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I. The Robustness Paradigm

Consider a minimum cost “system design” problem where
for a given instance, not all of the parameters are known ahead
of time.

Assumption: This uncertainty is known and bounded. Each
instance comes with a universe of possible inputs U .



I. The Robustness Paradigm

Consider a minimum cost system design problem where for a
given instance, not all of the parameters are known ahead of
time.

Assumption: This uncertainty is known and bounded. Each
instance comes with a universe of possible realizations U .

A Robust Solution is one that supports the feasible
implementation of the system for any possible realization from
U .

Goal: Find a cheapest robust solution.



II. Network Design

A standard minimum cost network design problem consists of:

• a graph G with a per-unit cost c(e) for each link e ∈ E(G)

• a demand matrix Dij representing the demand between nodes
i, j
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Network Design

A standard minimum cost network design problem consists of:

• a graph G with a per-unit cost c(e) for each link e ∈ E(G)

• a demand matrix Dij representing the demand between nodes
i, j

Output: Minimum cost edge capacity reservation x(e) that
supports the simultaenous routing of all demands Dij.

assumption: our networks and flows are generally undirected.



Network Design

Typically there are many side constraints: routing constraints,
buy-at-bulk capacity constraints, node costs, resilience
requirements etc.

x(e) = 2

1

1

1

1

1

0



III. Uncertain Demand in Network Design

Dont know a single demand matrix - we have a collection of
possible “valid” demand matrices.

Generally take the universe U to be a convex region of
demands (Dij).



(Vanilla) Robust Network Design

UNIVERSE: The collection U of “valid” demand matrices.

ROBUSTNESS: build enough network capacity to “fulfil” each
demand matrix

(Dij) ∈ U .

Goal: Find a robust edge capacity vector x(e) that minimizes∑
e c(e)x(e).



Some “Known” Universes

Forecasts on Future Traffic

1. Given traffic “forecasts” Di for i = 1, 2, . . . , s:

U = conv{D1, D2, . . . , Ds}.



Some “Known” Universes

Forecasts on Future Traffic

1. Given target matrix D and other “forecasts” Di for
i = 1, 2, . . . , s:

U = conv{D,D1, D2, . . . , Ds}.

Traffic is Known Approximately

2. (Applegate-Cohen 2006) Given a target matrix D̃ and
threshold parameter α ≥ 1,

U = {(Dij) : s.t. Dij ∈ [
D̃ij

α , α · D̃ij] ∀i, j}.



Some “Known” Universes

“Unit Ball” Demand Polyhedra

3. Consider a unit ball around D̃ij defined by some norm L.

P (D̃, L) = {D : ||D − D̃||L ≤ 1}.
• lp norms give rise to classes of concave cost flow problems.

• The L2-norm and ellipsoidal balls were considered by Ben Tal and

Nemirovski (also Belotti and Pinar) to study associated stochastic

optimization problems.

Design cheapest network such that the probability a link’s capacity is

exceeded is at most p(e).



Some Known Universes

Bounds on Injected Traffic

4. The Hose Model (Fingerhut et al. 1997, Duffield et al. 1999)

Given marginal demands Di for each node i

U = {(Dij) :
∑
j

Dij ≤ Di,
∑
i

Dij ≤ Dj ∀i, j}

.

Taking Di’s as 1 captures the basic idea.



Virtual Private Network (VPN) Design

Given marginal demands Di for each node i

U = {(Dij) :
∑

j Dij ≤ Di and
∑

j Dji ≤ Di ∀i}.



Have you seen the Hose Model before?

• Permutation Routing Model: Each terminal has one packet to send,

and one packet to receive.

Valiant (Randomized Load Balancing method for routing with O(log n)

congestion in hypercube and other networks), Borodin-Hopcroft showed

that randomized methods are needed to obtain such bounds.



Have you seen the Hose Model before?

