Non-commutative polynomial optimization and the variational RDM method

Antonio Acín ${ }^{1}$ Artur Garcia ${ }^{1}$ Miguel Navascués ${ }^{2}$ Stefano Pironio ${ }^{3}$

${ }^{1}$ ICFO, Barcelona
${ }^{2}$ Imperial College, London
${ }^{3}$ GAP, Geneva

Workshop on Quantum Marginals and Density Matrices, Fields Institute, July 09

Outlook

RDM method:
N-representability of the 2-RDM \rightarrow positivity constraints.
\Rightarrow Semidefinite programming can be used to compute electronic energy of atoms and molecules.

This talk: The SDP-based RDM method is a special case of a more general and abstract approach (not motivated by N-representability).

- We have introduced a method to solve non-commutative polynomial optimization problems.
- Computing the energy of a system of N electrons is an instance of these optimization problems.
- When applying our method to this particular instance, we recover the RDM method.

Contents

(9) The RDM method based on semidefinite programming
(2) Non-commutative polynomial optimization (NCPO)
(3) The RDM method as a special case of NCPO
(4) Other applications of NCPO

Contents

(1) The RDM method based on semidefinite programming

2 Non-commutative polynomial optimization (NCPO)
(3) The RDM method as a special case of NCPO

4 Other applications of NCPO

Variational approach

Introduce finite set of R basis functions (orbitals)

$$
\phi_{1}(\mathbf{r}), \phi_{2}(\mathbf{r}), \ldots, \phi_{R}(\mathbf{r})
$$

and expand the N-electron wave-function $\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$ as

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\sum_{j_{1} \ldots j_{N}} c_{j_{1} \ldots j_{N}} \phi_{j_{1}}\left(\mathbf{r}_{1}\right) \ldots \phi_{j_{N}}\left(\mathbf{r}_{N}\right)
$$

The corresponding Hamiltonian is

$$
H=\sum_{i j} H_{i j} a_{i}^{\dagger} a_{j}+\sum_{i j k l} H_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}
$$

where a_{i}, a_{i}^{\dagger} are the annihilation and creation operators associated to orbital ϕ_{i}.

Energy is determined by the 2-RDM

$$
\begin{aligned}
E=\langle H\rangle & =\sum_{i j} H_{i j}\left\langle a_{i}^{\dagger} a_{j}\right\rangle+\sum_{i j k l} H_{i j k l}\left\langle a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}\right\rangle \\
& =\sum_{i j} H_{i j}^{1} D_{i j}+\sum_{i j k l} H_{i j k l}{ }^{2} D_{i j k l}
\end{aligned}
$$

where ${ }^{1} D$ and ${ }^{2} D$ are the one-particule and two-particule reduced density matrices defined by

$$
\begin{gathered}
{ }^{1} D_{i j}=\left\langle a_{i}^{\dagger} a_{j}\right\rangle \\
{ }^{2} D_{i j k l}=\left\langle a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}\right\rangle
\end{gathered}
$$

Note that ${ }^{1} D_{i j}=(N-1) \sum_{k}{ }^{2} D_{i k k j}$.

N-representability problem

Ground state energy:

$$
E_{g}=\min _{2 D}\left\{\sum_{i j} H_{i j}{ }^{1} D_{i j}+\sum_{i j k l} H_{i j k l}{ }^{2} D_{i j k l}\right\}
$$

N-representability problem

Ground state energy:

$$
E_{g}=\min _{2 D}\left\{\sum_{i j} H_{i j}{ }^{1} D_{i j}+\sum_{i j k l} H_{i j k l}{ }^{2} D_{i j k l}\right\}
$$

Problem: this yields an energy far lower than the exact ones because not every 2-particule density matrix ${ }^{2} D$ originates from a N-particle wavefunction $|\psi\rangle$.

