Flow Analysis and Design: Issues and Challenges in CFD (Accuracy, Reliability, and Uncertainty)

D. Pelletier

Canada Research Chair
Characterization and Optimization of Complex Flows

Département de Génie Méecanique Ecole Polytechnique de Montréeal

Fields Institute Optimization Seminar Toronto, November 3rd, 2009

Outline

- Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- 4 Code Verification: the Method of Manufactured Solution
- 5 Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

GRMIAO: leaders in CFD since 1984

R. Camarero

A. Garon

F. Guibault

B Ozell

D Pelletier

J-Y-Trepanier

In the beginning ... the fluid

Héraclite (536-470 AD) Everything flows

Archimède (287 - 212 AD) Eureka

De Vinci
De moto
dell'acqua

Newton **F** = **ma**

D. Bernouilli (1700-1782) $p + \frac{1}{2}U^{2} = const$

Euler (1785 - 1836)

Navier (1707 - 1783)

Stokes (1818 - 1903)

Optimization problem

• Find design parameters α^* such as

$$\mathcal{J}(\boldsymbol{U}(\alpha^*), \alpha^*) \leq \min_{\alpha} \mathcal{J}(\boldsymbol{U}(\alpha), \alpha)$$

with $\boldsymbol{G}(\boldsymbol{U}, \alpha) = 0$

• **G** = Navier-Stokes Equations

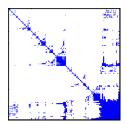
Continuity:
$$\nabla \cdot \boldsymbol{u} = 0$$

Momentum: $\rho(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \nabla \cdot \boldsymbol{\tau}(\boldsymbol{u}) + \boldsymbol{f}$

with $\boldsymbol{\tau}(\boldsymbol{u}) = \mu \left(\nabla \boldsymbol{u} + \nabla^{\mathsf{T}} \boldsymbol{u} \right)$

CFD: What is it?

CFD: Art of replacing fluid flows PDEs (impossible to solve) by a huge easier to solve Ax = b.



CFD: Where does it stand?

Analyses and design proceed by:

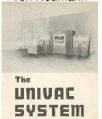
- Experimentation, intuition and empiricism
 - Wind tunnel
 - Collection of Measurements
 - The Wright brothers
- Development of simplified analytical models
 - Closed form solutions
 - Explanation, insight
 - BUT usually very simplified approximations of reality
- CFD = Applied Mathematics + Computing + Engineering Science
 - Almost no simplification
 - ▶ BUT mathematical model of physics is critical (turbulence ...)
 - solution = set of discrete values

CFD was painful and slow!! Who?

- 1910 Richardson: Human computors
 - ▶ in 1910: 2000 ops/week
 - ► in 2009: 10⁹ ops/sec
- 1933 Thom : first CFD computation for a cylinder
- 1953 Kawaguti: Mechanical calculator
 - Navier-Stokes flow around a cylindre
 - 20 hours / week for 18 months

Trigger events, When?

Von Neumann



univac

Eniac

Cray X-MP 1983

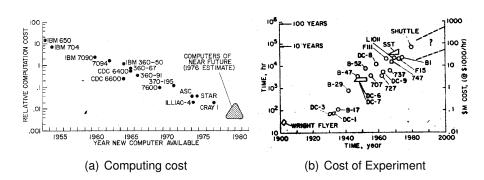
Why CFD?

CFD because of its cost/benefit ratio.

- free from physical limitations of experiments
- free from simplifications in analytical and empirical models
- applicable where measurements are impossible to make
- provides all information everywhere

CFD makes its own room

Computing costs drop, cost of experiments explodes



1975 Dean Chapman (NASA): CFD spells the end of wind tunnels

Outline

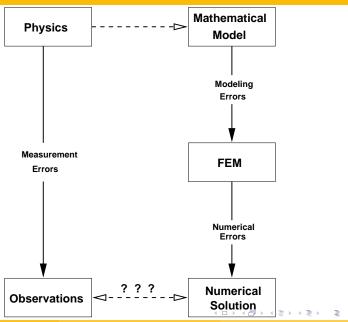
- Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- Code Verification: the Method of Manufactured Solution
- Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

Accuracy; a Never Ending Challenge?

