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RDM method:

N-representability of the 2-RDM — positivity constraints.
= Semidefinite programming can be used to compute
electronic energy of atoms and molecules.

This talk: The SDP-based RDM method is a special case of a
more general and abstract approach (not motivated by
N-representability).

@ We have introduced a method to solve non-commutative
polynomial optimization problems.

@ Computing the energy of a system of N electrons is an
instance of these optimization problems.

@ When applying our method to this particular instance, we
recover the RDM method.



ﬂ The RDM method based on semidefinite programming
e Non-commutative polynomial optimization (NCPO)
© The RDM method as a special case of NCPO

e Other applications of NCPO



a The RDM method based on semidefinite programming



Variational approach

Introduce finite set of R basis functions (orbitals)

o1 (r)7 (ﬁg(l’), R (b:‘?(r)

and expand the N-electron wave-function W(rq,...,ry) as
W(ry,. i) = D Gy 87 (1) - &g (P) -
Jt-dn

The corresponding Hamiltonian is

H= Z H,-ja,T.a,- + Z H,-,-k,a,TajTaka,
i i

where g;, al are the annihilation and creation operators
associated to orbital ¢;.



Energy is determined by the 2-RDM

E=(H = ZHU ala)) + ZH'IK’ al ajTaka,
ijkl

= Z H,j D,j + Z H,]k/ D,]k/
ij ikl

where 'D and 2D are the one-particule and two-particule
reduced density matrices defined by

'D; = (al &)

Dijs = <a,T a,T- axay)

Note that 1D,'j = (N — 1)2,( 2Dikkj-



N-representability problem

Ground state energy:

Eg = I’T;én {Z H,'j 1D,’j + Z Hijkl 2Dijkl}
If

ijkl



N-representability problem

Ground state energy:

Eg = I’T;g] {Z H,'/' 1D,’j + Z H,'jk/ 2Dijkl}
i

ijkl

Problem: this yields an energy far lower than the exact ones
because not every 2-particule density matrix 2D originates from
a N-particle wavefunction |¢).

We must impose N-representability conditions on 2D



Necessary N-representability conditions

@ Positivity conditions [Coleman 63, Garrod and Percus 64]:
e 'D>0,'Q > 0, where

"D = (afa)
'Q; = (aad])
e D, Q, G conditions: 2D = 0, %Q > 0, °G = 0, where
Dy = (alalaka)
Qu = (agaal)
G = (aaala)

@ Linear conditions that relate all these matrices to 2D
For instance:

'Qj=0;—"Dj=(N—-1) Z Dikii

2Qji = Sjk Dil — %Dy



Ground-state energy from semidefinite programming

Minimization of

E = Z H,'j 1D,‘j + Z H,‘jk/ 2Dijkl
if ikl

subject to the previous positivity and linear constraints is a
typical instance of semidefinite programming.

This minimization problem can be solved exactly.

It provides a lower-bound on the ground-state energy.



Higher-order constraints

A whole hierarchy of additional SDP constraints can be added
to increase accuracy [Erdahl, Jin 00], [Mazziotti, Erdahl 01].

E.g.: Positivity conditions on the 3-RDMs:

*Dijkimn = <a,TaTaka,aman)

3

Eiximn = <a,T a;aka ama,,>

3F; — (algaka ahan)
ijklmn = i k / m n

3

Qiximn = (@idjaxa, ama>



Why are all these matrices positive?

@ All previous matrices are of the form
M; = (v[ClCjlv)
= (vilv)
where |v;) = Cj|V¥).

For instance: %Gy = (al gaa) = (V|C|Cu|W)
with Cy = aZa,.

@ Mis positive semidefinite if and only if Mj; = (vi|v;).



e Non-commutative polynomial optimization (NCPQO)



Non-commutative polynomial optimization

Let X = {Xi,..., Xxn} be nvariables that we view as operators
acting on some unspecified Hilbert space H.

Let p(X), g(X), r(X) be polynomials in X.
E.g.: p(X) = Xi +3X1 Xo — 4 X3 Xo.

We want to solve

Jin - (WpO0[Y)
st. gX)=0
r(X)jv)y =0

Note: H is not fixed in advance, dim(H) is not bounded.



Why non-commutative optimization?

If we add the commutativity constraints X;.X; + X;X; = 0,
the scalar representation X; = x; € R is always a solution.

