Non-commutative polynomial optimization and the variational RDM method

Antonio Acín¹ Artur Garcia¹
Miguel Navascués² Stefano Pironio³

¹ICFO, Barcelona ²Imperial College, London ³ GAP, Geneva

Workshop on Quantum Marginals and Density Matrices, Fields Institute, July 09

Outlook

RDM method:

N-representability of the 2-RDM \rightarrow positivity constraints.

⇒ Semidefinite programming can be used to compute electronic energy of atoms and molecules.

This talk: The SDP-based RDM method is a special case of a more general and abstract approach (not motivated by *N*-representability).

- We have introduced a method to solve non-commutative polynomial optimization problems.
- Computing the energy of a system of N electrons is an instance of these optimization problems.
- When applying our method to this particular instance, we recover the RDM method.

Contents

- 1 The RDM method based on semidefinite programming
- Non-commutative polynomial optimization (NCPO)
- The RDM method as a special case of NCPO
- Other applications of NCPO

Contents

- 1 The RDM method based on semidefinite programming
- Non-commutative polynomial optimization (NCPO)
- Other applications of NCPO

Variational approach

Introduce finite set of *R* basis functions (orbitals)

$$\phi_1(\mathbf{r}), \phi_2(\mathbf{r}), \dots, \phi_R(\mathbf{r})$$

and expand the *N*-electron wave-function $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)$ as

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\sum_{j_1\ldots j_N}c_{j_1\ldots j_N}\,\phi_{j_1}(\mathbf{r}_1)\ldots\phi_{j_N}(\mathbf{r}_N).$$

The corresponding Hamiltonian is

$$H = \sum_{ij} H_{ij} a_i^{\dagger} a_j + \sum_{ijkl} H_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$$

where a_i , a_i^{\dagger} are the annihilation and creation operators associated to orbital ϕ_i .

Energy is determined by the 2-RDM

$$E = \langle H \rangle = \sum_{ij} H_{ij} \langle a_i^{\dagger} a_j \rangle + \sum_{ijkl} H_{ijkl} \langle a_i^{\dagger} a_j^{\dagger} a_k a_l \rangle$$
$$= \sum_{ij} H_{ij}^{1} D_{ij} + \sum_{ijkl} H_{ijkl}^{2} D_{ijkl}$$

where ${}^{1}D$ and ${}^{2}D$ are the one-particule and two-particule reduced density matrices defined by

$$^{1}D_{ij}=\langle a_{i}^{\dagger}a_{j}
angle$$
 $^{2}D_{ijkl}=\langle a_{i}^{\dagger}a_{j}^{\dagger}a_{k}a_{l}
angle$

Note that ${}^{1}D_{ij} = (N-1)\sum_{k}{}^{2}D_{ikkj}$.

N-representability problem

Ground state energy:

$$E_g = \min_{2D} \left\{ \sum_{ij} H_{ij} \, {}^1D_{ij} + \sum_{ijkl} H_{ijkl} \, {}^2D_{ijkl} \right\}$$

N-representability problem

Ground state energy:

$$E_g = \min_{2D} \left\{ \sum_{ij} H_{ij}^{1} D_{ij} + \sum_{ijkl} H_{ijkl}^{2} D_{ijkl} \right\}$$

Problem: this yields an energy far lower than the exact ones because not every 2-particule density matrix 2D originates from a N-particle wavefunction $|\psi\rangle$.

We must impose N-representability conditions on ²D

Necessary N-representability conditions

- Positivity conditions [Coleman 63, Garrod and Percus 64]:
 - ${}^{1}D \succeq 0$, ${}^{1}Q \succeq 0$, where

$${}^{1}D_{ij} = \langle a_{i}^{\dagger} a_{j} \rangle$$

$${}^{1}Q_{ij} = \langle a_{i} a_{j}^{\dagger} \rangle$$

• D, Q, G conditions: ${}^2D \succeq 0$, ${}^2Q \succeq 0$, ${}^2G \succeq 0$, where

$$^{2}D_{ijkl} = \langle a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l} \rangle$$

$$^{2}Q_{ijkl} = \langle a_{i} a_{j}^{\dagger} a_{k}^{\dagger} a_{l}^{\dagger} \rangle$$

$$^{2}G_{ijkl} = \langle a_{i}^{\dagger} a_{j} a_{k}^{\dagger} a_{l} \rangle$$

Linear conditions that relate all these matrices to ²D For instance:

$${}^{1}Q_{ij} = \delta_{ij} - {}^{1}D_{ij} = (N-1)\sum_{k} {}^{2}D_{ikkj}$$
 ${}^{2}Q_{ijkl} = \delta_{jk} {}^{1}D_{il} - {}^{2}D_{ikjl}$

