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Quantum marginal problem

The Quantum Marginal Problem came into focus about 2003
in connection with QI applications. In its simplest form the
problem is about constraints on reduced states ρA, ρB , ρC of a
pure state ψ ∈ HABC = HA ⊗HB ⊗HC . Clearly the
compatibility depends only on spectra

λA = Spec(ρA), λB = Spec(ρB), λC = Spec(ρC ).

Its mixed version looking for constraints on spectra
λAB , λA, λB of a mixed state ρAB of two component system
HAB = HA ⊗HB and its reduced states ρA, ρB . It can be
reduced to pure one for system HAB ⊗HA ⊗HB .
Warning: I’ll consider below only disjoint margins, where the
classical MP is trivial. For overlapping margins like ρAB , ρBC ,
ρCA the problem is beyond the scope of the current approch.
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Examples

Higuchi, Sudbery, Szulc, PRL, 90, 107902 (2003)

For array of qubits
⊗n

i=1Hi , dimHi = 2 the compatibility
conditions for pure QMP are given by polygonal inequalities

λi ≤
∑
j( 6=i)

λj

for minimal eigenvalues λi of the marginal states ρi .
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S. Bravyi, Quantum Inf. Comp., 4, 12 (2004)

For two cubits HA ⊗HB solution of the mixed QMP is given
by Bravyi inequalities

min(λA, λB) ≥ λAB
3 + λAB

4 ,

λA + λB ≥ λAB
2 + λAB

3 + 2λAB
4

|λA − λB | ≤ min(λAB
1 − λAB

3 , λAB
2 − λAB

4 ),

where λA, λB are minimal eigenvalues of ρA, ρB ;
λAB

1 ≥ λAB
2 ≥ λAB

3 ≥ λAB
4 is spectrum of ρAB .

Outline of the talk

The above inequalities look miraculous. Even linearity is
puzzling. In this lecture I’ll focus on a rather nontrivial
mathematical origin of general quantum marginal constraints
and provide a way for their efficient calculation.
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Quantum logic

Every binary observable X : H → H assuming values 0, 1 is a
projection operator onto a subspace F ⊂ H. This fact led von
Neumann and Birkhoff (1936) to the notion of quantum logic
understood as algebra of subspaces in H with respect to
operations F ∩ E and F + E modeling conjunction and
disjunction of the classical logic.
This brings into focus geometry of linear configurations of
subspaces Fα ⊂ H possibly subject to certain constraints
stated in terms of the above “logical” operations.
You might enjoy this kind of geometry of points, lines, planes,
etc. in high school, and QM gives us a chance to revisit this
beautiful world with a new perspective.
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Plücker coordinates

d -subspace F = 〈f1, f2, . . . , fd〉 is uniquely determined by
decomposable skew symmetric tensor

ϕ = f1 ∧ f2 ∧ . . . ∧ fd ∈ ∧dH

also known as Slater determinant. Applying this construction
to every space Fα ⊂ H of a configuration we can describe it
by a single tensor

Φ = ⊗αϕα ∈
⊗

α ∧dαH, dα = dim Fα

called Plücker vector of the configuration. Its components are
said to be Plücker coordinates.
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Stability of a configuration

As Klein taught us, to extract geometrical gist from a mess of
coordinate calculations we have to use invariant notions and
quantities. In particular, geometry of a configuration should be
described in terms of invariant polynomials

f (Φ) = f (gΦ), ∀g ∈ SL(H)

evaluated at the corresponding Plücker vector Φ ∈
⊗

α ∧dαH.

A drawback of this approach is that the invariants can
characterize only closed orbits SL(H)Φ ⊂

⊗
α ∧dαH. In this

case the Plücker vector Φ and the configuration are said to be
stable. Vectors Φ which can’t be separated from zero by
invariants should be discarded. They are termed unstable
vectors and configurations. The remaining vectors and
configurations are called semistable.
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Example: Points in Riemann sphere

n points in P1 can be seen as roots of a homogeneous
polynomial fn(x , y) of degree n. Suppose the polynomial has a
root, say x = 0, of a big multiplicity m > n/2. Write
fn(x , y) = xmfn−m(x , y), m > n −m. Then for SL(2)
transformation (x : y) 7→ (εx : ε−1y) we have

lim
ε→0

fn(εx , ε
−1y) = lim

ε→0
εmxmfn−m(εx , ε−1y) = 0,

i.e. a configuration in which more than half of the points
coinside is unstable. One can check that if the maximal
multiplicity of a point m = n/2, then the configuration is
semistable, and for m < n/2 it is stable.
[Majorana interpretation of spin s states as a configuration of
2s points in P1. A complete description of invariants is known
only for n ≤ 8.]
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Mumford’s criterion

By a similar limiting argument, going back to Hilbert,
Mumford (1962) derived a general

Geometric stability criterion

A configuration of subspaces Fα ⊂ H is semistable iff for every
proper subspace E ⊂ H the following inequality holds

1

dim E

∑
α

dim(E ∩ Fα) ≤ 1

dimH
∑

α

dim Fα. (1)

Moreover, for strict inequalities the configuration is stable.

