \lambda_1 |\phi_1\rangle \langle \phi_1| + \lambda_1\gamma_1 + (1-\lambda_1)\gamma_2$ with γ_1 N-1-rep with pre-image Φ_1 : γ_2 N-rep with pre-image Φ_2 and strong orthog $\langle \phi_1, \Phi_1 \rangle_1 = \langle \phi_1, \Phi_2 \rangle_1 = \langle \Phi_1, \Phi_2 \rangle_{2,3...N} = 0$ pre-image $|\Psi\rangle = \sqrt{\lambda_k} \, \mathcal{A} \, |\phi_1\rangle \otimes |\Phi_1\rangle + \sqrt{1-\lambda_1} \, |\Phi_2\rangle$

N-rep of 1-matrix as constrained version of Weyl's problem

Thm: (Ando-Coleman)The 1-matrix γ is pure N-rep with preimage $\gamma = \lambda_1 |\phi_1\rangle \langle \phi_1| + \lambda_1 \gamma_1 + (1 - \lambda_1) \gamma_2$ with γ_1 N-1-rep with pre-image Φ_1 : γ_2 N-rep with pre-image Φ_2 and strong orthog $\langle \phi_1, \Phi_1 \rangle_1 = \langle \phi_1, \Phi_2 \rangle_1 = \langle \Phi_1, \Phi_2 \rangle_2$ $_{N} = 0$ pre-image $|\Psi\rangle = \sqrt{\lambda_k} \mathcal{A} |\phi_1\rangle \otimes |\Phi_1\rangle + \sqrt{1-\lambda_1} |\Phi_2\rangle$ Consider special case R = N + 3 even, and assume γ_2 has e-vec g_1 strong, orthog, to Φ_1 with eval 1 not wlog, but simplifies notation

$$\gamma - \lambda_1 |\phi_1\rangle \langle \phi_1| - (1 - \lambda_1)|g_1\rangle \langle g_1| = \lambda_1\gamma_1 + (1 - \lambda_1)\widetilde{\gamma}_2.$$

Write
$$|\Phi_1\rangle = \sum_{2 \le k_1 < k_2 < \dots k_{N-1}} x_{k_1 k_2 \dots k_{N-1}} [g_{k_1}, g_{k_2}, \dots g_{k_{N-1}}]$$

 $|\Phi_2\rangle = \sum_{2 \le k_1 < k_{k_2} < \dots k_{k_{N-1}}} y_{k_1 k_{k_2} \dots k_{k_{N-1}}} [g_1, g_{k_1} g_{k_2}, \dots g_{k_{N-1}}]$

For anti-sym tensors let $x_{j,K} \equiv x_{j,k_2,k_3...k_M}$

$$XZ^{\dagger} = \sum_{k_2, k_3...k_M} x_{i, k_2,...k_M} \, \overline{z}_{j, k_2,...k_M}$$

$$\gamma - \lambda_1 |\phi_1\rangle \langle \phi_1| - (1 - \lambda_1) |g_1\rangle \langle g_1| = \lambda_1 \gamma_1 + (1 - \lambda_1) \widetilde{\gamma}_2.$$

Write
$$|\Phi_1\rangle = \sum_{2 \le k_1 < k_2 < \dots k_{N-1}} x_{k_1 k_2 \dots k_{N-1}} [g_{k_1}, g_{k_2}, \dots g_{k_{N-1}}]$$

 $|\Phi_2\rangle = \sum_{2 \le k_1 < k_{k_2} < \dots k_{k_{N-1}}} y_{k_1 k_{k_2} \dots k_{k_{N-1}}} [g_1, g_{k_1} g_{k_2}, \dots g_{k_{N-1}}]$

For anti-sym tensors let $x_{j,K} \equiv x_{j,k_2,k_3...k_M}$

$$XZ^{\dagger} = \sum_{k_2,k_3...k_M} x_{i,k_2,...k_M} \, \overline{z}_{j,k_2,...k_M}$$