Ground-state energy from semidefinite programming

Minimization of

$$E = \sum_{ij} H_{ij}^{-1} D_{ij} + \sum_{ijkl} H_{ijkl}^{-2} D_{ijkl}$$

subject to the previous positivity and linear constraints is a typical instance of semidefinite programming.

This minimization problem can be solved exactly.

It provides a lower-bound on the ground-state energy.

Higher-order constraints

A whole hierarchy of additional SDP constraints can be added to increase accuracy [Erdahl, Jin 00], [Mazziotti, Erdahl 01].

E.g.: Positivity conditions on the 3-RDMs:

$$^{3}D_{ijklmn} = \langle a_{i}^{\dagger}a_{j}^{\dagger}a_{k}^{\dagger}a_{l}a_{m}a_{n}\rangle$$

$$^{3}E_{ijklmn} = \langle a_{i}^{\dagger}a_{j}^{\dagger}a_{k}a_{l}^{\dagger}a_{m}a_{n}\rangle$$

$$^{3}F_{ijklmn} = \langle a_{i}^{\dagger}a_{j}a_{k}a_{l}^{\dagger}a_{m}^{\dagger}a_{n}\rangle$$

$$^{3}Q_{ijklmn} = \langle a_{i}a_{j}a_{k}a_{l}^{\dagger}a_{m}^{\dagger}a_{n}^{\dagger}\rangle$$

Why are all these matrices positive?

All previous matrices are of the form

$$egin{array}{ll} M_{ij} &=& \langle \Psi | C_i^\dagger C_j | \Psi
angle \ &=& \langle v_i | v_j
angle \end{array}$$
 where $|v_i
angle = C_i |\Psi
angle$. For instance: ${}^2G_{ijkl} = \langle a_i^\dagger a_j a_k^\dagger a_l
angle = \langle \Psi | C_{ji}^\dagger C_{kl} | \Psi
angle \ &=& \mathrm{with} \ C_{kl} = a_k^\dagger a_l.$

• M is positive semidefinite if and only if $M_{ij} = \langle v_i | v_j \rangle$.

Contents

- 1 The RDM method based on semidefinite programming
- 2 Non-commutative polynomial optimization (NCPO)
- The RDM method as a special case of NCPO
- Other applications of NCPO

Non-commutative polynomial optimization

Let $X = \{X_1, \dots, X_n\}$ be n variables that we view as operators acting on some unspecified Hilbert space H.

Let
$$p(X)$$
, $q(X)$, $r(X)$ be polynomials in X .
E.g.: $p(X) = X_1 + 3X_1X_2 - 4X_4X_2$.

We want to solve

$$\min_{\substack{H,X,|\Psi\rangle\\ \text{s.t.}}} \frac{\langle \Psi | p(X) | \Psi \rangle}{q(X) = 0}
r(X) | \Psi \rangle = 0$$

Note: H is not fixed in advance, dim(H) is not bounded.

Why *non-commutative* optimization?

If we add the commutativity constraints $X_iX_j + X_jX_i = 0$, the scalar representation $X_i = x_i \in \mathbb{R}$ is always a solution.

The optimization problem is then equivalent to a standard polynomial optimization over \mathbb{R}^n

$$\min_{x \in \mathbb{R}^n} p(x)$$
s.t. $q(x) = 0$

$$r(x) = 0$$

Solving NCPO through semidefinite programming

In arXiv:0903.4368, we introduce a sequence of relaxations R_i that provide lower-bounds on the global solution of the original NCPO problem.

Each of these relaxations R_i is a semidefinite program.

In the limit $R_i \to R_{\infty}$, the lower-bounds converge to the global solution of NCPO.

Notation

Monomials

• Given the *n* operators X_1, \ldots, X_n , a monomial X_{α} of degree *k* is a product of *k* operators X_i :

$$X_{\alpha} = X_{\alpha_1} X_{\alpha_2} \dots X_{\alpha_k}$$

- We denote the identity operator I as the monomial $X_0 = I$.
- The product of two monomials $X_{\alpha}X_{\beta}$ is itself a monomial that we denote $X_{\alpha\beta} = X_{\alpha}X_{\beta}$.