We must impose N-representability conditions on ${ }^{2} D$

Necessary N-representability conditions

(1) Positivity conditions [Coleman 63, Garrod and Percus 64]:

- ${ }^{1} D \succeq 0,{ }^{1} Q \succeq 0$, where

$$
\begin{aligned}
{ }^{1} D_{i j} & =\left\langle a_{i}^{\dagger} a_{j}\right\rangle \\
{ }^{1} Q_{i j} & =\left\langle a_{i} a_{j}^{\dagger}\right\rangle
\end{aligned}
$$

- D, Q, G conditions: ${ }^{2} D \succeq 0,{ }^{2} Q \succeq 0,{ }^{2} G \succeq 0$, where

$$
\begin{aligned}
{ }^{2} D_{i j k l} & =\left\langle a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}\right\rangle \\
{ }^{2} Q_{i j k l} & =\left\langle a_{i} a_{j} a_{k}^{\dagger} a_{l}^{\dagger}\right\rangle \\
{ }^{2} G_{i j k l} & =\left\langle a_{i}^{\dagger} a_{j} a_{k}^{\dagger} a_{l}\right\rangle
\end{aligned}
$$

(2) Linear conditions that relate all these matrices to ${ }^{2} D$

For instance:

$$
\begin{array}{r}
{ }^{1} Q_{i j}=\delta_{i j}-{ }^{1} D_{i j}=(N-1) \sum_{k}{ }^{2} D_{i k k j} \\
{ }^{2} Q_{i j k l}=\delta_{j k}{ }^{1} D_{i l}-{ }^{2} D_{i k j l}
\end{array}
$$

Ground-state energy from semidefinite programming

Minimization of

$$
E=\sum_{i j} H_{i j}^{1} D_{i j}+\sum_{i j k l} H_{i j k l}^{2} D_{i j k l}
$$

subject to the previous positivity and linear constraints is a typical instance of semidefinite programming.

This minimization problem can be solved exactly.

It provides a lower-bound on the ground-state energy.

Higher-order constraints

A whole hierarchy of additional SDP constraints can be added to increase accuracy [Erdahl, Jin 00], [Mazziotti, Erdahl 01].
E.g.: Positivity conditions on the 3-RDMs:

$$
\begin{aligned}
{ }^{3} D_{i j k l m n} & =\left\langle a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m} a_{n}\right\rangle \\
{ }^{3} E_{i j k l m n} & =\left\langle a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}^{\dagger} a_{m} a_{n}\right\rangle \\
{ }^{3} F_{i j k l m n} & =\left\langle a_{i}^{\dagger} a_{j} a_{k} a_{l}^{\dagger} a_{m}^{\dagger} a_{n}\right\rangle \\
{ }^{3} Q_{i j k l m n} & =\left\langle a_{i} a_{j} a_{k} a_{l}^{\dagger} a_{m}^{\dagger} a_{n}^{\dagger}\right\rangle
\end{aligned}
$$

Why are all these matrices positive?

- All previous matrices are of the form

$$
\begin{aligned}
M_{i j} & =\langle\Psi| C_{i}^{\dagger} C_{j}|\Psi\rangle \\
& =\left\langle v_{i} \mid v_{j}\right\rangle
\end{aligned}
$$

where $\left|v_{i}\right\rangle=C_{i}|\Psi\rangle$.
For instance: ${ }^{2} G_{i j k l}=\left\langle a_{i}^{\dagger} a_{j} a_{k}^{\dagger} a_{l}\right\rangle=\langle\Psi| C_{j i}^{\dagger} C_{k \mid}|\Psi\rangle$
with $C_{k l}=a_{k}^{\dagger} a_{l}$.

- M is positive semidefinite if and only if $M_{i j}=\left\langle v_{i} \mid v_{j}\right\rangle$.

Contents

(1) The RDM method based on semidefinite programming
(2) Non-commutative polynomial optimization (NCPO)
(3) The RDM method as a special case of NCPO

4 Other applications of NCPO

Non-commutative polynomial optimization

Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be n variables that we view as operators acting on some unspecified Hilbert space H.

Let $p(X), q(X), r(X)$ be polynomials in X.
E.g.: $p(X)=X_{1}+3 X_{1} X_{2}-4 X_{4} X_{2}$.