Rewrite above $\gamma - \lambda_1 |\phi_1\rangle \langle \phi_1| - (1 - \lambda_1) |g_1\rangle \langle g_1| = XX^\dagger + YY^\dagger$ with constraint $XY^\dagger = 0$ from strong orthog.

constrained version Weyl's prob, $A = XX^{\dagger}$, $B = YY^{\dagger}$, C = LHSGeneral case, constraints more complex to write out

Aside

Klyachko (2005) announced sol'n of pure state N-rep of 1-matrix

Recovers Borland-Dennis conditions for N = 3, R = 6

$$\lambda_1 + \lambda_6 = \lambda_2 + \lambda_5 = \lambda_3 + \lambda_4 = 1$$
 λ_k dec.

and
$$\lambda_1 + \lambda_2 \leq \lambda_3 + 1$$

Klyachko remarked no progress for over 30 years since.

Ruskai unpublished – use Coleman double induct to prove = 1 part

proof of
$$\lambda_1 + \lambda_2 \leq \lambda_3 + 1$$
 reduce to Weyl's problem for 2×2

encouraged by Klyachko - wrote and submitted to J Phys A

Aside

Klyachko (2005) announced sol'n of pure state N-rep of 1-matrix

Recovers Borland-Dennis conditions for N = 3, R = 6

$$\lambda_1 + \lambda_6 = \lambda_2 + \lambda_5 = \lambda_3 + \lambda_4 = 1$$
 λ_k dec.

and
$$\lambda_1 + \lambda_2 \leq \lambda_3 + 1$$

Klyachko remarked no progress for over 30 years since.

Ruskai unpublished – use Coleman double induct to prove = 1 part

proof of $\lambda_1 + \lambda_2 \leq \lambda_3 + 1$ reduce to Weyl's problem for 2×2

encouraged by Klyachko – wrote and submitted to *J Phys A* published as Fast Track Communication (2007).

Aside on SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall $B^*B=\sum_k \mu_k^2 |b_k\rangle\langle b_k|\equiv |B|^2$ Then $B=U|B|=\sum_k \mu_k |a_k\rangle\langle b_k| \qquad |a_k\rangle=U|b_k\rangle$ U partial isometry – restriction to (ker B) $^\perp$ unique unitary

Aside on SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall
$$B^*B = \sum_k \mu_k^2 |b_k\rangle \langle b_k| \equiv |B|^2$$

Then $B = U|B| = \sum_k \mu_k |a_k\rangle \langle b_k| \qquad |a_k\rangle = U|b_k\rangle$
 U partial isometry – restriction to $(\ker B)^{\perp}$ unique unitary
Isomorphism $\mathcal{B}(\mathcal{H}) \simeq \mathcal{H} \otimes \mathcal{H} \qquad |v\rangle \langle w| \leftrightarrow |v\otimes w\rangle$
apply SVD + iso to $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H} \qquad |\psi\rangle = \sum_k \mu_k |\alpha_k \otimes \beta_k\rangle$

Aside on SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall
$$B^*B=\sum_k \mu_k^2 |b_k\rangle\langle b_k|\equiv |B|^2$$

Then $B=U|B|=\sum_k \mu_k |a_k\rangle\langle b_k|$ $|a_k\rangle=U|b_k\rangle$

U partial isometry – restriction to $(\ker B)^{\perp}$ unique unitary

Isomorphism
$$\mathcal{B}(\mathcal{H}) \simeq \mathcal{H} \otimes \mathcal{H} \qquad |v\rangle\langle w| \leftrightarrow |v\otimes w\rangle$$

apply SVD
$$+$$
 iso to $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H}$ $|\psi\rangle = \sum_{k} \mu_{k} |\alpha_{k} \otimes \beta_{k}\rangle$

pure $\rho_{AB} = |\psi\rangle\langle\psi| \Rightarrow$ reduced density matrices $\rho_A \equiv \text{Tr}_B \, \rho_{AB}$ etc.

$$\rho_{\rm A} = \sum_k |\mu_k|^2 |\alpha_k\rangle \langle \alpha_k| \quad \rho_{\rm B} = \sum_k |\mu_k|^2 |\beta_k\rangle \langle \beta_k|$$