The optimization problem is then equivalent to a standard
polynomial optimization over R"
min - p(x)
st. q(x)=0
r(x)=0



Solving NCPO through semidefinite programming

In arXiv:0903.4368, we introduce a sequence of relaxations R;
that provide lower-bounds on the global solution of the original
NCPO problem.

Each of these relaxations R; is a semidefinite program.

In the limit R; — R, the lower-bounds converge to the global
solution of NCPO.



Monomials

@ Given the noperators Xj, ..., X,
a monomial X, of degree k is a product of k operators X;:

Xoo = Xoy Xoy - Xo,

@ We denote the identity operator / as the monomial Xy = /.

@ The product of two monomials X, X3 is itself a monomial
that we denote X3 = X, Xjs.

Polynomials
A polynomial p(X) is a linear combination of monomials

P(X) = paXa



Construction of the relaxation of degree k

@ Consider the set of all vectors of the form
{XaW)} = {IV), Xi|W), XiXj|V), ..., (X, ... X )W)}
where X, is at most of degree k.
Then the matrix M with entries
Mo = (WX X5 W)

is positive definite: KM > 0.



Construction of the relaxation of degree k

@ Consider the set of all vectors of the form
{Xa[W)} = {[W), Xi|W), XiXj[V), ... (X ... X)) W)}
where X, is at most of degree k.

Then the matrix KM with entries
"Map = (W XI X5/ W)
is positive definite: KM > 0.
@ The objective function

(WpX)V) = > pa(¥|X.|W)
= Y pawIX{XalW) = Y pa Mo

is a linear function of the entries of M



Construction of the relaxation of degree k

@ The conditions q(X) = 0 and r(X)|V) =0
induce linear constraints on “M:

=> X =0 = > G UXIXXV)=0 Va,p3
un W|XTXV,5'|W>:O Va,

un auﬁ_o valg

r(X)|w Zryx W)y=0 = Zr,, (WIXIX, W) =0 Ya

Zr,, M., =0 Va



Relaxation of degree k

We define the relaxation Ry of degree k as the following SDP:

H k
min > o Po "My,

st. "M =0
Zz/ qv kMa,u,@ =0 VOé, ﬁ
Yot k/\/lw, =0 Va



Relaxation of degree k

We define the relaxation Ry of degree k as the following SDP:

ngl\l/? Za pOé kMOa

st. "M=0
Zz/ qv kMa,uﬁ =0 VOé, ﬁ
Yot kMavl, =0 Va

Let px be the solution of Ry
and p, be the solution of the original NCPO problem, then

Pk < Pr41 < oo < Ps



@ If g(X) = 0 implies that || Xi||> < C:

lim Px = Px
k—o00



@ If g(X) = 0 implies that || Xi||> < C:

lim px = ps
k—oo

@ In practice, we observe very often that Rs, Rs, or Ry
already yield the optimal solution p,



@ If g(X) = 0 implies that || Xi||> < C:

lim px = ps
k—oo

@ In practice, we observe very often that Rs, Rs, or Ry
already yield the optimal solution p,

@ Stopping criterion: if rank “M = rank k=1 (4M):
@ Pk = P«
o the optimal |¥) and X live
in a Hilbert space H of dim(H) = rank M.
e We have a procedure to reconstruct the optimal |[W) and X.



Method is related to other mathematical techniques

Jin, - (Wp(X)|) min plo)
® st gX)=0 < xex” B
XX — XX, = 0 st. q(x)=0

— Recover the SDP method for scalar polynomial
optimization of [Parrilo 00, Lasserre 01].

@ Dual formulation of the SDP relaxations linked to the
theory of SOS decompositions of positive polynomials
[Putinar 93, Helton and McCullough 04].



© The RDM method as a special case of NCPO



Electronic energy as NCPO

The ground-state energy of N e~ that can occupy R orbitals
is the solution to the following NCPO
with operator variables {a,...,ar, al,...,al}

min Y Hy(W|al g W) + 3, Hiu (V] al al axa| W)
st {a,a}=0

{a,T,ajT} =0

{a],a} —5;=0

> (ala—N) ) =0



Example: relaxation of degree 2

Remember: matrix XM is built as overlap matrix of set of
vectors { X, |W)} where X, is at most of degree k.
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Example: relaxation of degree 2

Remember: matrix XM is built as overlap matrix of set of
vectors { X, |W)} where X, is at most of degree k.