We want to solve

$$
\begin{array}{cl}
\min _{H, X,|\Psi\rangle} & \langle\Psi| p(X)|\Psi\rangle \\
\text { s.t. } & q(X)=0 \\
& r(X)|\Psi\rangle=0
\end{array}
$$

Note: H is not fixed in advance, $\operatorname{dim}(H)$ is not bounded.

Why non-commutative optimization?

If we add the commutativity constraints $X_{i} X_{j}+X_{j} X_{i}=0$, the scalar representation $X_{i}=x_{i} \in \mathbb{R}$ is always a solution.

The optimization problem is then equivalent to a standard polynomial optimization over \mathbb{R}^{n}

$$
\begin{array}{cl}
\min _{x \in \mathbb{R}^{n}} & p(x) \\
\text { s.t. } & q(x)=0 \\
& r(x)=0
\end{array}
$$

Solving NCPO through semidefinite programming

In arXiv:0903.4368, we introduce a sequence of relaxations R_{i} that provide lower-bounds on the global solution of the original NCPO problem.

Each of these relaxations R_{i} is a semidefinite program.

In the limit $R_{i} \rightarrow R_{\infty}$, the lower-bounds converge to the global solution of NCPO.

Notation

Monomials

- Given the n operators X_{1}, \ldots, X_{n}, a monomial X_{α} of degree k is a product of k operators X_{i} :

$$
X_{\alpha}=X_{\alpha_{1}} X_{\alpha_{2}} \ldots X_{\alpha_{k}}
$$

- We denote the identity operator I as the monomial $X_{0}=I$.
- The product of two monomials $X_{\alpha} X_{\beta}$ is itself a monomial that we denote $X_{\alpha \beta}=X_{\alpha} X_{\beta}$.

Polynomials
A polynomial $p(X)$ is a linear combination of monomials

$$
p(X)=\sum_{\alpha} p_{\alpha} X_{\alpha}
$$

Construction of the relaxation of degree k

- Consider the set of all vectors of the form

$$
\left\{X_{\alpha}|\Psi\rangle\right\}=\left\{|\Psi\rangle, X_{i}|\Psi\rangle, X_{i} X_{j}|\Psi\rangle, \ldots,\left(X_{i_{1}} \ldots X_{i_{k}}\right)|\Psi\rangle\right\}
$$

where X_{α} is at most of degree k.
Then the matrix ${ }^{k} M$ with entries

$$
{ }^{k} M_{\alpha \beta}=\langle\Psi| X_{\alpha}^{\dagger} X_{\beta}|\Psi\rangle
$$

is positive definite: ${ }^{k} M \succeq 0$.

Construction of the relaxation of degree k

- Consider the set of all vectors of the form

$$
\left\{X_{\alpha}|\Psi\rangle\right\}=\left\{|\Psi\rangle, X_{i}|\Psi\rangle, X_{i} X_{j}|\Psi\rangle, \ldots,\left(X_{i_{1}} \ldots X_{i_{k}}\right)|\Psi\rangle\right\}
$$

where X_{α} is at most of degree k.
Then the matrix ${ }^{k} M$ with entries

$$
{ }^{k} M_{\alpha \beta}=\langle\Psi| X_{\alpha}^{\dagger} X_{\beta}|\Psi\rangle
$$

is positive definite: ${ }^{k} M \succeq 0$.

- The objective function

$$
\begin{aligned}
\langle\Psi| p(X)|\Psi\rangle & =\sum_{\alpha} p_{\alpha}\langle\Psi| X_{\alpha}|\Psi\rangle \\
& =\sum_{\alpha} p_{\alpha}\langle\Psi| X_{0}^{\dagger} X_{\alpha}|\Psi\rangle=\sum_{\alpha} p_{\alpha}{ }^{k} M_{0 \alpha}
\end{aligned}
$$

is a linear function of the entries of ${ }^{k} M$

Construction of the relaxation of degree k

- The conditions $q(X)=0$ and $r(X)|\Psi\rangle=0$ induce linear constraints on ${ }^{k} M$:

