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Generalized Density Functional Theories: Gging past the
density, but not yet to the wave function

Baerends,Buijse,Cioslowski,Coleman,Davidson,Donnelly,G#rrod,Goedecker,Levy,
Mazziotti,Parr,Percus,Piris,Umrigar,Valdemoro...

Davidson,Furche,Higuchi,Higuchi,Levy,Nagy,Pistol,Samvelyan,Weinhold,Wilson,
Ziesche,...

“classic” quantum chemistry; Pople, Davidson, and Léwdin “schools”
“Polydensity” alternative: Gori-Giorgi,Percus,Savin.



The electronic Hamiltonian contains only one- and two-
body operators.

E,.[vN]
:%JJ'°'JT*(ZI,...ZN)(—%Vf —%Vi)‘l’*(zl,...z]v)dzl ..dz,
+%J.J----J“P*(Zl,...ZN)(V(Z1)+V(ZZ))"P*(Zl,...ZN)dZI ...dz,

+w”...p*(zl,...%)( 1 ]‘P()dd

‘rl _rz‘

= The full wavefunction is not required to evaluate the
ground-state energy.

Because electrons are identical particles, if we really
understood what just two electrons were doing, we could
infer the energetic contributions of the remaining electrons.



The kinetic energy and electron-electron repulsion
operators are “universal.”

Eg.S. [v; N]

:%JJ...IT*(zl,...zN)(_lVf_lvz)‘l’*(zl,...zN)dz]...dZN
+Jp r|v r)dr

.” J\P ‘r lr‘ \P*(Zl,...ZN)dzl...dZN

= The electron density can be used as the fundamental
descriptor for electronic systems.

“Unknown” functionals: kinetic energy

electron-electron repulsion
P. Hohenberg and W. Kohn, Phys.Rev. 136, B864 (1964); M. Levy, Proc. Natl.
Acad. Sci. 76, 6062 (1979); E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).




The electron-electron repulsion potential is “universal.”

E [v;N]

g.s.

:”5 2, -2)((i(2) (2, ))y( 2,.7)))dz, dz,

” JlP ‘r lr‘ \P*(Zl,...ZN)dzl...dzN

= The one-electron reduced density matrix suffices as the
fundamental descriptor for electronic systems.

Unknown functionals: electron-electron repulsion

M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979); R. A. Donnelly and R. G. Parr, J.
Chem. Phys. 69, 4431 (1978).




The kinetic energy operator is “universal.”
Eg_s{v;N]
N . ]
:EJ.J._[‘P (Zl,...ZN)(—%Vf—%Vi)‘P (Zl,...ZN)dZI...dZN

+_Up2 AN V(;l()];LjE;Z)+V ( z, 2) dz dz,

= The electron pair density can be used as the
fundamental descriptor for electronic systems.

Unknown functionals: kinetic energy

“Unknown” N-representability problem.

P. Ziesche, Phys. Lett. A 195, 213 (1994).; M. Levy and P. Ziesche, J. Chem.
Phys. 115, 9110 (2001); PWA J. Math. Phys. 46, 062107 (2005); PWA Phys.
Rev. A 74, 042502 (2006).




The electronic Hamiltonian contains only one- and two-body
operators.

E [v;N]

g.s.

- J‘J..”(s(zl _Z;)5(Z2 _Z;)(ﬁvN(ZPZz)F (szzazpzz))dll dz,dz dz,
ﬁvN(Zl’ZZ) : (f( ) f(z2)+v(zl)+v(z2))+;
N-1 ‘rl_rz‘

= The two-electron reduced density matrix can be used as
the fundamental descriptor for electronic systems.

Unknown functionals: NONE!!

“Unknown” N-representability problem.

PWA, S. Golden, M. Levy, J. Chem. Phys. 124, 054101 (2006)
PWA, M. Levy, J. Chem. Sci. 117, 507 (2005)



Spatial Representation:
E [V'N]
g.s.