• Permutation Routing Model: Each terminal has one packet to send,

and one packet to receive.

Valiant (Randomized Load Balancing method for routing with O(log n)

congestion in hypercube and other networks), Borodin-Hopcroft showed

that randomized methods are needed to obtain such bounds.

• Uniform Multiflows (UMCF): Dij = 1
k for all i, j ∈ X (set of

“terminals”).

UMCF lies in the Hose polytope (marginals are 1 for terminals)

Leighton-Rao (1988) showed that UMCF can be routed in any “X-

expander” with congestion O(log n).

Observation: If you can route UMCF, then you can route any hose matrix

with congestion at most 2.



Have you seen the Hose Model before?

• Permutation Routing Model: Each terminal has one packet to send,

and one packet to receive.

Valiant (Randomized Load Balancing method for routing with O(log n)

congestion in hypercube and other networks), Borodin-Hopcroft showed

that randomized methods are needed to obtain such bounds.

• Uniform Multiflows (UMCF): Dij = 1
k for all i, j ∈ X (set of

“terminals”).

UMCF lies in the Hose polytope (marginals are 1 for terminals)

Leighton-Rao (1988) showed that UMCF can be routed in any “X-

expander” with congestion O(log n).

Observation: If you can route UMCF, then you can route any hose matrix

with congestion at most 2.

• Traffic Estimation in Emerging Markets (Kruithof 1937, Krupp 1979)



IV. Routing Models for Uncertain Demands

ROBUST: enough network capacity to “fulfil” each demand matrix in the

polytope U .

Need to say more about how we “fulfil” demand.

Most basic question: What are we allowed to do when demand patterns

change?



Dynamic Routing: Demands=AB,AC
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Dynamic Routing: Demands AC, AD

Reroute the demand AC

D

A

B

C



Partly Dynamic Control Plane
One must leave existing traffic alone.

Neither model is realistic in modern data networks. We cant change routings

on the fly. We also do not have the global picture of what traffic patterns

Dij are (even after analyzing data logs).



A Third Way: Oblivious Packet Routing

“...the route taken by each packet is determined entirely by itself. The other

packets can only influence the rate at which the route is traversed”

Valiant ’81



Oblivious Routing

Specify a Routing Template ahead of time, so routing is independent of

current conditions in the network.

For each pair of nodes i, j we have designated flow values f(P ) to paths P

joining i and j such that: ∑
P joins i and j

f(P ) = 1

.



Oblivious Routing

Specify a Routing Template ahead of time, so routing is independent of

current conditions in the network.

For each pair of nodes i, j we have designated flow values f(P ) to paths P

joining i and j such that: ∑
P joins i and j

f(P ) = 1

.

Interpretation: If in the future we handle some traffic matrix D, then we

should send f(P )Dij flow down path P .



Oblivious Routing

Specify a Routing Template ahead of time, so routing is independent of

current conditions in the network.

For each pair of nodes i, j we have designated flow values f(P ) to paths P

joining i and j such that: ∑
P

f(P ) = 1

.

Single Path Routing (SPR): f(P ) = 0 or 1. (Template T = (Pij))

Multi-Path Routing (MPR): f(P ) allowed to be fractions.



Examples:

Tree Routing

i

j



Randomized Load Balancing (Valiant)

1 / N

1
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1 / N
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Also, Räcke’s Oblivious Routing Template



The Robust Network Design Problem Defined
(SPR Model)

Given an undirected network G = (V,E) with edge costs c(e), and a

universe (convex body) U of demand matrices assumed to be “nice” (e.g.,

polytime separable).

Consider a single-path routing template T = (Pij) for each pair of nodes

i, j. The template induces the following capacity an edge e

uT (e) = max
D∈U

∑
Pij :e∈Pij

Dij



The Robust Network Design Problem Defined
(SPR Model)

Given an undirected network G = (V,E) with edge costs c(e), and a

universe (convex body) U of demand matrices assumed to be “nice” (e.g.,

polytime separable).