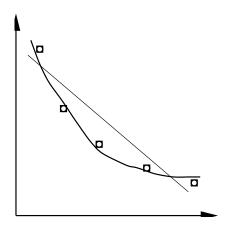
- **D. Mavriplis**, *Unstructured-Mesh Discretizations and Solvers for Computational Aerodynamics*, AIAA Journal , Vol 46, No 6, pp. 1281-1298, June 2008.
 - \bullet Anisotropic grids: 1, 3, 9, and 72 \times 10⁶ points,
 - Drag converges to 2nd order, but
 - ullet 65 imes 10⁶ point grid with isotropic surface mesh
 - Mach = 0.75: $C_D = 0.0280 \rightarrow 0.0255$ but $C_{D_{exp}} = 0.0270$),
 - Mesh Resolution is most important factor,
 - Issues: Accuracy, Reliability, Uncertainty

Accuracy: How to get there? How to make sure we are there?

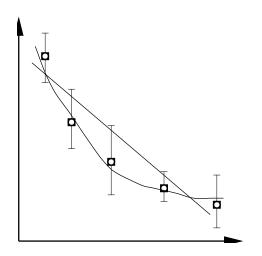
Modeling and Simulation - 1



Modeling and Simulation - 2



Modeling and Simulation - 3



Numerical Techniques: Finite Element Method

From PDEs to Ax = b

- Weak forms of the equations
- Streamline Upwind/Petrov-Galerkin stabilized formulations
- RANSE : Velocity-pressure formulation
- Newton's linearization and sparse direct solver
- Equations solved in a partly segregated manner
- Taylor-Hood element $(P_2 P_1)$: formal orders of accuracy

```
u, v, \mathcal{K}, \mathcal{E} : ||.||_{L^2} \equiv O(h^3) and ||.||_{H^1} \equiv O(h^2)

p : ||.||_{L^2} \equiv O(h^2) and ||.||_{H^1} \equiv O(h)
```

Numerical Techniques: Adaptive procedure

- → Adaptive grids: from **Ax = b** to Accuracy
 - Zhu-Zienkiewicz error estimator
 - Mesh size obtained based on the convergence rate of the FEM and the principle of equi-distribution of the error
 - Advancing front mesh generator
 - Adaptation based on error estimates for $||\mathbf{u}||_{H^1}$, $||\mathcal{K}||_{eqv}$, $||\mathcal{E}||_{eqv}$, $||\mu_t||_{eqv}$

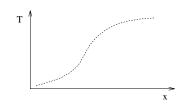
Numerical Techniques: Error Estimation (1)

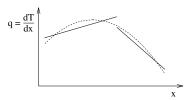
→ Zhu-Zienkiewicz error estimator

- Nodal-based Least-squares derivative recovery technique
- Measure of the error : difference between a post-processed field and a discontinuous FE field
- An example :

$$\begin{split} ||\rho||_{H^1} &= \sqrt{\int_{\Omega} \nabla \rho \cdot \nabla \rho \; d\Omega} \\ ||e_{\rho}||_{H^1}^{\text{exa}} &= \sqrt{\int_{\Omega} (\nabla p_{\text{exa}} - \nabla p_h) \cdot (\nabla p_{\text{exa}} - \nabla p_h) \; d\Omega} \\ ||e_{\rho}||_{H^1}^{\text{ZZ}} &= \sqrt{\int_{\Omega} (\nabla p_{\text{ZZ}} - \nabla p_h) \cdot (\nabla p_{\text{ZZ}} - \nabla p_h) \; d\Omega} \end{split}$$