Cor: $\rho_{AB}=|\psi\rangle\langle\psi|$ pure \Rightarrow ρ_{A},ρ_{B} have same non-zero e-vals

Can reverse to get "purification" start with $\rho = \sum_k \lambda_k |\phi_k\rangle \langle \phi_k|$

Define
$$|\psi\rangle = \sum_{k} \sqrt{\lambda_{k}} |\phi_{k} \otimes \phi_{k}\rangle \in \mathcal{H} \otimes \mathcal{H}$$
 $\operatorname{Tr}_{B} |\psi\rangle\langle\psi| = \rho$

some view: mystical result of Schmidt about tensor products SVD for matrices back to 1870's (R. Horn & C. Johnson, Chap. 3) Schmidt(1907) equiv. result interp K(x,y) as kernal of op. $g(y) \mapsto f(x) = \int K(x,y)g(y)dy$

some view: mystical result of Schmidt about tensor products

SVD for matrices back to 1870's (R. Horn & C. Johnson, Chap. 3)

Schmidt(1907) equiv. result interp K(x, y) as kernal of op.

$$g(y) \mapsto f(x) = \int K(x, y)g(y)dy$$

Rediscovered by Carleson-Keller (1961)

some view: mystical result of Schmidt about tensor products

SVD for matrices back to 1870's (R. Horn & C. Johnson, Chap. 3)

Schmidt(1907) equiv. result interp K(x, y) as kernal of op.

$$g(y) \mapsto f(x) = \int K(x, y)g(y)dy$$

Rediscovered by Carleson-Keller (1961)

John Coleman (1963) pointed out due to Schmidt

OK interp
$$\psi(x,y) = \psi(x_1 \dots x_m, y_1 \dots y_n) \in L_2(\mathbf{R}^{m+n})$$
 wave func.

can not really expect extension to higher order tensor products

by same iso would also apply to maps $\mathcal{H}^{\otimes m} \mapsto \mathcal{H}^{\otimes n}$

some view: mystical result of Schmidt about tensor products

SVD for matrices back to 1870's (R. Horn & C. Johnson, Chap. 3)

Schmidt(1907) equiv. result interp K(x, y) as kernal of op.

$$g(y) \mapsto f(x) = \int K(x, y)g(y)dy$$

Rediscovered by Carleson-Keller (1961)

John Coleman (1963) pointed out due to Schmidt

OK interp $\psi(x,y) = \psi(x_1 \dots x_m, y_1 \dots y_n) \in L_2(\mathbf{R}^{m+n})$ wave func.

can not really expect extension to higher order tensor products

by same iso would also apply to maps $\mathcal{H}^{\otimes m} \mapsto \mathcal{H}^{\otimes n}$

More info: See Appendix A of King and Ruskai

IEEE Trans. Info. Theory 47, 192–209 (2001) quant-ph/9911079

Aside on group representation terminology

Connect reps of
$$SU(n)$$
 and S_n $\mathbf{C}_d^{\otimes n} = \bigoplus_{\lambda} U_{\lambda} \otimes V_{\lambda}$

For any group
$$R_{\lambda} \times R_{\mu} = \sum_{\nu} g_{\lambda\mu\nu} R_{\nu}$$

The coefficients $g_{\lambda\mu\nu}$ called

For SU(n) Littlewood-Richardson coefficients (math) or Clebsch-Gordon coefficients (physics)

Symmetric group S_n Kronecker coefficients

duality leads to sol'n of Weyl's prob in terms of coef. for SU(n) sol'n of quant marg prob in terms of coef. for S_n discussed in Christandl's talk

- N-rep for 1-matrix depends only on eigenvalues
- N-rep for 2-matrix also depends on eigenvectors

In gen, N-rep conds don't depend on choice of 1-particle basis

N-rep conditions for *m*-matrix can be expressed in terms of quantities invariant under unitaries of form $U^{\otimes m}$

 $U\otimes U\otimes\ldots\otimes U$ called "local unitaries" in quantum info

- N-rep for 1-matrix depends only on eigenvalues
- N-rep for 2-matrix also depends on eigenvectors

In gen, N-rep conds don't depend on choice of 1-particle basis

N-rep conditions for m-matrix can be expressed in terms of quantities invariant under unitaries of form $U^{\otimes m}$

 $U \otimes U \otimes \ldots \otimes U$ called "local unitaries" in quantum info

Challenge: Find a "full, minimal" set of invariants for 2-matrix?