Recall that this condition separates configurations that admit
an invariant description from those that can’t be treated in
invariant terms and, in a sense, are conceptually intractable.
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Example

Configuration of points in Pn (Mumford-Tate)

For a configuration of one-dimensional subspaces Fα ∈ H, i.e.
points fα ∈ P(H), the stability criterion just tells that for any
subspace E ⊂ H

#{Fα ⊂ E}
dim E

≤ #{Fα ⊂ H}
dimH

.

For Riemann sphere P1 this just tells that in a semistable
configuration no more than half of the points coincide.
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Metric properties of stable configurations

The concept of stability is purely logical and independent of
the metric in complex space H and therefore may look
irrelevant to QM which heavily relies on the metric. The point
is that stable configurations have indeed very peculiar metric
properties.

Kempf-Ness unitary trick (1978)

The following conditions are equivalent

Vector Φ is stable,

its orbit contains a vector Φ0 = g0Φ, g0 ∈ SL(H) of
minimal length |Φ0| ≤ |gΦ|,∀g ∈ SL(H).

Moreover, the minimal vector Φ0 is unique up to a unitary
rotation Φ0 7→ uΦ0, u ∈ U(H). To put this in other way:
Stable vector Φ defines unique up to proportionality metric in
which Φ is the minimal vector |Φ| ≤ |gΦ|,∀g ∈ SL(H).
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Metric properties of stable configurations

The minimality of length |Φ| amounts to the infinitesimal
equation

〈Φ|X |Φ〉 = 0, ∀X ∈ sl(H),

which in terms of configurations reads as follows.

Metric characterization of stable configurations

A configuration of subspaces Fα ⊂ H is stable iff there exists a
Hermitean metric in H s.t.∑

α

Pα = scalar,

where Pα=orthogonal projector onto Fα in the above metric.
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Exercise

Let zα ∈ C ∪∞ = P1 be a configuration of points in the
extended complex plane, and `α ∈ S2 ⊂ E3 be stereographic
projections of zα into the unit Riemann sphere. Then the
configuration is stable iff there exists a linear fractional
transform z 7→ z̃ = az+b

cz+d
such that

∑
α

˜̀
α = 0.

Solution in physical terms

P1 = P(H), where H is spin 1/2 space, Fα ⊂ H is a subspace
spanned by state |1/2〉`α with spin projection 1/2 onto
direction `α, and Pα = S`α + 1/2 =projector into Fα. The
metric defined by a stable configuration is characterized by
equation

∑
α Pα = scalar, which for traceless spin projector

operators S` amounts to
∑

α S`α = 0. In terms of Pauli
matrices S` = `xσx + `yσy + `zσz , whence

∑
α `α = 0.
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Summary

The geometric stability condition

1

dim E

∑
α

dim(E ∩ Fα) ≤ 1

dimH
∑

α

dim Fα, E ⊂ H (2)

for any practical end is equivalent to existence of a metric in
H such that ∑

α

Pα = scalar, (3)

where Pα=orthogonal projector onto Fα. More precisely:
(3) ⇒ (2) and (2) with strict inequalities implies (3).
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From Quantum logic to Quantum observables

Logic, quantum or classical, is essentially content free and in
itself solves no problem. Instead, it provides the simplest basic
elements sufficient for dealing with objects of unlimited
complexity. As an example I consider below description of
quantum observables Xα : H in terms of the projector
operators, named by von Neumann and Birkhoff quantum
questions.

To this end we first of all need a holomorphic metric
independent substitution for Hermitean operator Xα, which
would play the same role as subspace Fα = Im(Pα) used for
projector Pα. Such a substitution is known in operator theory
as spectral filtration.
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Spectral filtration

Fα(s) =

{
sum of eigenspaces of
Xα with eigenvalues ≥ s

}
, s ∈ R.

This is a piecewise constant decreasing family of subspaces
with drops at eigenvalues λ1 > λ2 > · · · > λk of Xα.
Geometrically it can be represented by a flag of subspaces

0 ⊂ Fα(λ1) ⊂ Fα(λ2) ⊂ . . . ⊂ Fα(λk) = H (4)

labeled by the eigenvalues λi . To avoid technicalities I’ll
consider below only non-negative operators Xα ≥ 0.
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Recovery of the operator

The operator Xα ≥ 0 can be recovered from its spectral
filtration using projector operators Pα(s) onto subspaces Fα(s)

Xα =

∫ ∞

0

Pα(s)ds = (5)

(λα
1 − λα

2 )Pα(λα
1 ) + (λα

2 − λα
3 )Pα(λα

2 ) + · · ·

The spectrum of Xα depends only on the labels of the flag (4),
but not the flag itself, i.e. it is essentially a free parameter.

Reduction to quantum logic

Treating filtrations Fα(s) as a system of subspaces Fα(λα
i )

each taken with multiplicity mα
i = λα

i − λα
i+1 we get the

standard package of a geometric stability criterion together
with a metric characterization of stable systems of filtrations.
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The standard package for filtrations

Geometric stability criterion

A system of filtrations Fα(s) is semistable iff ∀ proper E ⊂ H
1

dim E

∑
α

∫ ∞

0

dim(Fα(s) ∩ E )ds ≤ 1

dimH
∑
α

∫ ∞

0

dim Fα(s)ds. (6)

Moreover, for strict inequalities the system is stable.