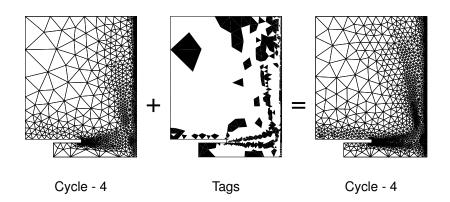
Projection Error Estimator



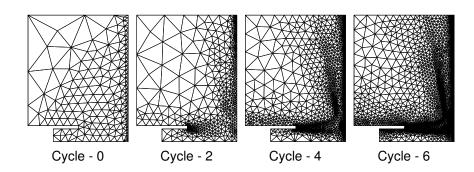


$$e^2 = \int (q_{ex} - q_h)^2 dx$$
 $e^2 \simeq E^2 = \int (q^* - q_h)^2 dx$

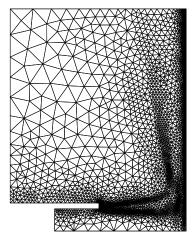
Grid Adaption Process



Adaptive Grids Sequence

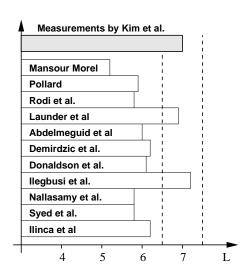


Final Mesh



Cycle - 6 How do we know if we are there ?

VnV: Modeling and Simulation - 4



Outline

- 1 Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- 4 Code Verification: the Method of Manufactured Solution
- 5 Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

Verification and Validation

- In an English thesaurus Verification and Validation are synonymous.
- In CFD the words have acquired accepted **technical** meanings.
- The same word can have different Technical meanings in different contexts.

In mechanical and aerospace engineering:

- Verification: Are we solving these equations right?
- Validation: Are we solving the right equations for this problem?

Verification

Verification is a mathematical activity

- Mathematics
- Numerical methods

Are we doing good numerical analysis for solving the differential equations at hand?

- Is the scheme/code $O(\delta x^2)$? (Code Verification)
- Is it $O(\delta x^2)$ on this problem? (Simulation Verification)

Validation

Validation means having

- The proper physics.
- The proper science.
- An appropriate engineering model.

Are we doing good engineering modeling for the problem at hand?

Requirements:

- detailed measurements
- quality measurements
- quality predictions

Verification and Validation

Verification: Are we solving the equations right?

- 2 steps
- (1) Code Verification: MMS = true error, grid refinement study
- (2) Simulation Verification: Error estimator, grid refinement study

Validation: Are we solving the right equations?

- Code has been verified,
- Simulation has been verified
- Compare to quality data

Outline

- 1 Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- 4 Code Verification: the Method of Manufactured Solution
- 5 Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

G. Polya: Only a fool starts at the beginning; the wise starts at the end.

Method of manufactured solutions:

- Pick a non-trivial continuum solution.
- Substitute in PDE (Navier-Stokes, Darcy, etc.)
- Determine source term Q(t, x, y) for balance.
- Implement in solver.
- Perform grid refinement study.
- MMS = Code Accuracy and Reliablility

We can pick the solution before we specify the governing equations or the boundary conditions.

$$U(t,x) = A + \sin(x + Ct)$$

- Here applied to two different problems:
 - ▶ two sets of governing PDE's
 - two sets of boundary conditions

Example 1 : Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2}$$

$$L(u) = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \alpha \frac{\partial^2 u}{\partial x^2} = 0$$

However, U(x, t) is not a solution of above

$$L(U(t,x)) \neq 0$$

$$L(U(t,x)) = Q_1(t,x)$$

$$Q_1(t,x) = L(U(t,x))$$

$$Q_1(t,x) = C cos(x+Ct) + [A+sin(x+Ct)]cos(x+Ct) + \alpha sin(x+Ct)$$

U(x,t) = A + sin(x + Ct) is then solution of modified PDE

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2} + Q_1(t, x)$$

with compatible initial and boundary conditions

Note:

- Domain not specified,
- Domain could be 0 < x < 1
- Domain could be -10 < x < 100
- Boundary conditions will differ for different domains
- Boundary conditions type not specified
- Same U(t,x) can be solution of many different BC combinations

Example 2: Burgers-like equation

Idealized 1-D mixing length turbulence model

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2} + \lambda \frac{\partial}{\partial x} \left[\left(x \frac{\partial u}{\partial x} \right)^2 \right]$$
$$= \alpha \frac{\partial^2 u}{\partial x^2} + 2\lambda \left[x \left(\frac{\partial u}{\partial x} \right)^2 + x^2 \frac{\partial^2 u}{\partial x^2} \right]$$

$$Q_2(t,x) = L(u) = u_t + uu_x - \alpha u_{xx} - 2\lambda \left[x(u_x)^2 + x^2 u_{xx} \right]$$

The Method of Manufactured solution

$$U(t,x) = A \sin(x + Ct)$$

is solution of 2 PDE's:

$$u_t + uu_x = \alpha u_{xx} + Q_1(t, x)$$

$$u_t + uu_x = \alpha u_{xx} + 2\lambda \left[x(u_x)^2 + x^2 u_{xx} \right] + Q_2(t, x)$$

Note:

The same solution can be used to verify **two** different 'codes' solving **two** different governing differential equations!