Consider a single-path routing template T = (Pij) for each pair of nodes

i, j. The template induces the following capacity on an edge e

uT (e) = max
D∈U

∑
Pij :e∈Pij

Dij

Find T that minimizes
∑

e c(e)uT (e).



V. Summary of what has been figured out

Given a network topology G, link costs ce and polytope U of demands, we

define 3 parameters:

dyn,mpr, spr

as the cheapest robust networks for U where we allow dynamic, multi-path

oblivious, and single-path oblivious routing respectively.

Two types of questions:

• how easy is it to compute these parameters?

• how do networks costs compare between different models?

Trivially:

dyn ≤ mpr ≤ spr



What’s Known about Complexity

All the parameters are approximable to within a logarithmic factor by metric

embeddings (Gupta et al. 2001)

————————–

Computing mpr can be solved in polytime (Ben Ameur, Kerivin 2003).

Compact LP formulations given by several groups. These results actually

follow from Ben-Tal, Nemirovski 1999.

————————–

There is a polytime O(1) approximation when U is defined by an

“asymmetric” hose model (Gupta, Kumar, Pal, Roughgarden 2003)



What’s Known about Complexity

Computing dyn is also a convex minimization problem. However the

separation problem is coNP-hard via a reduction from sparsest cut

(Chekuri, Scutella, Oriolo, S. 2005).

Theorem. If for any ϵ > 0, there is a polytime (2 − ϵ)-approximate

algorithm for the dynamic robust separation problem,

THEN there is a polytime constant approximation for Sparsest Cut.

————————–

spr is Max-SNP hard (Fingerhut et al. 1997, Gupta et al. 2001) by a simple

reduction from STEINER TREE.

spr is hard to approximate within polylog (Olver, S. 2010). Reduction from

uniform Buy-At-Bulk (cf. hardness results of M. Andrews).



Approximability Summary for
general polytopes U

mpr exact

spr Θ(polylog)

dyn ?



What’s known about Gaps

OPT(Dynamic)    −−−−−−     OPT (MPR)  −−−−−−   OPT(SPR) −−−−− OPT(Tree)

O(logn) Gupta 2001



What’s known about Gaps

OPT(Dynamic)    −−−−−−     OPT (MPR)  −−−−−−   OPT(SPR) −−−−− OPT(Tree)

O(logn) Gupta 2001

Ω(logn) Goyal, Olver, S. 2009



What’s known about Gaps

OPT(Dynamic)    −−−−−−     OPT (MPR)  −−−−−−   OPT(SPR) −−−−− OPT(Tree)

Ω(polylog) Olver, S. 2010

O(logn)

Ω(logn) Goyal, Olver, S. 2009



VI. The VPN Problem

Input: an undirected network G = (V,E) with edge costs c(e), and a hose

polytope U defined by marginal values Di.

(Can think of these as 1 if you like)

Recall Hose Demand Matrices:

U = {(Dij) :
∑

j Dij ≤ Di,
∑

j Dji ≤ Di ∀i}



VI. The VPN Problem

Input: an undirected network G = (V,E) with edge costs c(e), and a hose

polytope U defined by marginal values Di

Consider a single-path routing template T = (Pij) for each pair of terminals

i, j. How much capacity is needed on edge e:

uT (e) = max
D∈U

∑
Pij :e∈Pij

Dij



VI. The VPN Problem

Input: an undirected network G = (V,E) with edge costs c(e), and a hose

polytope U defined by marginal values Di.

Consider a single-path routing template T = (Pij) for each pair of terminals

i, j. How much capacity is needed on edge e:

uT (e) = max
D∈U

∑
Pij :e∈Pij

Dij

Find: a template T that minimizes
∑

e c(e)uT (e).

The resulting network with capacities u(e) called an optimal VPN.

Note: The capacities in a VPN may be fractional even though template is

integral.