In our case 2M is thus built on set of vectors

{|v), ai|v), al|v), a;a| V), al ] V), al a)|v), a;al W)}

Y | ]

General property

It is sufficient to consider set of vectors { X, |V)} that are linearly
independent under the constraints q(X) =0, r(X)|V) =0

Thus since a/a; + a;a] — 6; =0and 3, (a,Ta,- - N) V) =0,itis
sufficient to consider set

{ai|v), af|v), a;a|v), afal|v), ala|w)}



Example: relaxation of degree 2

a)  a) a;g;) ala)) ala;)

(@, |(ala) (ala)) (alaa) (alalal)  (alala)
oy (ak (aal) (akaja)  (aald)  (yala)
<aI(a7 (aLafa,-aj) (af(a;fafab <aLafa,Ta,
(akay <aka/a;fafa}> <aka/a,Ta,>
(ala (aaaa))




Example: relaxation of degree 2

Linear constraints on “M which follow from
@ the conditions q(X) =>_,gq. X, =0:

> a (XX, X3) =0 Vo,

For instance: q(X) = {a,a;} — 6, Xo = al, X5 = &

= (alalga) + (a,aala) — oj(ala) =0

@ and the conditions r(X)|V) = > X, |V) =0:
> a(XIX,) =0 Vo
For instance: r(X) =), <a,Taj — N), Xo = agar:

= Z(aka,aja,) — N{aka)) =0

]
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Example: relaxation of degree 2

aj) a,T> a;aj) a,TajT> a,Taj>
(ak | (aa)
oy (@ (akal)
(aka) (akalaia))
(akay <aka,a7a}ta}>
(ala (alaja a))



Example: relaxation of degree 2

@@ | o

(ak 'Q
M= (ala D

(akay Q

(ala G




Example: relaxation of degree 2

aj) aj) a;a;) a,T aT> af aj)
@@ | o
(ak Q
20 _
M= (aa] D
<aka, QQ
(ala G

+ Linear relations between 'D, 'Q, 2D, 2Q, °G



Example: relaxation of degree 2

aj) a,T> a;a;) a,TajU a,Taj>
@@ | o
(ak Q
20 —
M= (alal D
<aka, QQ
(ala G

+ Linear relations between 'D, 'Q, 2D, 2Q, °G

We recover the same SDP than in the RDM method



Electronic energy as NCPO

Similarly, relaxations of higher-degree of the problem

min Zij H,~,-<\|J]a,Taj|\Il> + Zijkl H;jk/(\ll|a,Ta/Taka,|\U>
st. {a,a}=0

{a,T,a;f} =0

{a].q} —0;=0

> (ala - N)[w) =0

correspond to implementing higher-order positivity
N-representability constraints of the RDM method.



Electronic energy as NCPO

Similarly, relaxations of higher-degree of the problem

min Zij H,~,-<\|J]a,Taj|\Il> + Zijkl H;jk/(\ll|a,Ta/Taka,|\U>
st. {a,a}=0

{a,T,a;f} =0

{a].q} —0;=0

> (ala - N)[w) =0

correspond to implementing higher-order positivity
N-representability constraints of the RDM method.

Note that here
Po < pP3<...ON = Px



e Other applications of NCPO



Quantum violation of Bell inequalities

Original motivation for our method [PRL 07, NJP 08]

min Zabxy Cabe<w|E§Ez};/|w>

st. EJEY =l.2E; and ) EX=1
EgEg, = 5bb/Eg and >, EZ;/ =1
[E3 E{]=0

The dimension of H is not bounded



Quantum violation of Bell inequalities

Original motivation for our method [PRL 07, NJP 08]

min Zabxy Cabxy<W|E§E},/|"’>

st. EJEY =l.2E; and ) EX=1
EYE] = pwEy and S, Ef =1
[EZ, Epl =0

The dimension of H is not bounded

Has been applied to 241 Bell inequalities in [Pal, Vertesi 08]
Optimal solution obtained for 221 Bell inequalities

For the remaining 20 ones: gap between our LB and best
known UB is of order 104,



Other applications

@ Security of device-independent cryptography v/
@ Continuous variable system v/
Particle in a double-well potential:

min % + X; + mx*
st [x,p]=1i




Conclusion

Similar techniques than the ones in the SDP RDM method
allow to solve a broad class of non-commutative polynomial
optimization problems.

Interest of our method for solving NCPO:
@ Flexible and works on different problems
@ Yields lower-bounds
@ Does not rely on symmetries (good for quantum chemistry)

@ Allows to deal with infinite Hilbert space
without truncating the Hilbert space
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