$$
\begin{aligned}
& q(X)=\sum_{\nu} q_{\nu} X_{\nu}=0 \Rightarrow \sum_{\nu} q_{\nu}\langle\Psi| X_{\alpha}^{\dagger} X_{\nu} X_{\beta}|\Psi\rangle=0 \quad \forall \alpha, \beta \\
& \sum_{\nu} q_{\nu}\langle\Psi| X_{\alpha}^{\dagger} X_{\nu \beta}|\Psi\rangle=0 \quad \forall \alpha, \beta \\
& \sum_{\nu} q_{\nu}{ }^{k} M_{\alpha, \nu \beta}=0 \quad \forall \alpha, \beta \\
& r(X)|\Psi\rangle=\sum_{\nu} r_{\nu} X_{\nu}|\Psi\rangle=0 \Rightarrow \sum_{\nu} r_{\nu}\langle\Psi| X_{\alpha}^{\dagger} X_{\nu}|\Psi\rangle=0 \quad \forall \alpha \\
& \sum_{\nu} r_{\nu}{ }^{k} M_{\alpha, \nu}=0 \quad \forall \alpha
\end{aligned}
$$

Relaxation of degree k

We define the relaxation R_{k} of degree k as the following SDP:

$$
\begin{array}{ll}
\min _{k M} & \sum_{\alpha} p_{\alpha}{ }^{k} M_{0 \alpha} \\
\text { s.t. } & { }^{k} M \succeq 0 \\
& \sum_{\nu} \succeq{ }^{2}{ }^{k} M_{\alpha, \nu \beta}=0 \quad \forall \alpha, \beta \\
& \sum_{\nu} r_{\nu}{ }^{k} M_{\alpha, \nu}=0 \quad \forall \alpha
\end{array}
$$

Relaxation of degree k

We define the relaxation R_{k} of degree k as the following SDP:

$$
\begin{array}{ll}
\min _{k M} & \sum_{\alpha} p_{\alpha}{ }^{k} M_{0 \alpha} \\
\text { s.t. } & { }^{k} M \succeq 0 \\
& \sum_{\nu}{ }^{2}{ }^{k}{ }^{k} M_{\alpha, \nu \beta}=0 \quad \forall 0 \\
& \sum_{\nu} r_{\nu}{ }^{k} M_{\alpha, \nu}=0 \quad \forall \alpha
\end{array}
$$

Let p_{k} be the solution of R_{k} and p_{\star} be the solution of the original NCPO problem, then

$$
p_{k} \leq p_{k+1} \leq \ldots \leq p_{\star}
$$

Results

- If $q(X)=0$ implies that $\left\|X_{i}\right\|_{2} \leq C$:

$$
\lim _{k \rightarrow \infty} p_{k}=p_{\star}
$$

Results

- If $q(X)=0$ implies that $\left\|X_{i}\right\|_{2} \leq C$:

$$
\lim _{k \rightarrow \infty} p_{k}=p_{\star}
$$

- In practice, we observe very often that R_{2}, R_{3}, or R_{4} already yield the optimal solution p_{\star}

Results

- If $q(X)=0$ implies that $\left\|X_{i}\right\|_{2} \leq C$:

$$
\lim _{k \rightarrow \infty} p_{k}=p_{\star}
$$

- In practice, we observe very often that R_{2}, R_{3}, or R_{4} already yield the optimal solution p_{\star}
- Stopping criterion: if $\operatorname{rank}^{k} M=\operatorname{rank}^{k-1}\left({ }^{k} M\right)$:
- $p_{k}=p_{\star}$
- the optimal $|\Psi\rangle$ and X live in a Hilbert space H of $\operatorname{dim}(H)=\operatorname{rank}^{k} M$.
- We have a procedure to reconstruct the optimal $|\Psi\rangle$ and X.

Method is related to other mathematical techniques

$\begin{array}{cllll}\min _{H, X,|\Psi\rangle} & \langle\Psi| p(X)|\Psi\rangle \\ \text { s.t. } & q(X)=0 \\ & X_{i} X_{j}-X_{j} X_{i}=0\end{array} \quad \Leftrightarrow \quad \min _{x \in \mathbb{R}^{n}} p(x), \quad q(x)=0$
\rightarrow Recover the SDP method for scalar polynomial optimization of [Parrilo 00, Lasserre 01].