—””5 z —z z -z )(h (ZI,ZZ)F (z1 z,;Z, zz))a’z1 dz,dz dz,

Orbital representation:
£, [V ]=Tenr]

E (rririr) = 30,0, (1)9, ()9 ()¢ ()
( jzw ””{ rl "2 l(’;)\;}{)(‘l’;(l}')‘l)/ (I;,) dr dr]...dr,
FJ y = ZWK <‘PK

In applications of interests to chemists,
the number of {¢,} is often ~200.

afata.a.“{’ >
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For Be:

-18E,= min Tr h-T|

{rz Tr[ﬂ{év)}

-0
This is very bad but that's expected; the analogous 1-RDM

calculation:
min Tr[(f+ v) : }/]+ V. [}/]
{j/ Tr[y]:N}

70
is very bad (even worse).




A good 1-RDM calculation must constrain the holes also

E, = min Tr[(f+v)-y]+1/ee[y}
Tr v =N

=0
I-y>0

4

A “fair comparison” is

~1461E,= min Tr|h-T]
——
{rz Tr[l“]zgév) }
I'-0; Q(T)-0

Q(F) = ZWK <‘I’K ‘aiajaj.,a;
K

This is ca. 20 milliHartree below the full-Cl energy in this basis.
J. Coleman, Reviews of Modern Physics 35, 668 (1963).

¥, )0



The problem is that the density matrix has to correspond to
some N-fermion system.

I, is N-representable if and only if there exists some N-
fermion system with:

L. = ZWK <‘I’K (Z1 ...ZN)‘a;a;,ajai“PK (Z1 L Zy, )>
K
0<w, <1 1=> w
The exact ground-state energy is obtained from:
E = min Tr[h : F}
—

)|

I" is N -representable




N-reprarantasnle

The set of N-representable I, is closed and convex.
_ + _+
Fiﬁ,j, = ZWK <‘I’K (Z1 ...ZN)‘ai,aj,ajai“PK (Z1 ...ZN)>
K
0<w, <I; 1= w,
K

The exact N-representability conditions are known, but not in a
useful form.



Suppose we had a non-N-representable I',

N— YepYe sentable

ho+ N-vepresentuble.
« /f

LY



Then there exists an element of the Hilbert Space
separates this defective density matrix, so that

Tr[HC, |>  min  Te[HI]
HY)

I" is N-representable

£, [u]>n[nr]

r

N— YepYe sentable

TLHT]= Ey,s.[H]

LY

that

ho+ N-Yepresentuble.
.~ /,-/



N— YepYe sentable

T[HT]= Ey,s.[H]

ho+ N-vepresentuble.
.~ /-/

LY

For every Hamiltonian
Tr[HF] > Eg.s. [H] ( > I', is N-representable



Necessary and Sufficient Condition for N-rep.:
For every Hamiltonian I', is N-representable

w{nr > £, (1]

Restatement as a Semidefinite Problem:

For every

positive-semidefinite ﬁ I', is N-representable
Hamiltonian

Tr| (H-1-E, (H))T |20

Approximation as a Semidefinite Problem:

For some class of

positive-semidefinite ﬁ I', is N-representable
Hamiltonians

Tr| (H-1-E, (H))T |20
C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964).




Standard Approximate N-representability Conditions

Manifestly positive-definite Hamiltonians:

B'B>~0
where
P: B= p;a.a, P, =D,
Q: B=g,a;a; 93 =74
c} B=gaa,
For Be (cc-pVQZ; Full-Cl -14.6401 E,):
~14.6428 E, = min Tr|h-T |
—
(N
r Tk Y
I'-0; Q(I')-0; G(T')-0

Part of the game is to find better N-representability
conditions....but the above constraints are often “adequate.”



0.999

0.998

Fraction of Basis-Set Limit FCl Energy

0.997 - &
o Be-RDM Be-CCSD  —A -Be-FCl
—&—Ne-RDM B Ne-CCSD —#—Si-RDM
M- 5-CCSD
0.996 :
2 3 4
cc-pVXZ

Basis-set Stability is OK....