Polynomials

A polynomial p(X) is a linear combination of monomials

$$p(X) = \sum_{\alpha} p_{\alpha} X_{\alpha}$$

Construction of the relaxation of degree *k*

Consider the set of all vectors of the form

$$\{X_{\alpha}|\Psi\rangle\}=\{|\Psi\rangle,X_{i}|\Psi\rangle,X_{i}X_{j}|\Psi\rangle,\ldots,(X_{i_{1}}\ldots X_{i_{k}})|\Psi\rangle\}$$

where X_{α} is at most of degree k.

Then the matrix ^kM with entries

$${}^{k}\!M_{\alpha\beta} = \langle \Psi | X_{\alpha}^{\dagger} X_{\beta} | \Psi \rangle$$

is positive definite: ${}^kM \succeq 0$.

Construction of the relaxation of degree k

Consider the set of all vectors of the form

$$\{\textbf{\textit{X}}_{\alpha}|\Psi\rangle\}=\{|\Psi\rangle,\textbf{\textit{X}}_{i}|\Psi\rangle,\textbf{\textit{X}}_{i}\textbf{\textit{X}}_{j}|\Psi\rangle,\ldots,(\textbf{\textit{X}}_{i_{1}}\ldots\textbf{\textit{X}}_{i_{k}})|\Psi\rangle\}$$

where X_{α} is at most of degree k.

Then the matrix ^kM with entries

$${}^{k}M_{\alpha\beta} = \langle \Psi | X_{\alpha}^{\dagger} X_{\beta} | \Psi \rangle$$

is positive definite: ${}^kM \succeq 0$.

The objective function

$$\begin{split} \langle \Psi | p(X) | \Psi \rangle &= \sum_{\alpha} p_{\alpha} \langle \Psi | X_{\alpha} | \Psi \rangle \\ &= \sum_{\alpha} p_{\alpha} \langle \Psi | X_{0}^{\dagger} X_{\alpha} | \Psi \rangle = \sum_{\alpha} p_{\alpha}^{\ \ k} M_{0\alpha} \end{split}$$

is a linear function of the entries of ^kM

Construction of the relaxation of degree *k*

• The conditions q(X) = 0 and $r(X)|\Psi\rangle = 0$ induce linear constraints on kM :

$$\begin{split} q(X) &= \sum_{\nu} q_{\nu} X_{\nu} = 0 \quad \Rightarrow \quad \sum_{\nu} q_{\nu} \langle \Psi | X_{\alpha}^{\dagger} X_{\nu} X_{\beta} | \Psi \rangle = 0 \quad \forall \alpha, \beta \\ &\qquad \sum_{\nu} q_{\nu} \langle \Psi | X_{\alpha}^{\dagger} X_{\nu\beta} | \Psi \rangle = 0 \quad \forall \alpha, \beta \\ &\qquad \sum_{\nu} q_{\nu} \, ^{k} \! M_{\alpha,\nu\beta} = 0 \quad \forall \alpha, \beta \end{split}$$

$$r(X)|\Psi\rangle = \sum_{\nu} r_{\nu} X_{\nu} |\Psi\rangle = 0 \quad \Rightarrow \quad \sum_{\nu} r_{\nu} \langle \Psi | X_{\alpha}^{\dagger} X_{\nu} |\Psi\rangle = 0 \quad \forall \alpha$$

$$\sum_{\nu} r_{\nu}^{\ \ k} M_{\alpha,\nu} = 0 \quad \forall \alpha$$

Relaxation of degree k

We define the relaxation R_k of degree k as the following SDP:

$$\begin{array}{ll} \underset{k_{M}}{\text{min}} & \sum_{\alpha} p_{\alpha} \, {}^{k}\!M_{0\alpha} \\ \text{s.t.} & {}^{k}\!M \succeq 0 \\ & \sum_{\nu} q_{\nu} \, {}^{k}\!M_{\alpha,\nu\beta} = 0 \quad \forall \alpha,\beta \\ & \sum_{\nu} r_{\nu} \, {}^{k}\!M_{\alpha,\nu} = 0 \quad \forall \alpha \end{array}$$