Can Klyachko's results for pure N-rep of one-matrix possibly combined with Ando-Coleman Theorem be used to make Configuration Interaction more feasable?

Can Klyachko's results for pure N-rep of one-matrix possibly combined with Ando-Coleman Theorem be used to make Configuration Interaction more feasable?

Ex: for N = 3, R = 6 in principle need $\binom{6}{3} = 20$ Slater dets but actually 4 will suffice

Can Klyachko's results for pure N-rep of one-matrix possibly combined with Ando-Coleman Theorem be used to make Configuration Interaction more feasable?

Ex: for N = 3, R = 6 in principle need $\binom{6}{3} = 20$ Slater dets but actually 4 will suffice

can one reduce number of coeffs in CI in other situations? Klyachko ineq assume arbitrary coeff, but might give hints Can reduce effective R,N by assuming some $\lambda_k=1$? When is this a good approximation?

Open Problem 3: Conjectured gen of A. Horn's Lemma

 Φ is quantum channel or completely pos, trace-pres (CPT) map

Conj 1: Let $\Phi: M_{d_1} \mapsto M_{d_2}$ be a CPT map. Then $\exists d_2$ CPT maps

 Φ_m with Choi rank $\leq d_1$ such that $\Phi = \sum_{m=1}^{d_2} \frac{1}{d_2} \Phi_m$.

Open Problem 3: Conjectured gen of A. Horn's Lemma

 Φ is quantum channel or completely pos, trace-pres (CPT) map

Conj 1: Let $\Phi: M_{d_1} \mapsto M_{d_2}$ be a CPT map. Then $\exists d_2$ CPT maps

 Φ_m with Choi rank $\leq d_1$ such that $\Phi = \sum_{m=1}^{d_2} \frac{1}{d_2} \Phi_m$.

Conj 2: Let $\Phi: M_{d_2} \mapsto M_{d_1}$ be a CP map with $\Phi(I_2) = I_1$. Then

 \exists d_2 unital CP maps Φ_m with Choi rank $\leq d_1$ s.t. $\Phi = \sum_{m=1}^{d_2} \!\!\!\!\!\! \frac{1}{d_2} \Phi_m$

Conjectures of K.M.R. Audenaert and M.B. Ruskai strongly supported by numerical work of Audenaert

Can prove for $d_1 = 1$ or $d_2 = 2$ using block matrix version.

Using only true extreme points need up to d_1d_2 maps

Block Matrix forms of Audenaert-Ruskai conjecture

Conj 3: Let **A** be a $d_1d_2 \times d_1d_2$ pos semi-def. matrix with $d_2 \times d_2$ blocks A_{jk} each $d_1 \times d_1$, with $\sum_i A_{ij} = M$. $\exists d_2$ block matrices

$$\mathbf{B}_m$$
, each of rank $\leq d_1$, s.t. $\sum_j B_{jj} = M$, and $\mathbf{A} = \sum_{m=1}^{d_2} \frac{1}{d_2} \mathbf{B}_m$.

Block Matrix forms of Audenaert-Ruskai conjecture

Conj 3: Let **A** be a $d_1d_2 \times d_1d_2$ pos semi-def. matrix with $d_2 \times d_2$ blocks A_{ik} each $d_1 \times d_1$, with $\sum_i A_{ii} = M$. $\exists d_2$ block matrices

$$\mathbf{B}_m$$
, each of rank $\leq d_1$, s.t. $\sum_j B_{jj} = M$, and $\mathbf{A} = \sum_{m=1}^{d_2} \frac{1}{d_2} \mathbf{B}_m$.