Metric characterization of stable filtrations

A system of filtrations Fα(s) is stable iff there exists a metric
such that sum of the corrresponding operators is a scalar∑

α

Xα = scalar. (7)

Here Xα =
∫∞

0
Pα(s)ds, and Pα(s) = projector onto Fα(s).

This isn’t an extension, but specialization of the QLogic result!
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A closer look at the integrals

Suppose the operators Xα have simple spectra. Then∫ ∞

0

dim(Fα(s) ∩ E )ds = −
∫ ∞

0

s d dim(Fα(s) ∩ E ) =
∑
i∈I

λα
i := λα

I , (8)

where I = Iα consists of those indices i where the dimension drops:
dim(Fα(λα

i ) ∩ E ) > dim(Fα(λα
i + 0) ∩ E ). Clearly |I | = dim E := d .

Subspaces E ⊂ H with a fixed drop set I form a Schubert cell sI in
Grassmanian Gd(H). Observe that E ∈

⋂
α sIα 6= ∅. For filtrations in

general position this means that the product of the cohomological classes
σIα = [sIα ] in H∗(Gd(H)) is nonzero:

∏
α σIα 6= 0.

Summary

The geometric stability criterion (6) imposes linear inequalities on spectra

1

dim E

∑
α

λα
Iα ≤

1

dimH
∑
α

TrXα

with indices Iα subject to the geometrical
⋂

α sIα 6= ∅ or the topological∏
α σIα 6= 0 constraints. Here is a typical example.
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Weyl’s additive spectral problem
Klyachko (1998), see also talk at ICM, Beijing (2002)

The following conditions are equivalent

There exist Hemitean operators L,M ,N = L + M with
given spectra λ, µ, ν;

The spectra satisfy the inequality∑
i∈I

λi +
∑
j∈J

µj ≥
∑
k∈K

νk (IJK)

each time |I | = |J | = |K | and Schubert cocycle σK enters
into decomposition of σI · σJ with a nonzero coefficient.

Hermit-Einstein metric

S.K.Donaldson Proc. London Math. Soc.,59, 1-26 (1985); Duke
Math. J., 54, 231-247 (1987); M.S.Narasimhan, C.S.Seshadri,
Annals of Math., 82, 540-564 (1965).
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Passing to a subgroup

Geometric stability criterion (6) can be restated in terms of
test filtrations E (t), rather than test subspaces E ⊂ H,

∑
α

∫∫ [
dim(Fα(s) ∩ E (t))− dim Fα(s) dim E (t)

dimH

]
dsdt ≤ 0, (9)

where the integration is over the whole (s, t) plane. This
extension is redundant for the full group SU(H), but can be
essential for its subgroups.

G ⊂ SU(H) – connected Lie subgroup;
g ⊂ su(H) – its Lie algebra considered as algebra of
Hermitean operators with Lie bracket [X ,Y ] = i(XY − YX );
su(H) – Lie algebra of traceless Hermitean operators in H.
G c ⊂ SL(H) – complexification of G ;
G c-stable, -semistable, and -unstable configurations are
defined as above 7 by formal substitution SL(H) 7→ G c .
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The standard package for a subgroup

Geometric stability criterion

A system of filtrations Fα(s) is G c-semistable iff for every
nonzero operator x ∈ g : H with spectral filtration Ex(t) the
following inequality holds∑

α

∫∫ [
dim(Fα(s) ∩ Ex(t))−

dim Fα(s) dim Ex(t)

dimH

]
dsdt ≤ 0, (10)

Moreover, for strict inequalities the system is G c-stable.

Metric characterization of stability

A system of filtrations Fα(s) is G c-stable iff there exists a
metric such that∑

α

Xα ∈ g⊥ [ = scalars for g = su(H)]. (11)

Here Xα =
∫∞

0
Pα(s)ds, Pα(s) = projector onto Fα(s), and

g⊥ is orthogonal complement to g in the space of all
Hermitean operators with trace form (X ,Y ) = Tr(XY ).
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A closer look at the integrals

Let F (s) and E (t) be complete filtrations, meaning the spaces
F (s)/F (s + 0) and E (t)/E (t + 0) have dimension ≤ 1. Then∫∫

dim(F (s) ∩ E (t))dsdt =

∫
t dt

(∫
s ds [dim(F (s) ∩ E (t))]

)
=∫

t dt

(
−
∑

s

s dim
F (s) ∩ E (t)

F (s + 0) ∩ E (t)

)
=

∫
t dt

(
−
∑

s

s dim
F (s) ∩ E (t) + F (s + 0)

F (s + 0)

)
=

∑
s,t

ts dim
F (s) ∩ E (t) + F (s + 0)

F (s) ∩ E (t + 0) + F (s + 0)
=
∑

i

ti sw(i) (12)

where si , tj are discontinuity points of the filtrations [ = eigenvalues of

the respective operators] arranged in decreasing order; w is a

permutation describing relative position of the respective flags.
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Flags in position w with respect to a reference flag form a Shubert

cell sw . In the geometric criterion setting (10) Ex ∈
⋂

α swα 6= ∅.
For generic filtrations this amounts to the topological constraint on

the respective Schubert cocycles σw = [sw ]:
∏

α ϕ∗xσwα 6= 0, where

ϕx : Fx(g) → Fx(H) is the natural inclusion of flag varieties (=

adjoint orbits) of type x in g and su(H) respectively.