Relaxation of degree k

We define the relaxation R_k of degree k as the following SDP:

$$\begin{array}{ll} \underset{k_{M}}{\text{min}} & \sum_{\alpha} p_{\alpha} \, {}^{k}\!M_{0\alpha} \\ \text{s.t.} & {}^{k}\!M \succeq 0 \\ & \sum_{\nu} q_{\nu} \, {}^{k}\!M_{\alpha,\nu\beta} = 0 \quad \forall \alpha,\beta \\ & \sum_{\nu} r_{\nu} \, {}^{k}\!M_{\alpha,\nu} = 0 \quad \forall \alpha \end{array}$$

Let p_k be the solution of R_k and p_* be the solution of the original NCPO problem, then

$$p_k \leq p_{k+1} \leq ... \leq p_{\star}$$

Results

• If q(X) = 0 implies that $||X_i||_2 \le C$:

$$\lim_{k\to\infty} p_k = p_\star$$

Results

• If q(X) = 0 implies that $||X_i||_2 \le C$:

$$\lim_{k\to\infty} p_k = p_\star$$

 In practice, we observe very often that R₂, R₃, or R₄ already yield the optimal solution p_{*}

Results

• If q(X) = 0 implies that $||X_i||_2 \le C$:

$$\lim_{k\to\infty} p_k = p_\star$$

- In practice, we observe very often that R₂, R₃, or R₄ already yield the optimal solution p_⋆
- Stopping criterion: if rank kM = rank ${}^{k-1}({}^kM)$:
 - $p_k = p_{\star}$
 - the optimal |Ψ⟩ and X live in a Hilbert space H of dim(H) = rank ^kM.
 - We have a procedure to reconstruct the optimal $|\Psi\rangle$ and X.

Method is related to other mathematical techniques

→ Recover the SDP method for scalar polynomial optimization of [Parrilo 00, Lasserre 01].

 Dual formulation of the SDP relaxations linked to the theory of SOS decompositions of positive polynomials [Putinar 93, Helton and McCullough 04].

Contents

- 1 The RDM method based on semidefinite programming
- Non-commutative polynomial optimization (NCPO)
- The RDM method as a special case of NCPO
- Other applications of NCPO

Electronic energy as NCPO

The ground-state energy of N e⁻ that can occupy R orbitals is the solution to the following NCPO with operator variables $\{a_1, \ldots, a_r, a_1^{\dagger}, \ldots, a_r^{\dagger}\}$

$$\begin{aligned} & \min \quad \sum_{ij} H_{ij} \langle \Psi | a_i^{\dagger} a_j | \Psi \rangle + \sum_{ijkl} H_{ijkl} \langle \Psi | a_i^{\dagger} a_j^{\dagger} a_k a_l | \Psi \rangle \\ & \text{s.t.} \quad \{a_i, a_j\} = 0 \\ & \quad \{a_i^{\dagger}, a_j^{\dagger}\} = 0 \\ & \quad \{a_i^{\dagger}, a_j\} - \delta_{ij} = 0 \\ & \quad \sum_{i} \left(a_i^{\dagger} a_i - N\right) | \Psi \rangle = 0 \end{aligned}$$

Remember: matrix kM is built as overlap matrix of set of vectors $\{X_{\alpha}|\Psi\rangle\}$ where X_{α} is at most of degree k.

Remember: matrix kM is built as overlap matrix of set of vectors $\{X_{\alpha}|\Psi\rangle\}$ where X_{α} is at most of degree k.

In our case ${}^{2}M$ is thus built on set of vectors

$$\{|\Psi\rangle,a_{i}|\Psi\rangle,a_{i}^{\dagger}|\Psi\rangle,a_{i}a_{j}|\Psi\rangle,a_{i}^{\dagger}a_{j}^{\dagger}|\Psi\rangle,a_{i}^{\dagger}a_{j}|\Psi\rangle,a_{i}a_{j}^{\dagger}|\Psi\rangle\}$$

Remember: matrix kM is built as overlap matrix of set of vectors $\{X_{\alpha}|\Psi\rangle\}$ where X_{α} is at most of degree k.