- Dual formulation of the SDP relaxations linked to the theory of SOS decompositions of positive polynomials [Putinar 93, Helton and McCullough 04].

Contents

(1) The RDM method based on semidefinite programming
(2) Non-commutative polynomial optimization (NCPO)
(3) The RDM method as a special case of NCPO

4 Other applications of NCPO

Electronic energy as NCPO

The ground-state energy of $N \mathrm{e}^{-}$that can occupy R orbitals is the solution to the following NCPO with operator variables $\left\{a_{1}, \ldots, a_{r}, a_{1}^{\dagger}, \ldots, a_{r}^{\dagger}\right\}$

$$
\begin{array}{cl}
\min & \sum_{i j} H_{i j}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\sum_{i j k l} H_{i j k l}\langle\Psi| a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}|\Psi\rangle \\
\mathrm{s.t.} & \left\{a_{i}, a_{j}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}\right\}-\delta_{i j}=0 \\
& \sum_{i}\left(a_{i}^{\dagger} a_{i}-N\right)|\Psi\rangle=0
\end{array}
$$

Example: relaxation of degree 2

Remember: matrix ${ }^{k} M$ is built as overlap matrix of set of vectors $\left\{X_{\alpha}|\Psi\rangle\right\}$ where X_{α} is at most of degree k.

Example: relaxation of degree 2

Remember: matrix ${ }^{k} M$ is built as overlap matrix of set of vectors $\left\{X_{\alpha}|\Psi\rangle\right\}$ where X_{α} is at most of degree k.

In our case ${ }^{2} M$ is thus built on set of vectors

$$
\left\{|\Psi\rangle, a_{i}|\Psi\rangle, a_{i}^{\dagger}|\Psi\rangle, a_{i} a_{j}|\Psi\rangle, a_{i}^{\dagger} a_{j}^{\dagger}|\Psi\rangle, a_{i}^{\dagger} a_{j}|\Psi\rangle, a_{i} a_{j}^{\dagger}|\Psi\rangle\right\}
$$

Example: relaxation of degree 2

Remember: matrix ${ }^{k} M$ is built as overlap matrix of set of vectors $\left\{X_{\alpha}|\Psi\rangle\right\}$ where X_{α} is at most of degree k.

In our case ${ }^{2} M$ is thus built on set of vectors

$$
\left\{|\Psi\rangle, a_{i}|\Psi\rangle, a_{j}^{\dagger}|\Psi\rangle, a_{i} a_{j}|\Psi\rangle, a_{i}^{\dagger} a_{j}^{\dagger}|\Psi\rangle, a_{i}^{\dagger} a_{j}|\Psi\rangle, a_{i} a_{j}^{\dagger}|\Psi\rangle\right\}
$$

General property

It is sufficient to consider set of vectors $\left\{X_{\alpha}|\Psi\rangle\right\}$ that are linearly independent under the constraints $q(X)=0, r(X)|\Psi\rangle=0$

Example: relaxation of degree 2

Remember: matrix ${ }^{k} M$ is built as overlap matrix of set of vectors $\left\{X_{\alpha}|\Psi\rangle\right\}$ where X_{α} is at most of degree k.

In our case ${ }^{2} M$ is thus built on set of vectors

$$
\left\{|\Psi\rangle, a_{i}|\Psi\rangle, a_{i}^{\dagger}|\Psi\rangle, a_{i} a_{j}|\Psi\rangle, a_{i}^{\dagger} a_{j}^{\dagger}|\Psi\rangle, a_{i}^{\dagger} a_{j}|\Psi\rangle, a_{i} a_{j}^{\dagger}|\Psi\rangle\right\}
$$