The VPN Conjecture

VPN Conjecture. There is an optimal VPN induced by a template Pij only

using edges in some fixed tree T .

I.e., there is an optimal VPN induced by a Tree-Routing Template.

Not immediately clear this is true even if G is a ring. (Hurkens, Keijsper,

Stougie 2007)



Step 1. Can we compute the Best
Tree-Template?

Let opt be the optimal cost of a VPN.

Let VPN-tree denote the optimal capacity cost if we are only allowed

tree-templates.

Theorem: (Fingerhut, Suri, Turner 1997, Gupta, Kleinberg, Kumar, Rastogi,

Yener 2001)

VPN-tree ≤ 2 opt



Step 1.1. Given a fixed tree, how much capacity
is needed?

Dleft

min{Dleft, Dright}

Dright



How much capacity needed for an optimal tree?

�
�
�
�

�
�
�
�

≤
∑

Dv/2

Find the “center” of an optimal tree.



There is enough capacity for terminals to route
to the Center

�
�
�
�

�
�
�
�

Corollary. Terminals should route on shortest paths

⇒ find best VPN-tree by computing n shortest path trees.



Alternative Oblivious Template: HUB Routing

�
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Natural Approach to Prove VPN Conjecture

Look at the fractional relaxation and prove that it always has an integral

optimal solution.

In other words, show that the multi-path routing LP satisfies

mpr = spr

and then pray that a tree appears in the solution somehow.



Natural (but Wrong) Approach to Prove VPN
Conjecture

Look at the fractional relaxation and prove that it always has an integral

optimal solution.

In other words, show that the multi-path routing LP satisfies

mpr = spr

and then pray that a tree appears in the solution somehow.

The Strong VPN Conjecture turns out to be false. We can have

mpr < spr



Step 2. Pyramidal Hub Routing (Grandoni,
Kaibel, Oriolo, Skutella 2007)

Given: A set of terminals W each sending one unit flow to a root r.

�
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�
�

�
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�
�

k

min{load(e), k − load(e)}

k/20



Pyramidal Routing Conjecture (PRC)

PRC: There is an optimal pyramidal routing where the terminals route to the

hub on a tree.

Grandoni et al. show:

PRC ⇒ V PN Conjecture

Pyramidal is actually equivalent to VPN design.

From now on we always consider Di = 1.



Heavy Edges are the problem

�
�
�
�

�
�
�
�

A heavy edge - we pay less than load l(e)



Step 3. Cost Sharing

Pay for your own light edges, but other peoples’ heavy edges

�
�
�
�

�
�
�
�

A heavy edge



Cost Sharing

Let H be the subgraph of heavy edges.

Let Pur be the path chosen by u in a pyramidal routing.

Define

C
′
(u) =

∑
e∈Pur∆H

c(e).

C ′(u) will be u’s share of the cost of the pyramidal routing.



Cost Sharing

Let Pur be the path chosen by u in a pyramidal routing.

Define C ′(u) =
∑

e∈Pur∆H c(e).

∑
u C

′(u) =
∑

u

∑
e∈Pur∆H c(e)

=
∑

e∈E\H l(e)c(e) +
∑

e∈H(k − l(e))c(e)

which is just the cost of the pyramidal routing.



Step 4. T -joins

• Recall: For any even set of nodes T . A T -join is a set of edges J such

that the odd-degree nodes in the graph (V, J) are precisely T .

• Let T ′ be those nodes with odd degree in the heavy subgraph H.

N.B. |T ′| even and H is a T ′-join.



T -joins

• Recall: For any even set of nodes T . A T -join is a set of edges J such

that the odd-degree nodes in the graph (V, J) are precisely T .

• Let T ′ be those nodes with odd degree in the heavy subgraph H.

N.B. |T ′| even.
• For each terminal u, define Tu = T ′∆{u, r}.