Restate using vectors of matrices $\mathbf{X}_m^\dagger = \begin{pmatrix} X_{1m}^\dagger & X_{2m}^\dagger & \dots & X_{d,m}^\dagger \end{pmatrix}$ with each block X_{im} $d_1 \times d_1$.

Conj 4: Let **A** be a $d_1d_2 \times d_1d_2$ pos semi-def. matrix with $d_2 \times d_2$ blocks A_{jk} each $d_1 \times d_1$, with $\sum_i A_{jj} = M$. Then $\exists d_2$ vectors \mathbf{X}_m composed of d_2 blocks X_{im} of size $d_1 \times d_1$ such that

$$\mathbf{A} = \sum_{m=1}^{d_2} \frac{1}{d_2} \mathbf{X}_m \mathbf{X}_m^{\dagger}, \quad \text{and} \quad \sum_k X_{km} X_{km}^{\dagger} = M \quad \forall m$$

Horn's Lemma and Corollary

Def: For sequences $\{a_k\}, \{b_k\}$ of length n in non-increasing order, a_k majorizes b_k , written $a_k \succ b_k$ means

$$a_1 \ge b_1$$
 $\sum_{k=1}^m a_k \ge \sum_{k=1}^m b_k$ $\sum_{k=1}^n a_k = \sum_{k=1}^n b_k$

Horn's Lemma: Given positive sequences $\{\lambda_k\}$, $\{d_k\}$ of length n, there exists a positive semi-definite $n \times n$ matrix A with e-vals λ_k and diagonal elements d_k if and only if $\lambda_k \succ d_k$.

Horn's Lemma and Corollary

Def: For sequences $\{a_k\}, \{b_k\}$ of length n in non-increasing order, a_k majorizes b_k , written $a_k \succ b_k$ means

$$a_1 \ge b_1$$
 $\sum_{k=1}^m a_k \ge \sum_{k=1}^m b_k$ $\sum_{k=1}^n a_k = \sum_{k=1}^n b_k$

Horn's Lemma: Given positive sequences $\{\lambda_k\}, \{d_k\}$ of length n, there exists a positive semi-definite $n \times n$ matrix A with e-vals λ_k and diagonal elements d_k if and only if $\lambda_k \succ d_k$.

Any seq of n els with $\lambda_k \geq 0$ and $\sum_k \lambda_k = 1$ majorizes $d_k = \frac{1}{n}$

Cor: Let A be a $n \times n$ pos semi-def matrix with $\operatorname{Tr} A = 1$. Then \exists

n normalized (not nec orthog) vectors \mathbf{x}_m s. t. $A = \sum_{m=1}^n \frac{1}{n} \mathbf{x}_m \mathbf{x}_m^{\dagger}$

See Ruskai, arXiv:0708.1902 Some Open Problems in Quant Info.

Open Problem 4:

Most interesting when $v \not\succ w$

Answer #1 there is a z such that $v \otimes z \succ v \otimes w$

Answer #2 there is an *n* such that $v^{\otimes n} \succ w^{\otimes n}$

Arise in "entanglement catalysis"

Open Problem 4:

Most interesting when $v \not\succ w$

Answer #1 there is a z such that $v \otimes z \succ v \otimes w$

Answer #2 there is an *n* such that $v^{\otimes n} \succ w^{\otimes n}$

Arise in "entanglement catalysis"

 \exists nice characterizations in terms of $||v||_p \equiv \left(\sum_k v_k^p\right)^{1/p}$

See Ion & Nechita – talk at last workshop and arxiv + refs therein

Open Problem 4:

Most interesting when $v \not\succ w$

Answer #1 there is a z such that $v \otimes z \succ v \otimes w$

Answer #2 there is an *n* such that $v^{\otimes n} \succ w^{\otimes n}$

Arise in "entanglement catalysis"

 \exists nice characterizations in terms of $||v||_p \equiv \left(\sum_k v_k^p\right)^{1/p}$

See Ion & Nechita – talk at last workshop and arxiv + refs therein

Is there a natural question in Schubert calculus framework?