In our case ²M is thus built on set of vectors

$$\{|\Psi\rangle,a_{i}|\Psi\rangle,a_{i}^{\dagger}|\Psi\rangle,a_{i}a_{j}|\Psi\rangle,a_{i}^{\dagger}a_{j}^{\dagger}|\Psi\rangle,a_{i}^{\dagger}a_{j}|\Psi\rangle,a_{i}a_{j}^{\dagger}|\Psi\rangle\}$$

General property

It is sufficient to consider set of vectors $\{X_{\alpha}|\Psi\rangle\}$ that are linearly independent under the constraints $q(X)=0, r(X)|\Psi\rangle=0$

Remember: matrix kM is built as overlap matrix of set of vectors $\{X_{\alpha}|\Psi\rangle\}$ where X_{α} is at most of degree k.

In our case ²M is thus built on set of vectors

$$\{|\Psi\rangle,a_i|\Psi\rangle,a_i^{\dagger}|\Psi\rangle,a_ia_j|\Psi\rangle,a_i^{\dagger}a_j^{\dagger}|\Psi\rangle,a_i^{\dagger}a_j|\Psi\rangle,a_ia_j^{\dagger}|\Psi\rangle\}$$

General property

It is sufficient to consider set of vectors $\{X_{\alpha}|\Psi\rangle\}$ that are linearly independent under the constraints q(X)=0, $r(X)|\Psi\rangle=0$

Thus since $a_i^{\dagger} a_j + a_j a_i^{\dagger} - \delta_{ij} = 0$ and $\sum_i \left(a_i^{\dagger} a_i - N \right) |\Psi\rangle = 0$, it is sufficient to consider set

$$\{a_i|\Psi\rangle,a_i^{\dagger}|\Psi\rangle,a_ia_j|\Psi\rangle,a_i^{\dagger}a_i^{\dagger}|\Psi\rangle,a_i^{\dagger}a_j|\Psi\rangle\}$$

$${}^{2}\!M = \begin{array}{|c|c|c|c|c|} \hline & a_{i} \rangle & a_{i}^{\dagger} \rangle & a_{i}a_{j} \rangle & a_{i}^{\dagger}a_{j}^{\dagger} \rangle & a_{i}^{\dagger}a_{j} \rangle \\ \hline \langle a_{k}^{\dagger} & \langle a_{k}^{\dagger}a_{i} \rangle & \langle a_{k}^{\dagger}a_{i}^{\dagger} \rangle & \langle a_{k}^{\dagger}a_{i}a_{j} \rangle & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{j} \rangle & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{j} \rangle \\ \hline \langle a_{k} & \langle a_{k}a_{i}^{\dagger} \rangle & \langle a_{k}a_{i}a_{j} \rangle & \langle a_{k}a_{i}^{\dagger}a_{j}^{\dagger} \rangle & \langle a_{j}a_{i}^{\dagger}a_{j} \rangle \\ \langle a_{k}^{\dagger}a_{l}^{\dagger} & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{i}a_{j} \rangle & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{i}^{\dagger}a_{j}^{\dagger} \rangle & \langle a_{k}a_{l}a_{i}^{\dagger}a_{j} \rangle \\ \langle a_{k}a_{l} & \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l}a_{i}^{\dagger}a_{j} \rangle & \langle a_{k}a_{l}a_{i}^{\dagger}a_{j} \rangle \\ \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{j}^{\dagger} \rangle & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{j} \rangle \\ \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{j}^{\dagger} \rangle & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{j} \rangle \\ \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l} & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{j}^{\dagger} \rangle & \langle a_{k}^{\dagger}a_{l}^{\dagger}a_{j}^{\dagger} \rangle \end{array}$$

Linear constraints on ^kM which follow from

• the conditions $q(X) = \sum_{\nu} q_{\nu} X_{\nu} = 0$:

$$\sum_{\alpha} q_{\nu} \langle X_{\alpha}^{\dagger} X_{\nu} X_{\beta} \rangle = 0 \quad \forall \alpha, \beta$$

For instance:
$$q(X) = \{a_i^{\dagger}, a_j\} - \delta_{ij}, X_{\alpha} = a_k^{\dagger}, X_{\beta} = a_l \}$$

$$\Rightarrow \langle a_k^{\dagger} a_i^{\dagger} a_i a_l \rangle + \langle a_k^{\dagger} a_i a_i^{\dagger} a_l \rangle - \delta_{ii} \langle a_k^{\dagger} a_l \rangle = 0$$