E (Hartree)

Correlation Energy vs. Atomic Number for Be Isoelectronic Series
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E (Hartree)

Correlation Energy vs. Atomic Number for Ne Isoelectronic Series
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lonization Potentials from Extended Koopmans’ Theorem

EizZ? (Hartree)
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quantum chemistry methods badly fail

energy (A.U.)

-147.8

-148.0

-148.2

-148.4

-148.6

-148.8

-149.0

What about Molecules?

P+Q+G does well in cases where some conventional

0.5

1.0

2.0

bond distance (A)

4.0

8.0

o DM2
A MRCI
o CASSCF



But...Dissociation is qualitatively wrong for NO".

dissociation of NO+ bond distance (A)
D: -128.4 ,
s 1 2 3 4 5 6 7 8 9
>
o0
? * MRCI
-128.8
-129.0
-129.2 .t
11294 -

Population Analysis N = 6.53 electrons; O = 7.47 electrons.
Adding the 3-index T1 and T2 constraints does not help.



This Happens for All Heteronuclear Diatomics

(except those containing Group 1 and Group 2 elements, H, He, Li, Be, Na, Mg, etc.)

Dipole Moments for Heteronuclear Diatomics
MRCI(10A) DM2(10A) DM2 (20A)

NO* 22.40 -0.11 -0.29

CN 25.83 7.01 13.38

CO 0.00 -0.90 -1.71
Dissociation Energies and Population Analysis

Reaction MPA AE,

N, « N+ N 7.00/7.00  —0.0035

CO-C+0O 5.98/8.02  —0.0036

NO™ -+ N+ 0O 6.53/7.47 -0.1291
CN™ - C + N 6.60/7.40 —-0.0734



The problem is the lack of a derivative discontinuity:

cnergy (A.U.)

-53.9

energy of N atom

bond length (A)

6

-54.0

-54.1 1

-54.2 1

-54.3 1

-54.4 1

-54.5 1

-54.7

6.5

7.0 1.5

~SDP PQG

~SDP PQG+separability

—F(I




Add together the Energy vs. N curves for N and O:

energy (A.U.)

E vs. N Minimum:

sum of energies N and O atom N(O)

-127.4
6

-127.6

1278 4

-128.0 1

-128.2 1

-128.4

-128.6 A

-128.8 1

-129.0 T

-129.2 -

T T T 1

6.5 7.0 7.5 8.0

—DM2 PQG
~DM2 PQG+separability
~FCI

minimum

N = 6.51 electrons; O = 7.49 electrons.

RDM Population Analysis: N = 6.53 electrons; O = 7.4T electrons.

Energy difference between the RDM calculation and the E vs. N

model: .002 E,.



What is the correct behavior of E(I';) for non-integer N?

Consider two identical Ny-electron systems, infinitely far
apart

R—o0

Add one electron to the system. Consider the totally
symmetric ground-state wavefunction:

¥, = 4P A )
EAI...Az - 2(E( )+Ez(v )+1)

Because the subsystems are infinitely far apart, they are
distinguishable. Because the are identical, we can identify
the energy of a single subsystem as:

E(A) :LE( )_|_ E( )

Noty 2 Ny+1°

Caveat: only true if E vs. N is convex. This is unproved and it is untrue (by
counterexample) for r-k interparticle repulsions with k > log,4 ~ 1.3.



Generalization of this argument to K copies of the system and
0 < J< K extra electrons:

y . G
’ 7
3 - °
.8
2’ ,
1k okt
P
K 2
(K] 5 (el i)
K+K+K+Z{(O_1
J (4) | J L)
EAIZ'”:EAK: I_E ENO KEN+1

J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev. Lett. 49, 1691
(1982); W. T. Yang, Y. K. Zhang, and PWA, Phys. Rev. Lett. 84, 5172 (2000);
PWA, J. Math. Chem. 43, 285 (2008).




Qualitatively incorrect results are obtained when the
derivative discontinuity is not reproduced. Some big
problems:

Incorrect dissociation products. (Fractional charges at
infinite separation.)

