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Quantum marginal problem

ρ denotes density matrix (density operator) in B(H)

Tr ρ = 1 and ρ ≥ 0 pos semi-def

Basic Hilbert space H and consider H⊗H⊗ . . .H = H⊗m

e.g., qubit H = C2 spin-1
2 particle

∞-dim ρ(x ; y) or ρ(x1, x2, . . . xm; y1, y2, . . . ym) is integral kernel

Quant marginal asks: given ρA, ρAB , . . . does

∃ ρABC ... such that TrBC ρABC = ρA etc?

Some versions have simple solutions

Given ρA, ρBC does ∃ pure ρABC

Answer: ⇔ ρA and ρBC have same non-zero evals.

for class prob dist p(x , y), p(x) =
∫

p(x , y)dy etc. called marginal
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Different types of symmetry

regard N-rep as special case since perm symmetry ⇒ ρA = ρB etc.

Assume finite dims H = Cn or span{f1, f2, . . . fn} fixed O.N. ∈ H.

dj1j2...jm,k1k2...km matrix els, ρ =
∑

kpk |ψk〉〈ψk | in prod basis for H⊗m

Let P(j1 j2 . . . jm) denotes perm of indices, e.g., j2 j1 j3 . . . jm

Fermions: want anti-symmetric if either set of indices permuted

dP(j1j2...jm),k1k2...km
= dj1j2...jm,P(k1k2...km) = (−)Pdj1j2...jm,k1k2...km

Bosons: want symmetric if either set of indices permuted

dP(j1j2...jm),k1k2...km
= dj1j2...jm,P(k1k2...km) = dj1j2...jm,k1k2...km
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N-representability problem:

Given m-particle D.M. ρ of right perm symmetry, when does ∃

• anti-symmetric N-particle pure state ψ such that

Trm+1,...N |ψ〉〈ψ| = ρ ??

• N-particle fermionic mixed state ρ1,2...N =
∑

k ak |ψk〉〈ψk | s.t

Trm+1,...N ρ1,2...N = ρ ??

• symmetric N-particle pure state ψ such that

Trm+1,...N |ψ〉〈ψ| = ρ ??

• N-particle bosonic mixed state ρ1,2...N =
∑

k ak |ψk〉〈ψk | s.t

Trm+1,...N ρ1,2...N = ρ ??

Most interest is m = 2 ; mixed m = 1 solved by Coleman (≈ 1963)

pure state m = 1 solved by Klyachko (2005) for any symmetry
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diFinettit theorems – exchangeable systems

Simultaneous perms dP(j1j2...jm),P(k1k2...km) = dj1j2...jm,k1k2...km

ρ could be convex comb. of boson and fermion states

or even more general

perm symmetry plays two roles in N-rep of two particle RDM

a) Pauli principle itself

b) can use reduced Ham for 2-matrix

with simul or “exchangeable” perm symmetry, still have (b)

HN =
N∑

k=1

Tk +
∑
j<k

Vjk ĤN = NT1 +

(
N

2

)
V12

〈Ψ,HNΨ〉 = Tr HN ρ1,2...N = Tr ĤN ρ12
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Where is perm symmetry in quantum Info

No perm symmetry because spatial wave function suppressed

real electron H = L2(R3)⊗ C2

quant info – consider pure state arbitrary vector in C⊗n
2 or C⊗n

d

|01〉 for “qubit |0〉 in Alice’s lab and qubit |1〉 in Bob’s lab” means

ψ(x1, x2) = fA(r1) ↑ ⊗ fB(r2) ↓ −fB(r1) ↓ ⊗ fA(r2) ↑

with fA and fB supported in Alice and Bob’s labs resp.

product corresponds to Slater det for full wave functions
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Alice and Bob share entangled state |01〉+ |10〉

symmetric not anti-sym – can still be done with electrons

ψ(x1, x2) = fA(r1) ↑ ⊗fB(r2) ↓ −fB(r1) ↓ ⊗fA(r2) ↑
+fA(r1) ↓ ⊗fB(r2) ↑ −fB(r1) ↑ ⊗fA(r2) ↓

=
(
|01〉+ |10〉

)[
fA(r1)fB(r2)− fB(r1)fA(r2)

]
actually superposition of Slater dets.

Have ψ = ( spin ) × [ spatial ]

General case – space and spin transform as dual Young tableux
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Aside: polar cones

Thm: If ρ12 is not N-rep, then ∃ HN ≥ 0 s.t. Tr ĤN ρ12 < 0.