• and the conditions $r(X)|\Psi\rangle = \sum_{\nu} r_{\nu} X_{\nu} |\Psi\rangle = 0$:

$$\sum_{\nu} q_{\nu} \langle X_{\alpha}^{\dagger} X_{\nu} \rangle = 0 \quad \forall \alpha$$

For instance: $r(X) = \sum_{i} (a_{i}^{\dagger} a_{j} - N), X_{\alpha} = a_{k} a_{l}$:

$$\Rightarrow \sum_i \langle a_k a_l a_i^\dagger a_i \rangle - N \langle a_k a_l \rangle = 0$$

		$ a_i angle$	$a_i^\dagger angle$	$a_i a_j angle$	$a_i^\dagger a_i^\dagger angle$	$a_i^\dagger a_j angle$
	$\langle a_k^\dagger$	$\langle a_k^\dagger a_i \rangle$	$\langle a_k^\dagger a_i^\dagger angle$	$\langle a_k^\dagger a_i a_j angle$	$\langle a_k^\dagger a_i^\dagger a_j^\dagger \rangle$	$\langle a_k^\dagger a_i^\dagger a_j \rangle$
	$\langle a_k$		$\langle a_k a_i^\dagger angle$	$\langle a_k a_i a_j \rangle$	$\langle a_k a_i^\dagger a_i^\dagger angle$	$\langle a_j a_i^\dagger a_j angle$
$^{2}M =$	$\langle a_k^\dagger a_l^\dagger$			$\langle a_k^\dagger a_l^\dagger a_i a_j angle$	$\langle a_k^\dagger a_l^\dagger a_i^\dagger a_j^\dagger angle$	$\langle a_k^\dagger a_l^\dagger a_i^\dagger a_j angle$
	$\langle a_k a_l$				$\langle a_k a_l a_l^{\dagger} a_i^{\dagger} a_j^{\dagger} \rangle$	$\langle a_k a_l a_i^\dagger a_j \rangle$
	$\langle a_k^\dagger a_l$					$\langle a_k^\dagger a_l a_i^\dagger a_j angle$

$${}^{2}M = \begin{array}{c|cccc} & a_{i} \rangle & a_{i}^{\dagger} \rangle & a_{i}a_{j} \rangle & a_{i}^{\dagger}a_{j}^{\dagger} \rangle & a_{i}^{\dagger}a_{j} \rangle \\ \hline \langle a_{k}^{\dagger} & \langle a_{k}^{\dagger}a_{i} \rangle & & & & \\ \langle a_{k}^{\dagger}a_{i}^{\dagger} & & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{i} \rangle & & & \\ \langle a_{k}^{\dagger}a_{i}^{\dagger} & & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{i} \rangle & & & \\ \langle a_{k}a_{i} & & & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{i} \rangle & & \\ \langle a_{k}^{\dagger}a_{i} & & & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{i} \rangle & & \\ \langle a_{k}^{\dagger}a_{i} & & & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{i} \rangle & & \\ \hline \langle a_{k}^{\dagger}a_{i} a_{i} \rangle & & & \langle a_{k}^{\dagger}a_{i}^{\dagger}a_{i} \rangle & \\ \end{array}$$

$$\begin{array}{c|ccccc}
 & a_{i} \rangle & a_{i}^{\dagger} \rangle & a_{i}a_{j} \rangle & a_{i}^{\dagger}a_{j}^{\dagger} \rangle & a_{i}^{\dagger}a_{j} \rangle \\
\hline
\langle a_{k}^{\dagger} & {}^{1}D & & & \\
\langle a_{k} & {}^{1}Q & & & \\
{}^{2}M = & \langle a_{k}^{\dagger}a_{j}^{\dagger} & & & {}^{2}D & \\
\langle a_{k}a_{l} & & & {}^{2}G & & \\
\langle a_{k}^{\dagger}a_{l} & & & & {}^{2}G & & \\
\end{array}$$

+ Linear relations between ¹D, ¹Q, ²D, ²Q, ²G

$${}^{2}M = \begin{array}{c|cccc} & a_{i} \rangle & a_{i}^{\dagger} \rangle & a_{i}a_{j} \rangle & a_{i}^{\dagger}a_{j}^{\dagger} \rangle & a_{i}^{\dagger}a_{j} \rangle \\ \hline \langle a_{k}^{\dagger} & {}^{1}D & & & & \\ \langle a_{k} & {}^{1}Q & & & \\ \langle a_{k}^{\dagger}a_{j}^{\dagger} & & {}^{2}D & & \\ \langle a_{k}a_{l} & & & {}^{2}Q & & \\ \langle a_{k}^{\dagger}a_{l} & & & {}^{2}G \end{array}$$