Let now turn to the simplest case of two operators X : H and its
projection Xg into g, so that Xg − X ∈ g⊥ and stability condition
(10), enhanced by (12), give all constraints on spectra of X and
Xg. To simplify notations suppose g to be a sum of su, so that the
notions of spectrum and flag has the usual meaning. Let
ϕ : g ↪→ su(H), and for a given x ∈ g put a = Spec x and
aϕ = Spec ϕ(x). We also need flag varieties Fa and Faϕ consisting
of operators in g and su(H) of spectra a and aϕ respectively,
together with natural morphism ϕa : Fa → Faϕ , x 7→ ϕ(x) and its
cohomological counterpart ϕ∗a : H∗(Faϕ) → H∗(Fa).
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Notations

ϕ : g ↪→ su(H), Xg = projection of X ∈ su(H) into g. For a given
x ∈ g with spectrum a = Spec x put aϕ = Spec ϕ(x). We also
need flag varieties Fa and Faϕ consisting of operators in g and
su(H) of spectra a and aϕ respectively, together with natural
morphism ϕa : Fa → Faϕ , x 7→ ϕ(x) and its cohomological
counterpart ϕ∗a : H∗(Faϕ) → H∗(Fa).

A version of Berenstein-Sjamaar Thm

In the above notations all constraints on spectra λ = Spec X
and µ = Spec X g are given by inequalities∑

i

aiµv(i) ≤
∑

j

aϕ
j λw(j) (vwa)

for all test spectra a = Spec x , x ∈ g and permutations v ,w
s.t. Schubert cocycle σv enters into ϕ∗a(σw ) with a nonzero
coefficient cv

w (a). [cv
w(a) = 1 are enough, Ressayre (2007)]
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Application to QMP

Two component system

Consider two-component system HAB = HA ⊗HB with local
unitaries G = SU(HA)× SU(HB) as the structure group with
Lie algebra g = su(HA)⊗ I + I ⊗ su(HB). Recall, that
reduced states of ρA, ρB are defined by equations

TrAB(XAρAB) = TrA(XAρA), XA ∈ su(HA),

TrAB(XBρAB) = TrB(XBρB), XB ∈ su(HB),

which just tell that ρAB − ρA ⊗ I − I ⊗ ρB ∈ g⊥, i.e.
ρA ⊗ I − I ⊗ ρB is the projection of ρAB into g. Then (vwa)
gives all constraints on the density spectra λAB , λA, λB . For a
precise statement we need a case specific notations.
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Notations

For a given spectra a : a1 ≥ a2 ≥ . . . ≥ am, b : b1 ≥ b2 ≥ . . . ≥ bn

define flag varieties

Fa(HA) := {XA|Spec(XA) = a}, Fb(HB) := {XB |Spec(XB) = b},

natural morphism

ϕab : Fa(HA)×Fb(HB) → Fa+b(HA ⊗HB), (13)

XA × XB 7→ XA ⊗ 1 + 1⊗ XB ,

and its cohomological counterpart

ϕ∗ab : H∗(Fa+b(HAB)) → H∗(Fa(HA))⊗ H∗(Fb(HB)) (14)

given in the basis of Schubert cocycles σw by equation

ϕ∗ab : σw 7→
∑
u,v

cuv
w (a, b)σu ⊗ σv . (15)
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Mixed Quantum MP

A. Klyachko, quant-ph/040913.

The following conditions are equivalent

There exist mixed state ρAB of HAB = HA ⊗HB with
margins ρA, ρB and spectra λAB , λA, λB .

The spectra satisfy the inequality∑
i

aiλ
A
u(i) +

∑
j

bjλ
B
v(j) ≤

∑
k

(a + b)↓kλ
AB
w(k), (uvw)

for traceless test spectra a : a1 ≥ a2 ≥ · · · ≥ am,
b : b1 ≥ b2 ≥ · · · ≥ bn,

∑
ai =

∑
bj = 0 each time the

coefficient cuv
w (a, b) 6= 0.

Here (a + b)↓ denotes the sequence terms ai + bj arranged in
non-increasing order. [special case of (vwa) ].
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A closer look at the coefficients cuv
w (a, b)

Künneth formula

Let FA(s) and FB(t) be filtrations in HA and HB . Define their tensor
product FAB := FA ⊗ FB as a filtration of HAB = HA ⊗HB given by
equation

FAB(r) =
∑

r=s+t

FA(s)⊗ FB(t).