Thm: If ρ12 is entangled, then ∃ positivity preserving map

Γ : B(H) 7→ B(H) such that (I ⊗ Γ)(ρ12) < 0.

set of (mixed) N-rep D.M. is convex subset of all m-particle D.M.

set of separable states is convex subset of all states

separable means not entangled or convex comb of prod

entanglement witness Γ detects not separable

Both results special cases of well known convex duality results
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N-rep of 1-matrix as constrained version of Weyl’s problem

Thm: (Ando-Coleman)The 1-matrix γ is pure N-rep with preimage

⇔ γ = λ1|φ1〉〈φ1|+ λ1γ1 + (1− λ1)γ2

with γ1 N−1-rep with pre-image Φ1: γ2 N-rep with pre-image Φ2

and strong orthog 〈φ1,Φ1〉1 = 〈φ1,Φ2〉1 = 〈Φ1,Φ2〉2,3...N = 0

pre-image |Ψ〉 =
√
λk A |φ1〉 ⊗ |Φ1〉+

√
1− λ1 |Φ2〉

Consider special case R = N + 3 even, and

assume γ2 has e-vec g1 strong. orthog. to Φ1 with eval 1

not wlog, but simplifies notation
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γ − λ1|φ1〉〈φ1| − (1− λ1)|g1〉〈g1| = λ1γ1 + (1− λ1)γ̃2.

Write |Φ1〉 =
∑

2≤k1<k2<...kN−1

xk1k2...kN−1
[gk1 , gk2 , . . . gkN−1

]

|Φ2〉 =
∑

2≤k1<kk2
<...kkN−1

yk1kk2
...kkN−1

[g1, gk1gk2 , . . . gkN−1
]

For anti-sym tensors let xj ,K ≡ xj ,k2,k3...kM

XZ † =
∑

k2,k3...kM

xi ,k2,...kM
z j ,k2,...kM

Rewrite above γ − λ1|φ1〉〈φ1| − (1− λ1)|g1〉〈g1| = XX † + YY †

with constraint XY † = 0 from strong orthog.

constrained version Weyl’s prob, A = XX †, B = YY †, C = LHS

General case, constraints more complex to write out
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Aside

Klyachko (2005) announced sol’n of pure state N-rep of 1-matrix

Recovers Borland-Dennis conditions for N = 3,R = 6

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1 λk dec.

and λ1 + λ2 ≤ λ3 + 1

Klyachko remarked no progress for over 30 years since.

Ruskai unpublished – use Coleman double induct to prove = 1 part

proof of λ1 + λ2 ≤ λ3 + 1 reduce to Weyl’s problem for 2× 2

encouraged by Klyachko – wrote and submitted to J Phys A

published as Fast Track Communication (2007).
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Aside on SVD and “Schmidt” decomposition

Singular Value Decomposition: Recall B∗B =
∑

k µ
2
k |bk〉〈bk | ≡ |B|2

Then B = U|B| =
∑

k µk |ak〉〈bk | |ak〉 = U|bk〉

U partial isometry – restriction to (ker B)⊥ unique unitary

Isomorphism B(H) ' H⊗H |v〉〈w | ↔ |v ⊗ w〉

apply SVD + iso to |ψ〉 ∈ H ⊗H |ψ〉 =
∑

k µk |αk ⊗ βk〉

pure ρAB = |ψ〉〈ψ| ⇒ reduced density matrices ρA ≡ TrB ρAB etc.

ρA =
∑

k |µk |2|αk〉〈αk | ρB =
∑

k |µk |2|βk〉〈βk |

Cor: ρAB = |ψ〉〈ψ| pure ⇒ ρA, ρB have same non-zero e-vals

Can reverse to get “purification” start with ρ =
∑

k λk |φk〉〈φk |

Define |ψ〉 =
∑

k

√
λk |φk ⊗ φk〉 ∈ H ⊗H TrB |ψ〉〈ψ| = ρ
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some view: mystical result of Schmidt about tensor products

SVD for matrices back to 1870’s (R. Horn & C. Johnson, Chap. 3)

Schmidt(1907) equiv. result interp K (x , y) as kernal of op.

g(y) 7→ f (x) =
∫

K (x , y)g(y)dy

Rediscovered by Carleson-Keller (1961)

John Coleman (1963) pointed out due to Schmidt

OK interp ψ(x , y) = ψ(x1 . . . xm, y1 . . . yn) ∈ L2(Rm+n) wave func.

can not really expect extension to higher order tensor products

by same iso would also apply to maps H⊗m 7→ H⊗n

More info: See Appendix A of King and Ruskai

IEEE Trans. Info. Theory 47, 192–209 (2001) quant-ph/9911079
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Aside on group representation terminology