The source term changes to maintain the solution across codes (PDE's).

The Method of Manufactured solution - 17

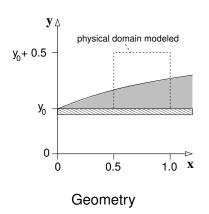
Use of MMS

• Error: $E = f_h - f_{ex} = Ch^p$

• Grid refinement study : Monitor p

h	$E=c_1h$	$E=c_2h^2$
$h_1 = h$	$E_1 = E_0$	$E_1 = E_0$
$h_2=rac{h}{2}$	$E_2 pprox rac{h}{2} = rac{E_0}{2}$	$E_2\approx (\frac{h}{2})^2=\frac{E_0}{4}$
$h_3=rac{h}{4}$	$E_3 pprox rac{h}{4} = rac{E_0}{4}$	$E_3\approx (\frac{h}{4})^2=\frac{E_0}{16}$
$h_4 = \frac{h}{8}$	$E_4 pprox rac{h}{8} = rac{E_0}{8}$	$E_4 \approx (\frac{h}{8})^2 = \frac{E_0}{64}$

MMS - Turbulent boundary layer



$$u = \operatorname{erf}(\eta)$$

$$v = \frac{1}{\sigma\sqrt{\pi}} \left(1 - e^{-\eta^2} \right)$$

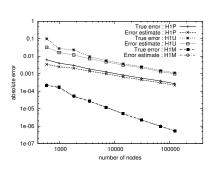
$$p = 0.5 \ln \left(2x - x^2 + 0.25 \right) \ln \left(4y^3 - 3y^2 + 1.25 \right)$$

$$k = k_{max} \eta_{\nu}^2 e^{1 - \eta_{\nu}^2} + \alpha_k$$

$$\epsilon = 0.36 \frac{k_{max}^2}{\nu_{max}} e^{-\eta_{\nu}^2} + \alpha_{\epsilon}$$

MMS - Turbulent boundary layer

Grid 5

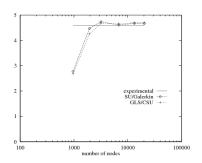


Error Trajectories
Code is verified!

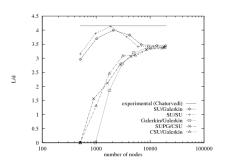
Outline

- Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- Code Verification: the Method of Manufactured Solution
- 5 Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

Simulation Verification: The Good, the Bad, and ...

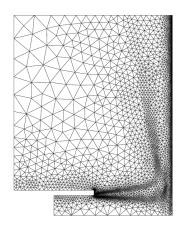


Verified
Validated

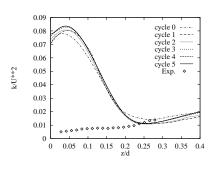


30° diffuser Verified NOT Validated

... and the Ugly! (Impinging jet)

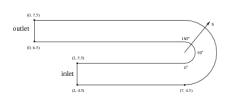


Grid 7



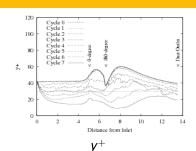
TKE: k/U^2 at r/d = 0.5Verified NOT Validated

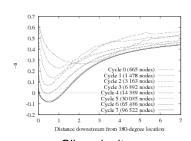
Turn Around Duct



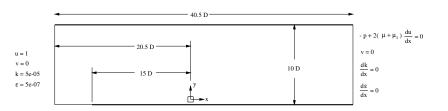
Domain

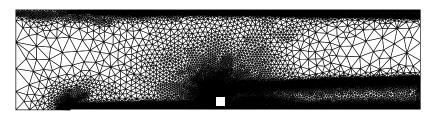
Grid 7 (96 522 nodes)