For spectral filtrations of operators XA,XB , the construction amounts to
spectral filtration of XA ⊗ I + I ⊗ XB cf. (13). Künneth formula gives
composition factors [F ](s) := F (s)/F (s + 0) of the tensor product

[FAB ](r) =
⊕

r=s+t

[FA](s)⊗ [FB ](t). (16)

When all composition factors have dimension ≤ 1 the formula amounts
to unique nonzero term

[FAB ](rk) = [FA](si )⊗ [FB ](tj), for rk = si + tj ,

where rk , si , tj are discontinuity points of the filtrations FAB ,FA,FA

arrange in decreasing order [ = spectra of the respective operators].
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The cohomology morphism and Chern classes

Returning to flag varieties, observe that eigenspaces of XA ∈ Fa(HA) of
given eigenvalue ai form an eigenbundle EA

i on Fa(HA). Alternatively, EA
i

can be described as i−th composition factor of the spectral filtration FA

of XA. This allows to evaluate pull back of the eigenbundle EAB
k on

F(HAB) w.r. to the natural morphism

ϕab : Fa(HA)×Fb(HA) → Fa+b(HA ⊗HB)

XA × XB 7→ XA ⊗ I + I ⊗ XB

using Künneth formula (16) which for simple spectra reads

ϕ∗ab(EAB
k ) = EA

i � EB
j , for (a + b)↓k = ai + bj .

This gives the cohomology morphism (14) in terms of Chern classes
xAB
k = c1(EAB

k )

ϕ∗ab : xAB
k 7→ xA

i + xB
j , for (a + b)↓k = ai + bj . (17)

However, it is not easy to express ϕ∗ab directly in terms of σw .
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Back to Schubert cocycles

An explicit formula for Schubert cocycle σw in terms of the characteristic
classes is given by Schubert polynomial

σw = Sw (x1, x2, . . .) = ∂w−1w0
(xn−1

1 xn−2
2 · · · xn−1),

where w0 = (n, n − 1, . . . , 2, 1) is the longest permutation, and operator
∂w = ∂i1∂i2 · · · ∂i` is defined via BGG operators

∂i f =
f (. . . , xi , xi+1, . . .)− f (. . . , xi+1, xi , . . .)

xi − xi+1
.

with indices taken from a decomposition w = si1si2 · · · si` , into product of
transpositions si = (i , i + 1) of minimal length ` = `(w).

Computational formula

Adding everything together we end up with explicit formula

cuv
w (a, b) = ∂A

u ∂B
v Sw (xAB)

∣∣∣xAB
k =xA

i +xB
j

where (a + b)↓k = ai + bj and `(w) = `(u) + `(v).
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Finiteness of the constraints

The coefficient cuv
w (a, b) depends only on the order in which

quantities ai + bj appear in the spectrum (a + b)↓. The order
changes when the pair (a, b) crosses a hyperplane

Hij |kl : ai + bj = ak + b`.

The hyperplanes cut the set of all pairs (a, b) into finite
number of pieces called cubicles. For each cubicle one have to
check inequality (uvw) only for its extremal edges. Hence the
marginal constraints amounts to a finite system of inequalities,
but the total number of extremal edges increases rapidly:

# qubits 2 3 4 5 6
# edges 2 4 12 125 >11344
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Some examples and numerology

Unfortunately for most systems mixed marginal constraints are
too numerous to be reproduced here.

System Rank Inequalities
2× 2 2 7[4]

2× 2× 2 3 40[38]
2× 3 3 41
2× 4 4 234
3× 3 4 387

2× 2× 3 4 442
2× 2× 2× 2 4 805

Pure QMP is understandably more simple, [3,??].

Alexander Klyachko Quantum marginals and density matrices, Toronto July 2009



Basic inequalities

Clearly cuv
w (a, b) = 1 for identical permutations u, v ,w . Hence

the inequality∑
i

aiλ
A
i +

∑
j

bjλ
B
j ≤

∑
k

(a + b)kλ
AB
k

holds for all test spectra (a, b). This amounts to a finite
system of constraints for k ≤ m = dimHA, ` ≤ n = dimHB :

λA
1 + λA

2 + · · ·+ λA
k ≤ λAB

1 + λAB
2 + · · ·+ λAB

kn ,

λB
1 + λB

2 + · · ·+ λB
` ≤ λAB

1 + λAB
2 + · · ·+ λAB

m` ,

discovered independently by
Han Y-J , Zhang Y-Sh and Guo G-C quant-ph/0403151
along with some inequalities from Knutson lecture.
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Array of qubits

Let ρ be a mixed state of n qubit system H⊗n, dimH = 2, and ρ(i)

be the reduced state of i-th component. A multicomponent
version of the above solution QMP tells that all constraints on
spectra λ = Spec ρ and λ(i) = Spec ρ(i) are given by inequalities∑

i

(−1)ui ai (λ
(i)
1 − λ

(i)
2 ) ≤

∑
±

(±a1 ± a2 ± · · · ± an)
↓
kλw(k) (18)

for all test spectra ±ai , and all permutations ui ∈ S2, w ∈ S2n

subject to the topological condition cu1u2...un
w (a1, a2, . . . , an) 6= 0.