Connect reps of SU(n) and Sn C⊗n
d =

⊕
λ

Uλ ⊗ Vλ

For any group Rλ × Rµ =
∑
ν

gλµνRν

The coefficients gλµν called

For SU(n) Littlewood-Richardson coefficients (math)

or Clebsch-Gordon coefficients (physics)

Symmetric group Sn Kronecker coefficients

duality leads to sol’n of Weyl’s prob in terms of coef. for SU(n)

sol’n of quant marg prob in terms of coef. for Sn

discussed in Christandl’s talk
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Open Problem 1

• N-rep for 1-matrix depends only on eigenvalues

• N-rep for 2-matrix also depends on eigenvectors

In gen, N-rep conds don’t depend on choice of 1-particle basis

N-rep conditions for m-matrix can be expressed in terms of

quantities invariant under unitaries of form U⊗m

U ⊗ U ⊗ . . .⊗ U called “local unitaries” in quantum info

Challenge: Find a “full, minimal” set of invariants for 2-matrix?
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Open Problem 2

Can Klyachko’s results for pure N-rep of one-matrix

possibly combined with Ando-Coleman Theorem

be used to make Configuration Interaction more feasable?

Ex: for N = 3,R = 6 in principle need
(6
3

)
= 20 Slater dets

but actually 4 will suffice

can one reduce number of coeffs in CI in other situations?

Klyachko ineq assume arbitrary coeff, but might give hints

Can reduce effective R,N by assuming some λk = 1?

When is this a good approximation?
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Open Problem 3: Conjectured gen of A. Horn’s Lemma

Φ is quantum channel or completely pos, trace-pres (CPT) map

Conj 1: Let Φ : Md1 7→ Md2 be a CPT map. Then ∃ d2 CPT maps

Φm with Choi rank ≤ d1 such that Φ =

d2∑
m=1

1
d2

Φm.

Conj 2: Let Φ : Md2 7→ Md1 be a CP map with Φ(I2) = I1. Then

∃ d2 unital CP maps Φm with Choi rank ≤ d1 s.t. Φ =

d2∑
m=1

1
d2

Φm

Conjectures of K.M.R. Audenaert and M.B. Ruskai
strongly supported by numerical work of Audenaert

Can prove for d1 = 1 or d2 = 2 using block matix version.

Using only true extreme points need up to d1d2 maps
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Block Matrix forms of Audenaert-Ruskai conjecture

Conj 3: Let A be a d1d2 × d1d2 pos semi-def. matrix with d2 × d2

blocks Ajk each d1 × d1, with
∑

j Ajj = M. ∃ d2 block matrices

Bm, each of rank ≤ d1, s.t.
∑

j Bjj = M, and A =

d2∑
m=1

1
d2

Bm.

Restate using vectors of matrices X†m =
(
X †1m X †2m . . . X †d2m

)
with each block Xjm d1 × d1.

Conj 4: Let A be a d1d2 × d1d2 pos semi-def. matrix with d2 × d2

blocks Ajk each d1 × d1, with
∑

j Ajj = M. Then ∃ d2 vectors Xm

composed of d2 blocks Xjm of size d1 × d1 such that

A =

d2∑
m=1

1
d2

XmX†m, and
∑
k

XkmX †km = M ∀ m
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Horn’s Lemma and Corollary

Def: For sequences {ak}, {bk} of length n in non-increasing order,
ak majorizes bk , written ak � bk means

a1 ≥ b1

m∑
k=1

ak ≥
m∑

k=1

bk

n∑
k=1

ak =
n∑

k=1

bk

Horn’s Lemma: Given positive sequences {λk}, {dk} of length n,
there exists a positive semi-definite n × n matrix A with e-vals λk

and diagonal elements dk if and only if λk � dk .

Any seq of n els with λk ≥ 0 and
∑

k λk = 1 majorizes dk = 1
n

Cor: Let A be a n × n pos semi-def matrix with TrA = 1. Then ∃

n normalized (not nec orthog) vectors xm s. t. A =
n∑

m=1

1
n xmx†m

See Ruskai, arXiv:0708.1902 Some Open Problems in Quant Info.
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Open Problem 4:

Most interesting when v � w

Answer #1 there is a z such that v ⊗ z � v ⊗ w

Answer #2 there is an n such that v⊗n � w⊗n

Arise in “entanglement catalysis”

∃ nice characterizations in terms of ‖v‖p ≡
(∑

k vp
k

)1/p

See Ion & Nechita – talk at last workshop and arxiv + refs therein

Is there a natural question in Schubert calculus framework?
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