General property

It is sufficient to consider set of vectors $\left\{X_{\alpha}|\Psi\rangle\right\}$ that are linearly independent under the constraints $q(X)=0, r(X)|\Psi\rangle=0$
Thus since $a_{i}^{\dagger} a_{j}+a_{j} a_{i}^{\dagger}-\delta_{i j}=0$ and $\sum_{i}\left(a_{i}^{\dagger} a_{i}-N\right)|\Psi\rangle=0$, it is sufficient to consider set

$$
\left\{a_{i}|\Psi\rangle, a_{i}^{\dagger}|\Psi\rangle, a_{i} a_{j}|\Psi\rangle, a_{i}^{\dagger} a_{j}^{\dagger}|\Psi\rangle, a_{i}^{\dagger} a_{j}|\Psi\rangle\right\}
$$

Example: relaxation of degree 2

$$
\begin{aligned}
& \begin{array}{c|ccccc}
& \left.a_{i}\right\rangle & \left.a_{i}^{\dagger}\right\rangle & \left.a_{i} a_{j}\right\rangle & \left.a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle & \left.a_{i}^{\dagger} a_{j}\right\rangle \\
\hline\left\langle a_{k}^{\dagger}\right. & \left\langle a_{k}^{\dagger} a_{i}\right\rangle & \left\langle a_{k}^{\dagger} a_{i}^{\dagger}\right\rangle & \left\langle a_{k}^{\dagger} a_{i} a_{j}\right\rangle & \left\langle a_{k}^{\dagger} a_{i}^{+} a_{j}^{\dagger}\right\rangle & \left\langle a_{k}^{\dagger} a_{i}^{\dagger} a_{j}\right\rangle \\
\left\langle a_{k}\right. & & \left\langle a_{k} a_{i}^{\dagger}\right\rangle & \left\langle a_{k} a_{i} a_{j}\right\rangle & \left\langle a_{k} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle & \left\langle a_{j} a_{i}^{\dagger} a_{j}\right\rangle \\
\left\langle a_{k}^{\dagger} a_{j}^{\dagger}\right. & & & \left\langle a_{k}^{\dagger} a_{j}^{\dagger} a_{i} a_{j}\right\rangle & \left\langle a_{k}^{\dagger} a_{j}^{\dagger} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle & \left\langle a_{k}^{\dagger} a_{j}^{\dagger} a_{i}^{\dagger} a_{j}\right\rangle
\end{array} \\
& \left\langle a_{k} a_{l}\right. \\
& \left\langle a_{k}^{\dagger} a_{l}\right. \\
& \begin{aligned}
\left\langle a_{k} a_{l} a_{l}^{\dagger} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle & \left\langle a_{k} a_{l} a_{a}^{\dagger} a_{j}\right\rangle \\
& \left\langle a_{k}^{\dagger} a_{l} a_{i}^{\dagger} a_{j}\right\rangle
\end{aligned}
\end{aligned}
$$

Example: relaxation of degree 2

Linear constraints on ${ }^{k} M$ which follow from

- the conditions $q(X)=\sum_{\nu} q_{\nu} X_{\nu}=0$:

$$
\sum_{\nu} q_{\nu}\left\langle X_{\alpha}^{\dagger} X_{\nu} X_{\beta}\right\rangle=0 \quad \forall \alpha, \beta
$$

For instance: $q(X)=\left\{a_{i}^{\dagger}, a_{j}\right\}-\delta_{i j}, X_{\alpha}=a_{k}^{\dagger}, X_{\beta}=a_{l}$

$$
\Rightarrow\left\langle a_{k}^{\dagger} a_{i}^{\dagger} a_{j} a_{l}\right\rangle+\left\langle a_{k}^{\dagger} a_{j} a_{i}^{\dagger} a_{l}\right\rangle-\delta_{i j}\left\langle a_{k}^{\dagger} a_{l}\right\rangle=0
$$

- and the conditions $r(X)|\Psi\rangle=\sum_{\nu} r_{\nu} X_{\nu}|\Psi\rangle=0$:

$$
\sum_{\nu} q_{\nu}\left\langle X_{\alpha}^{\dagger} X_{\nu}\right\rangle=0 \quad \forall \alpha
$$