Here cu1u2...un
w (a) is a coefficient at xu1

1 xu2
2 . . . xun

n in the
specialization of the Schubert polynomial [cf. (17)]

Sw (z1, z2, . . . , z2n) |zk=±x1±x2±···±xn , (19)

where the signs are taken from k-th term of the sequence
(±a1 ± a2 ± · · · ± an)

↓. Here ui ∈ S2 ' Z2 is identified with binary
variable ui = 0, 1; zi are generators of H∗(F(H⊗n)), and xj is the
generator of cohomology of flag variety of j-th qubit ' P1.
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The Ressayre condition “c = 1” allows us to focus on odd
coefficients and perform all the calculations modulo 2, in which
case the specialization (19) takes form

Sw (1, 1, . . . , 1)(x1 + x2 + · · ·+ xn)
`(w) mod 2 (20)

It contains a monomial xu1
1 xu2

1 · · · xun
1 with ui = 0, 1 only for

`(w) = 0, 1. This leaves us with to two possibilities:

w and ui are identical permutations. This returns us the basic
inequality∑

i

ai (λ
(i)
1 − λ

(i)
2 ) ≤

∑
±

(±a1 ± a2 ± · · · ± an)
↓
kλk .

w = (k, k + 1) is a transposition and all ui except one are
identical permutations.

The Schubert polynomial for a transposition is well known
S(k,k+1)(z) = z1 + z2 + · · ·+ zk . Hence for even k specialization
(20) vanishes.
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Mixed QMP Ansatz for an array of qubits

For an array of qubits all marginal constraints can be obtained
from the basic inequality∑

i

ai(λ
(i)
1 − λ

(i)
2 ) ≤

∑
±

(±a1 ± a2 ± · · · ± an)
↓
kλk

by a transposition λk � λk+1 for an odd k in its RHS
combined with sign change ai 7→ −ai of a term in LHS.
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Mixed 3-qubit constraints

∆3 ≤ λ1 + λ2 + λ3 + λ4 − λ5 − λ6 − λ7 − λ8.

∆2 + ∆3 ≤ 2λ1 + 2λ2 − 2λ7 − 2λ8.

∆1 + ∆2 + ∆3 ≤ 3λ1 + λ2 + λ3 + λ4 − λ5 − λ6 − λ7 − 3λ8,

−∆1 + ∆2 + ∆3 ≤ 3λ2 + λ1 + λ3 + λ4 − λ5 − λ6 − λ7 − 3λ8,

−∆1 + ∆2 + ∆3 ≤ 3λ1 + λ2 + λ3 + λ4 − λ5 − λ6 − λ8 − 3λ7.

∆1 + ∆2 + 2∆3 ≤ 4λ1 + 2λ2 + 2λ3 − 2λ6 − 2λ7 − 4λ8,

−∆1 + ∆2 + 2∆3 ≤ 4λ2 + 2λ1 + 2λ3 − 2λ6 − 2λ7 − 4λ8,

−∆1 + ∆2 + 2∆3 ≤ 4λ1 + 2λ2 + 2λ4 − 2λ6 − 2λ7 − 4λ8,

−∆1 + ∆2 + 2∆3 ≤ 4λ1 + 2λ2 + 2λ3 − 2λ5 − 2λ7 − 4λ8,

−∆1 + ∆2 + 2∆3 ≤ 4λ1 + 2λ2 + 2λ3 − 2λ6 − 2λ8 − 4λ7,

where ∆i = λ
(i)
1 − λ

(i)
2 , ∆1 ≤ ∆2 ≤ ∆3. The transposed

eigenvalues and added signs are shown in color.
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The Pauli exclusion principle and beyond

“Symmetry principles underpin the elegant
quantum mechanical description in an
abstract picture in which statics and
dynamics are paradoxically conflated in a
way which often leave us hovering between
abstract mathematical understanding and
literal physical misunderstanding.”

Sir Harold Kroto, Nobel Lecture 1996
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Original version(s) of Pauli principle

Initial form (1925): No quantum state can be occupied by
more than one electron (no wavefunctions at that time!).

Restatement in terms of density matrix:

〈ψ|ρ|ψ〉 ≤ 1, (PEP)

for any one-electron state ψ. Here ρ = 〈Ψ|a†i aj |Ψ〉 is
Dirac’s density matrix of a multi-electron state Ψ,
normalized to Tr ρ = N .

Or in terms of its eigenvalues: Spec ρ ≤ 1.
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Heisenberg refinement

Heisenberg (1926): The multi-electron state Ψ is skew
symmetric with respect to permutations of particles

Ψ ∈ ∧NH ⊂ H⊗N , H = one-electron space.