+ Linear relations between ¹D, ¹Q, ²D, ²Q, ²G

We recover the same SDP than in the RDM method

Electronic energy as NCPO

Similarly, relaxations of higher-degree of the problem

$$\begin{aligned} & \min \quad \sum_{ij} H_{ij} \langle \Psi | a_i^{\dagger} a_j | \Psi \rangle + \sum_{ijkl} H_{ijkl} \langle \Psi | a_i^{\dagger} a_j^{\dagger} a_k a_l | \Psi \rangle \\ & \text{s.t.} \quad \{a_i, a_j\} = 0 \\ & \quad \{a_i^{\dagger}, a_j^{\dagger}\} = 0 \\ & \quad \{a_i^{\dagger}, a_j\} - \delta_{ij} = 0 \\ & \quad \sum_{i} \left(a_i^{\dagger} a_i - N\right) | \Psi \rangle = 0 \end{aligned}$$

correspond to implementing higher-order positivity *N*-representability constraints of the RDM method.

Electronic energy as NCPO

Similarly, relaxations of higher-degree of the problem

$$\begin{array}{ll} \text{min} & \sum_{ij} H_{ij} \langle \Psi | a_i^\dagger a_j | \Psi \rangle + \sum_{ijkl} H_{ijkl} \langle \Psi | a_i^\dagger a_j^\dagger a_k a_l | \Psi \rangle \\ \text{s.t.} & \{a_i, a_j\} = 0 \\ & \{a_i^\dagger, a_j^\dagger\} = 0 \\ & \{a_i^\dagger, a_j\} - \delta_{ij} = 0 \\ & \sum_i \left(a_i^\dagger a_i - N\right) | \Psi \rangle = 0 \end{array}$$

correspond to implementing higher-order positivity *N*-representability constraints of the RDM method.

Note that here

$$p_2 \leq p_3 \leq \dots p_N = p_{\star}$$

Contents

- 1 The RDM method based on semidefinite programming
- Non-commutative polynomial optimization (NCPO)
- Other applications of NCPO

Quantum violation of Bell inequalities

Original motivation for our method [PRL 07, NJP 08]

min
$$\sum_{abxy} c_{abxy} \langle \Psi | E_a^x E_b^y | \Psi \rangle$$

s.t. $E_a^x E_{a'}^x = \delta_{aa'} E_a^x$ and $\sum_a E_a^x = I$
 $E_b^y E_{b'}^y = \delta_{bb'} E_b^y$ and $\sum_b E_b^y = I$
 $[E_a^x, E_b^y] = 0$

The dimension of *H* is not bounded

Quantum violation of Bell inequalities

Original motivation for our method [PRL 07, NJP 08]

min
$$\sum_{abxy} c_{abxy} \langle \Psi | E_a^x E_b^y | \Psi \rangle$$

s.t. $E_a^x E_{a'}^x = \delta_{aa'} E_a^x$ and $\sum_a E_a^x = I$
 $E_b^y E_{b'}^y = \delta_{bb'} E_b^y$ and $\sum_b E_b^y = I$
 $[E_a^x, E_b^y] = 0$

The dimension of H is not bounded

Has been applied to 241 Bell inequalities in [Pal, Vertesi 08] Optimal solution obtained for 221 Bell inequalities For the remaining 20 ones: gap between our LB and best known UB is of order 10⁻⁴.

Other applications

- Security of device-independent cryptography √
- Continuous variable system √
 Particle in a double-well potential:

min
$$\frac{p^2}{2} + \frac{x^2}{2} + mx^4$$

s.t. $[x, p] = i$

...

Conclusion

Similar techniques than the ones in the SDP RDM method allow to solve a broad class of non-commutative polynomial optimization problems.

Interest of our method for solving NCPO:

- Flexible and works on different problems
- Yields lower-bounds
- Does not rely on symmetries (good for quantum chemistry)
- Allows to deal with infinite Hilbert space without truncating the Hilbert space