Incorrect spectroscopic constants. (Dissociation
energy is too small.)

Incorrect atomization energies for molecules.
Polarizability is too large.

Reaction barriers in chemical reactions are far too
small, and often nonexistent.

Reaction rates are off by orders of magnitude.

Charge-transfer energies are qualitatively incorrect.



A Quantum Subsystem Constraint

Define the density matrices of a subsystem by:

(sub) Fab'a’b' a,b,a'b’ eS
aat 0 otherwise
y(sub) _ Zl“aj;a,j a,a € S
aa’ J
0 otherwise

Then

Tr[ﬁf“">y(s“b) } n Tr[V(SUb)F(Sub)} 2 E o

The energy on the right-hand-side of this equation is the
correct “fractional N’ energy.

This must be true for any Hamiltonian and, in particular, for
the atomic Hamiltonians.



Choose the Hamiltonians to the Hamiltonians of the
atoms.

2. Choose the subsystems to be the basis functions
centered on the atoms.

3. Obtain a lower bound on the fractional N energy by
solving the density-matrix problem for the subsystem
Hamiltonian.

4. Solve the molecular problem with the additional
constraints of the form

Tr|:h"(sub)y(sub) i| +Tr |:V(sub)1—‘(sub)i| >F
Tr

1

]

This additional constraint forces the dissociation limit to be
correct. It also imposes size-consistency: the energy of a
sum of disjoint, separated, subsystems must be equal to the
sum of the energies of the individual components of the
system.



-129,2

-129,4

-129,6

>

6

bond distance (A)

7

8 9 10
r'y
X
)

© DM2

X DM2 (+)

4 MRCI



NO~
CN

CO

2+
02

R (A)

4.0
10.0
20.0
4.0
10.0
20.0
4.0
10.0
20.0
4.0
10.0
20.0
4.0
10.0
20.0

DM?2
-129.0952
-129.1138
-129.1202

-92.3634

-92.3790

-92.3851
-112.7744
-112.7726
-112.7725
-109.0344
-109.0333
-109.0332
-148.8261
-148.9043
-148.9305

DM2 (+)
-129.0002
-128.9928
-128.9917
-92.3237
-92.3130
-92.3123
-112.7730
-112.7702
-112.7697
-109.0336
-109.0309
-109.0302
-148.8250
-148.9011
-148.9267

MRCI
-128.9133
-128.9125

-92.2387
-92.2365

-112.6657
-112.6651

-108.9520
-108.9518

-148.7415
-148.8200



Dipole Moments are OK now

NO~

CN

CO

R (A)
4.0
10.0
20.0
4.0
10.0
20.0
4.0
10.0
20.0

DM2 DM2 (+)

0.07
-0.11
-0.29
3.35
7.01
13.38
-0.40
-0.90
-1.71

5.74
20.97
44.23

8.34
25.77
52.11
-0.04

0.00

0.00

MRCI

8.76
22.39

9.94
25.83

0.04
0.00



“Popular” Algorithms for 2-RDM Optimization

M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton, J. K. Percus, M.
Yamashita, and Z. J. Zhao, Math. Prog. 109, 553 (2007).

M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa,
J. Chem. Phys. 114, 8282 (2001).

D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004).
D. A. Mazziotti, J. Chem. Phys. 121, 10957 (2004).
D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002).
E
H

. Cances, G. Stoltz, and M. Lewin, J. Chem. Phys. 125, 064101 (2006).

. Van Aggelen, P. Bultinck, B. Verstichel, D. Van Neck, and PWA; Phys.
Chem. Chem. Phys. 11, 5558 (2009).
B. Verstichel, D. Van Neck, H. Van Aggelen, P. Bultinck, and PWA; Phys.
Rev. A (submitted).

In order to be competitive, a P+Q+G calculation must:
e scale as k° with respect to the one-electron basis. l.e., the scaling
should be ~dim(T,)>.
e have a computational prefactor small enough for calculations with
k ~200 to be practical. (dim(I’,) ~ 10*)



E,,[v:N ] = limmin ,(T)
t—»ot T
f£(T)= Tr[hv’NF]—t(ln‘F +1n|Q(I")+ In|G(I)|++-]
We regard the Q and G conditions as linear and Hermitian
mappings of I',.