The impact of this replacement on the density matrix ρ
goes far beyond the original Pauli exclusion principle and
leads to numerous extended Pauli constraints
independent of (PEP). These constraints and their
physical manifestations are the main subject of this talk.
For more details see
Altunbulak and Klyachko, Commun. Math. Phys. 292,
287 (2008); A. Klyachko, arXiv:0904.2009v1 [quant-ph].
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Explicit form of the extended Pauli constraints

Let ρN be a mixed state of a system ∧NHr and ρ its density
matrix. Then all constraints on spectra µ = Spec ρN and
λ = Spec ρ are of the form∑

i

aiλv(i) ≤
∑

j

(∧Na)jµw(j), (avw)

for all “test spectra” a : a1 ≥ a2 ≥ · · · ≥ ar ,
∑

ai = 0. Here
∧Na = {ai1 + ai2 + · · ·+ aiN}↓ and v and w are permutations,
subject to a topological constraint cv

w(a) 6= 0 coming from
(vwa).
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The test spectrum a defines the flag variety
Fa(H) = {X : H → H | Spec X = a} and morphism
ϕa : Fa(H) → F∧Na(∧NH), X 7→ X (N)

X (N) : x ∧ y ∧ · · · 7→ Xx ∧ y ∧ · · ·+ x ∧ Xy ∧ · · ·

The coefficients cv
w(α) are determined by the induced

morphism of cohomology

ϕ∗a : H∗(F∧Na(∧NH)) → H∗(Fα(H))

written in the basis of Schubert cocycles σw

ϕ∗a : σw 7→
∑

v

cv
w (a)σv .
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Application

Riemann curvature tensor R : ∧2T → ∧2T can be
considered as a selfadjoint operator on 2-forms (or
2-vectors) in tangent space T of a Riemann manifold M.

It determines the characteristic classes and shapes the
topology of the manifold M.

Contraction of the Riemann tensor Ric : T → T is known
as Ricci curvature. The latter via trace reversed Einstein
equation Ric = 8π(T − 1

2
Tr T ) is determined by matter,

i.e. by the stress-energy-momentum tensor T .

The above theorem (avw) in this case imposes constraints
on spectra µ = Spec R and λ = Spec Ric of Riemann and
Ricci operators,

and sets a limit on the influence of matter on geometry
and topology of space M.
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A sample of results

In 4-space M4 the constraints on spectra µ = Spec R
and λ = Spec Ric are given by the inequalities

2λ1 ≤ µ1 + µ2 + µ3, 2λ4 ≤ µ4 + µ5 + µ6

2(λ1 + λ4) ≤ µ1 + µ2 − µ5 − µ6,

λ1 + λ2 − λ3 − λ4 ≤ µ1 − µ6,

λ1 − λ2 + λ3 − λ4 ≤ min(µ1 − µ5, µ2 − µ6),

|λ1 − λ2 − λ3 + λ4| ≤ min(µ1 − µ4, µ2 − µ5, µ3 − µ6),

2max(λ1 − λ3, λ2 − λ4) ≤ min(µ1 + µ3 − µ5 − µ6, µ1 + µ2 − µ4 − µ6),

2 max(λ1 − λ2, λ3 − λ4) ≤ min(µ1 + µ3 − µ4 − µ6, µ2 + µ3 − µ5 − µ6,

µ1 + µ2 − µ4 − µ5).

While in dimension 5 there are 460 constraints.
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A sample of results for pure N-representability

Three electron system ∧3Hr of even rank r = dimHr

λk+1 + λr−k ≤ 1, 0 ≤ k < r . For r = 6 turn into B-D
equations due to the normalization Tr ρ = 3.

λ2 + λ3 + λ4 + λ5 ≤ 2, λ1 + λ3 + λ4 + λ6 ≤ 2,
λ1 + λ2 + λ5 + λ6 ≤ 2, λ1 + λ2 + λ4 + λ7 ≤ 2;

λ1 + λ2 + λ4 + λ7 + λ11 + λ16 + λ22 + λ29 + · · · ≤ 2.

Complete set of constraints

To give an idea of complexity of the problem note that

∧3H10 is bounded by 93 inequalities;

∧4H10 is bounded by 125 inequalities;

∧5H10 is bounded by 161 inequalities;

∧3H11 is bounded by 121 inequalities.
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Taking into account spin

In the above setting we can’t address specific spin effects
buried in joint spin-orbital space Hr = H` ⊗Hs .

The orbital H` degrees of freedom, via Coulomb
interaction, are primary responsible for dynamics,

whereas the spin ones Hs , disregarding a small relativistic
correction, are purely kinematic.

The total N-fermion system decomposes into spin-orbital
components parameterized by Young diagrams ν

∧N (H` ⊗Hs) =
∑
|ν|=N

Hν
` ⊗Hνt

s , (21)

where νt = transpose diagram, Hν
` = irrep. of U(H`),

Hνt

s = irrep. of U(Hs) with Young diagrams ν, νt .
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Spin resolved states

For spin resolved state Ψ ∈ Hν
` ⊗Hνt

s the Pauli
constraints amount to linear inequalities between orbital
λi and spin µj natural occupation numbers.

Similar constraints hold for spin resolved bosonic state
Ψ ∈ Hν

` ⊗Hν
s , where reference to Pauli is irrelevant.