For instance: $r(X)=\sum_{i}\left(a_{i}^{\dagger} a_{j}-N\right), X_{\alpha}=a_{k} a_{l}$:

$$
\Rightarrow \sum_{i}\left\langle a_{k} a_{l} a_{i}^{\dagger} a_{i}\right\rangle-N\left\langle a_{k} a_{l}\right\rangle=0
$$

Example: relaxation of degree 2

	a_{i})	$\left.a_{i}^{\dagger}\right\rangle$	$\left.a_{i} a_{j}\right\rangle$	$\left.a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle$	$\left.a_{i}^{\dagger} a_{j}\right\rangle$
$\left\langle a_{k}^{\dagger}\right.$	$\left\langle a_{k}^{\dagger} a_{i}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{i}^{\dagger}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{i} a_{j}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{i}^{\dagger} a_{j}^{+}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{i}^{\dagger} a_{j}\right\rangle$
$\left\langle a_{k}\right.$		$\left\langle a_{k} a_{i}^{\dagger}\right\rangle$	$\left\langle a_{k} a_{i} a_{j}\right\rangle$	$\left\langle a_{k} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle$	$\left\langle a_{j} a_{j}^{\dagger} a_{j}\right\rangle$
${ }^{2} M=\left\langle a_{k}^{\dagger} a_{l}^{\dagger}\right.$			$\left\langle a_{k}^{\dagger} a_{l}^{\dagger} a_{i} a_{j}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{j}^{\dagger} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{j}^{\dagger} a_{j}^{\dagger} a_{j}\right\rangle$
$\left\langle a_{k} a_{l}\right.$				$\left\langle a_{k} a_{l} a_{l}^{\dagger} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle$	$\left\langle a_{k} a_{l} a_{i}^{\dagger} a_{j}\right\rangle$
$\left\langle a_{k}^{\dagger} a_{l}\right.$					$\left\langle a_{k}^{\dagger} a_{l} a_{i}^{\dagger} a_{j}\right\rangle$

Example: relaxation of degree 2

$$
\begin{array}{c|ccccc}
& \left.a_{i}\right\rangle & \left.a_{i}^{\dagger}\right\rangle & \left.a_{i} a_{j}\right\rangle & \left.a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle & \left.a_{i}^{\dagger} a_{j}\right\rangle \\
\hline\left\langle a_{k}^{\dagger}\right. & \left\langle a_{k}^{\dagger} a_{i}\right\rangle & & & & \\
\left\langle a_{k}\right. & & \left\langle a_{k} a_{i}^{\dagger}\right\rangle & & & \\
\left\langle a_{k}^{\dagger} a_{l}^{\dagger}\right. & & & \left\langle a_{k}^{\dagger} a_{l}^{\dagger} a_{i} a_{j}\right\rangle & & \left\langle a_{k} a_{l} a_{l}^{\dagger} a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle \\
& \left\langle a_{k} a_{l}\right. & & & & \\
& & & & & \\
a_{k}^{\dagger} a_{l} & & & & \left.a_{k}^{\dagger} a_{l} a_{i}^{\dagger} a_{j}\right\rangle
\end{array}
$$

Example: relaxation of degree 2

	$\left.a_{i}\right\rangle$	$\left.a_{i}^{\dagger}\right\rangle$	$\left.a_{i} a_{j}\right\rangle$	$\left.a_{i}^{\dagger} a_{j}^{\dagger}\right\rangle$	$\left.a_{i}^{\dagger} a_{j}\right\rangle$
	$\left\langle a_{k}^{\dagger}\right.$	${ }^{1} D$			
${ }^{2} M=$	$\left\langle a_{k}\right.$		${ }^{1} Q$		
	$\left\langle a_{k}^{\dagger} a_{l}^{\dagger}\right.$			${ }^{2} D$	
	$\left\langle a_{k} a_{l}\right.$				
				${ }^{2} Q$	
					${ }^{2} G$

Example: relaxation of degree 2

+ Linear relations between ${ }^{1} D,{ }^{1} Q,{ }^{2} D,{ }^{2} Q,{ }^{2} G$

Example: relaxation of degree 2

+ Linear relations between ${ }^{1} D,{ }^{1} Q,{ }^{2} D,{ }^{2} Q,{ }^{2} G$
We recover the same SDP than in the RDM method