We express I', in a geminal basis and define the “unit basis”

for the matrices as:
r=yr,
IJ

P = [fy - 517;1J



E,[viN]=limf(r)

£(T)=Tt[h |- r(ln\r\ +;r:‘Q(F)‘ +1n|G(I)|+- )

The gradient and the action of the Hessian on a vector are
easy to construct. E.g.,

a(r) Tr[r-lF("’) } + Tr[[Q(F)T Q(F(U)”

\%) (F) = W =h 1 +Tr[[G(F)]_1 G(F(u))}r N
Tr| TFY) |+ Tr[Q([Q(F)}IjF(U)}
+Tr[G([G(F)]I)F(”)}_...

:hv _t




=

w

E, [ viN ]= limmin ,(T)

t—0" T

t ln‘Q(F)‘+ln‘G(F)‘+---)

f£(T)= Tr[hv’NF]—t(ln‘F

Guess the density matrix with penalty strength t.
Compute Newton Step Direction (“truncated Newton”)

VVf,(T)-(Ar)=-V£(T)

Perform line search in Newton direction.
If not converged, go back to step 2. If converged, reduce
t and go back to step 1.



E, [v:V]=lim £(T)
£,(r)="Te[ b, , T ]=¢(1n|r|+ n|Q(T)|+ In|G(T)| +--

Guess the density matrix with penalty strength t.
We extrapolate from solutions from previous values of t.

Compute Newton Step Direction (“truncated Newton”)

VVf,(T)-(Ar)=-Vf,(T)

Precondition the linear equations. Use conjugate gradient or MINRES.
(Limited Memory) Quasi-Newton doesn’t work.

Perform line search in Newton direction.
Very fast; equivalent to two gradient evaluations.

If not converged, go back to step 2. If converged, reduce

t and go back to step 1.
In practice, very few Newton steps needed to converge.



Good News

e Exact N-representability conditions for '’2 are known.
e There is a systematic way to derive the full set of N-
representability conditions.



Good News

e Exact N-representability conditions for I', are known.
e There is a systematic way to derive the full set of N-
representability conditions.

Bad News

o If exact N-representability conditions are not imposed,
there always exists a system with an arbitrarily large
error. (But that system may not be electronic.)



Good News
e Basis Set Stability seems OK.



Good News
e Basis Set Stability seems OK.

Bad News

e We still haven’t used a large enough basis set to get
the promised “lower bound” on the exact energy.



Good News

P+Q+G gives good results for atomic energies.

P+Q+G gives good results for single-electron properties
of atoms like ionization potentials.

An Dyson-orbital-like spectrum (and an “exact” first IP)
can be obtained by extended Koopmans’ Theorem.



Good News

P+Q+G gives good results for atomic energies.

P+Q+G gives good results for single-electron properties
of atoms like ionization potentials.

An Dyson-orbital-like spectrum (and an “exact” first IP)
can be obtained by extended Koopmans’ Theorem.
P+Q+G (+T1+T2) gives a good description of molecules
near equilibrium.

Bad News

Dissociation of Heteronuclear Diatomic Molecules is
Qualitatively Incorrect.




Good News

e The subspace-representability constraint fixes the
dissociation problem for heteronuclear diatomics and
also improves the "near equilibrium” region of the
curve.



Good News

e The subspace-represenability constraint fixes the
dissociation problem for heteronuclear diatomics and
also improves the “near equilibrium” region of the
curve.

Bad News

e The cost of the subspace-representability constraint

grows exponentially ( ~N,,. ! ) with the size of the
system.



Good News

e 2-RDM calculations can be performed with N°® scaling.



Good News

e 2-RDM calculations can be performed with N°® scaling.

Bad News

e The prefactor is huge and current algorithms (at
least our algorithm) is not competitive with the
quantum chemistry competition (CCSD, etc.).
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