Example. Consider three electrons in d -shell
(dimH` = 5) in low spin configuration ν = where the
constraints are as follows

λ1 + 1
2
(λ4 + λ5) ≤ 2,

µ ≤ 3− 2(λ1 − λ2), µ ≤ 3− 2(λ2 − λ3),
µ ≥ 2(λ1 − λ3)− 3, µ ≥ 4λ1 − 2λ2 + 2λ4 − 7.

Here µ = µ1 − µ2 is spin magnetic moment in Bohr
magnetons µB .

Alexander Klyachko Quantum marginals and density matrices, Toronto July 2009



Spin resolved states

For spin resolved state Ψ ∈ Hν
` ⊗Hνt

s the Pauli
constraints amount to linear inequalities between orbital
λi and spin µj natural occupation numbers.

Similar constraints hold for spin resolved bosonic state
Ψ ∈ Hν

` ⊗Hν
s , where reference to Pauli is irrelevant.

Example. Consider three electrons in d -shell
(dimH` = 5) in low spin configuration ν = where the
constraints are as follows

λ1 + 1
2
(λ4 + λ5) ≤ 2,

µ ≤ 3− 2(λ1 − λ2), µ ≤ 3− 2(λ2 − λ3),
µ ≥ 2(λ1 − λ3)− 3, µ ≥ 4λ1 − 2λ2 + 2λ4 − 7.

Here µ = µ1 − µ2 is spin magnetic moment in Bohr
magnetons µB .

Alexander Klyachko Quantum marginals and density matrices, Toronto July 2009



Spin resolved states

For spin resolved state Ψ ∈ Hν
` ⊗Hνt

s the Pauli
constraints amount to linear inequalities between orbital
λi and spin µj natural occupation numbers.

Similar constraints hold for spin resolved bosonic state
Ψ ∈ Hν

` ⊗Hν
s , where reference to Pauli is irrelevant.

Example. Consider three electrons in d -shell
(dimH` = 5) in low spin configuration ν = where the
constraints are as follows

λ1 + 1
2
(λ4 + λ5) ≤ 2,

µ ≤ 3− 2(λ1 − λ2), µ ≤ 3− 2(λ2 − λ3),
µ ≥ 2(λ1 − λ3)− 3, µ ≥ 4λ1 − 2λ2 + 2λ4 − 7.

Here µ = µ1 − µ2 is spin magnetic moment in Bohr
magnetons µB .

Alexander Klyachko Quantum marginals and density matrices, Toronto July 2009



Spin resolved states

For spin resolved state Ψ ∈ Hν
` ⊗Hνt

s the Pauli
constraints amount to linear inequalities between orbital
λi and spin µj natural occupation numbers.

Similar constraints hold for spin resolved bosonic state
Ψ ∈ Hν

` ⊗Hν
s , where reference to Pauli is irrelevant.

Example. Consider three electrons in d -shell
(dimH` = 5) in low spin configuration ν = where the
constraints are as follows

λ1 + 1
2
(λ4 + λ5) ≤ 2,

µ ≤ 3− 2(λ1 − λ2), µ ≤ 3− 2(λ2 − λ3),
µ ≥ 2(λ1 − λ3)− 3, µ ≥ 4λ1 − 2λ2 + 2λ4 − 7.

Here µ = µ1 − µ2 is spin magnetic moment in Bohr
magnetons µB .

Alexander Klyachko Quantum marginals and density matrices, Toronto July 2009



Who cares about extended Pauli constraints?

The Pauli principle is a purely kinematic constraint on available
states of a multi-electron system. Not even a minuscule its violation
has been detected so far.

Therefore whenever a dynamical trend is in conflict with Pauli
constraints, the latter would prevail and the system eventually will
be trapped in the boundary of the manifold of allowed states.

This can manifest itself in degeneration some of the extended Pauli
inequalities into equations. In this case the system and its state
vector will be called pinned to the degenerate Pauli inequalities.

A pinned system is essentially a new physical entity with its own
dynamics and kinematics.
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Physical example: Iron magnetic moment

An old puzzle: reduction of magnetic moment of iron
atom in cubic (bcc) crystal relative to its value in free
space.

The magnetic moment comes from d -shell which contains
7 electrons and can have magnetic moment up to 3µB ,
whereas the observed moment is 2.22µB .

In cubic crystal field d -shell splits into two irreps of
dimension 3 and 2 called t2g and eg subshells.

The orbital density matrix retains the crystal symmetry,
and reduces to scalars nt and ne on the above subshells.

Hence orbital occupation numbers λ = (nt , nt , nt , ne , ne),
3nt + 2ne = 7, nt ≥ ne depend only on one parameter nt .

The occupation number for iron nt = 1.46 was found by
W.Jauch&M.Reehuis, Phys. Rev. B, 76, 235121 (2007).
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3nt + 2ne = 7, nt ≥ ne depend only on one parameter nt .

The occupation number for iron nt = 1.46 was found by
W.Jauch&M.Reehuis, Phys. Rev. B, 76, 235121 (2007).
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Figure: Pauli constraints on spin magnetic moment (µB) for 7 electrons
in d-shell in cubic crystal field versus the occupation number nt of a t2g

orbital. All points within the pentagon ABCDE are admissible. A black
dot represents experimental data for iron.
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