Electronic energy as NCPO

Similarly, relaxations of higher-degree of the problem

$$
\begin{array}{cl}
\min & \sum_{i j} H_{i j}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\sum_{i j k l} H_{i j k l}\langle\Psi| a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}|\Psi\rangle \\
\mathrm{s.t.} & \left\{a_{i}, a_{j}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}\right\}-\delta_{i j}=0 \\
& \sum_{i}\left(a_{i}^{\dagger} a_{i}-N\right)|\Psi\rangle=0
\end{array}
$$

correspond to implementing higher-order positivity N-representability constraints of the RDM method.

Electronic energy as NCPO

Similarly, relaxations of higher-degree of the problem

$$
\begin{array}{cl}
\min & \sum_{i j} H_{i j}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\sum_{i j k l} H_{i j k l}\langle\Psi| a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}|\Psi\rangle \\
\mathrm{s.t.} & \left\{a_{i}, a_{j}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}\right\}-\delta_{i j}=0 \\
& \sum_{i}\left(a_{i}^{\dagger} a_{i}-N\right)|\Psi\rangle=0
\end{array}
$$

correspond to implementing higher-order positivity N-representability constraints of the RDM method.

Note that here

$$
p_{2} \leq p_{3} \leq \ldots p_{N}=p_{\star}
$$

Contents

(1) The RDM method based on semidefinite programming

2 Non-commutative polynomial optimization (NCPO)
(3) The RDM method as a special case of NCPO

4 Other applications of NCPO

Quantum violation of Bell inequalities

Original motivation for our method [PRL 07, NJP 08]

$$
\begin{array}{ll}
\min & \sum_{a b x y} c_{a b x y}\langle\Psi| E_{a}^{x} E_{b}^{y}|\psi\rangle \\
\text { s.t. } & E_{a}^{x} E_{a}^{X}=\delta_{a a^{\prime}} E_{a}^{X} \text { and } \quad \sum_{a} E_{a}^{x}=1 \\
& E_{b}^{y} E_{b^{\prime}}^{y}=\delta_{b b^{\prime}} E_{b}^{y} \text { and } \sum_{b} E_{b}^{y}=1 \\
& {\left[E_{a}^{X}, E_{b}^{y}\right]=0}
\end{array}
$$

The dimension of H is not bounded

Quantum violation of Bell inequalities

Original motivation for our method [PRL 07, NJP 08]

$$
\begin{array}{ll}
\min & \sum_{a b x y} c_{a b x y}\langle\Psi| E_{a}^{x} E_{b}^{y}|\Psi\rangle \\
\text { s.t. } & E_{a}^{x} E_{a^{\prime}}^{X}=\delta_{a a^{\prime}} E_{a}^{x} \text { and } \quad \sum_{a} E_{a}^{x}=1 \\
& E_{b}^{y} E_{b^{\prime}}^{y}=\delta_{b b^{\prime}} E_{b}^{y} \text { and } \sum_{b} E_{b}^{y}=1 \\
& {\left[E_{a}^{x}, E_{b}^{y}\right]=0}
\end{array}
$$

The dimension of H is not bounded

Has been applied to 241 Bell inequalities in [Pal, Vertesi 08] Optimal solution obtained for 221 Bell inequalities For the remaining 20 ones: gap between our LB and best known UB is of order 10^{-4}.

Other applications

- Security of device-independent cryptography \checkmark
- Continuous variable system \checkmark

Particle in a double-well potential:

$$
\begin{array}{cl}
\min & \frac{p^{2}}{2}+\frac{x^{2}}{2}+m x^{4} \\
\text { s.t. } & {[x, p]=i}
\end{array}
$$

Conclusion

Similar techniques than the ones in the SDP RDM method allow to solve a broad class of non-commutative polynomial optimization problems.

Interest of our method for solving NCPO:

- Flexible and works on different problems
- Yields lower-bounds
- Does not rely on symmetries (good for quantum chemistry)
- Allows to deal with infinite Hilbert space without truncating the Hilbert space