N.B. |Tu| even.
• Let Mu be a minimum cost Tu-join.



T -joins

• Let T ′ be those nodes with odd degree in the heavy subgraph H. N.B.

|T ′| even.
• For each terminal u, define Tu = T ′∆{u, r}. N.B. |Tu| even.
• Let Mu be a minimum cost Tu-join.

Claim: C ′(u) ≥ C(Mu)

Proof:

1. C ′(u) = C(Pur∆H).

2. Pur is a {u, r}-join and H is a T ′-join ⇒ Pur∆H is a Tu-join.



T -joins

• Let T ′ be those nodes with odd degree in the heavy subgraph H. N.B.

|T ′| even.
• For each terminal u, define Tu = T ′∆{u, r}. N.B. |Tu| even.
• Let Mu be a minimum cost Tu-join.

Claim: C ′(u) ≥ C(Mu)

Proof:

1. C ′(u) = C(Pur∆H).

2. Pur is a {u, r}-join and H is a T ′-join ⇒ Pur∆H is a Tu-join.

Corollary: Pyramidal Routing costs at least
∑

u∈W C(Mu).

N.B. Lower bound depends on H only via its odd-degree nodes T ′.



A T -join Inequality

Let CSP (v) denote the cost of routing one unit from each terminal in W to

v on a shortest path. Ie
∑

u∈W SP (u, v).

To prove the PR Conjecture, it is sufficient to find a node v such that CSP (v)

is at most the pyramidal routing cost.



A T -join Inequality

Let CSP (v) denote the cost of routing one unit from each terminal in W to

v on a shortest path. Ie
∑

u∈W SP (u, v).

To prove the PR Conjecture, it is sufficient to find a node v such that CSP (v)

is at most the pyramidal routing cost.

Theorem 1. If F is a a multigraph obtained as the union of the “joins”

(Mu : u ∈ W ). Then there is some node v such that F has enough

capacity for each terminal to route to v in F .

Proof uses uncrossing on the following inequalities

|δF (S)| ≥ |S ∩ W | for every T ′-odd set S



VI. IP over Optical



Switching Costs

Groom traffic onto cost-efficient pipes (circuits) but avoid managing traffic at

every node?
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Hub Routing Using Circuits

In Optimal VPN-tree, a node i provisions a STATIC circuit to the root of size

2Di.

Downside: single point of failure.



Load Balancing = Convex Combination of Hub
Routing



Load Balancing = Convex Combination of Hub
Routing



Load Balancing = Convex Combination of Hub
Routing



Load Balancing = Convex Combination of Hub
Routing



Load Balancing = Convex Combination of Hub
Routing

⇒ Load Balancing is MORE expensive than hub routing.



Selective Load Balancing (Multi-Hub Routing)

The costs of the different shortest path trees can vary widely.

There tends to be a “core” of network nodes which have similiar costs to

optimal hub

⇒ Load Balance across the M best nodes

Eliminates single point of failure, but cost is comparable to VPN-tree solution.



JANET, Abilene, Geant



Empirical Results: Selective Load Balancing
versus Multi-Hop Routing

Intermediate routing nodes (M)
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Empirical Results: Robustness Premium ρ

Cost of supporting all hose matrices divided by cost of routing a single

benchmark demand matrix.

JANET ABILENE GEANT

(single-hop static) ρstatic 8 11 27

ρSP 2.43 2.39 2.48

ρVPN 1.41 1.36 1.13

VPN/SP 1.63 1.46 1.31

More expensive than premiums witnessed by Applegate-Cohen, but then we

are optimizing for a larger universe of matrices.



Possible Directions

1. Generalized VPN Conjecture

2. several interesting universes of demand matrices where we do not know if

constant factor algs exist.

3. What happens with capacities?

4. more (empirical or theoretical) work on multihub routing in capacitated

networks; resilience.

5. hierarchical hubbing

6. settle the approximation factor for dynamic routing