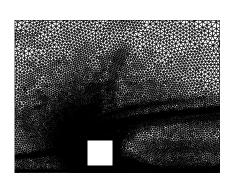
Square Cylinder close to Ground



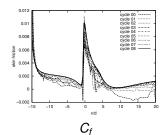


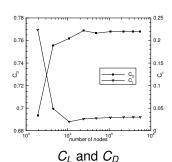
Grid 6 = 220,000 nodes (Grid 8 = 556,567)

Square Cylinder close to Ground



Grid 6 (Grid 8 = 556,567 nodes)





Square Cylinder close to Ground

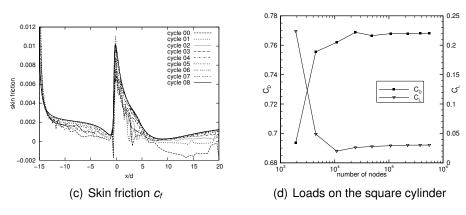
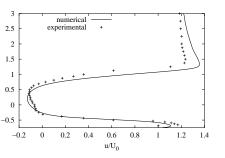
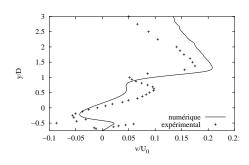


Figure: Grid convergence with adaptive cycles

Square Cylinder close to Ground: Validation - 1



U at x = 1 D
Validated



V at x = 1 DValidated?

Validation: summary

- Code Verification = code and its use are reliable
- Simulation Verification = solution accuracy estimated
- Simulation Validation = numerical model accurate and reiable

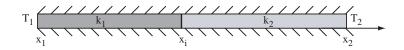
•

 Very accurate, exhaustive data needed to ensure that simulation and experiment are for same problem

Outline

- 1 Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- Code Verification: the Method of Manufactured Solution
- 5 Verification and Validation of simulations
- Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

Sensitivities: Definition



$$T = T(x; T_1, T_2, \kappa_1, \kappa_2, x_1, x_i, x_2)$$

Sensitivity with respect to a

$$s_T = \frac{\partial T}{\partial a}$$
$$a \in \{T_1, T_2, \kappa_1, \kappa_2, x_1, x_i, x_2\}$$

Sensitivities: uses

Gradient based optimization

$$\min \ \textit{J}(\textit{\textbf{u}}(\alpha),\textit{p}(\alpha);\alpha)$$

$$\frac{dJ}{d\alpha} = \frac{\partial J}{\partial \boldsymbol{u}} \underbrace{\frac{\partial \boldsymbol{u}}{\partial \alpha}}_{\boldsymbol{s}_{\boldsymbol{u}}} + \frac{\partial J}{\partial \rho} \underbrace{\frac{\partial \rho}{\partial \alpha}}_{\boldsymbol{s}_{\rho}} + \frac{\partial J}{\partial \alpha}$$

Fast nearby solution via Taylor series

$$C_{p}(x; \alpha_{0} + \delta \alpha) = C_{p}(x; \alpha_{0}) + \underbrace{\frac{\partial C_{p}}{\partial \alpha}}_{\alpha_{0}} \delta \alpha + \underbrace{\frac{\partial^{2} C_{p}}{\partial \alpha^{2}}}_{\alpha_{0}} \frac{\delta \alpha^{2}}{2}$$
$$C_{f}(x; \alpha_{0} + \delta \alpha) = C_{f}(x; \alpha_{0}) + \underbrace{\frac{\partial C_{f}}{\partial \alpha}}_{\alpha_{0}} \delta \alpha + \underbrace{\frac{\partial^{2} C_{f}}{\partial \alpha^{2}}}_{\alpha_{0}} \frac{\delta \alpha^{2}}{2}$$

Forward uncertainty propagation

Cascade input data uncertainty into CFD outputs

1st Order:

$$\sigma_F^2 = \sum_{i=1}^n (\underbrace{\frac{\partial \mathbf{F}}{\partial a_i}}_{s_F^{a_i}} \sigma_{a_i})^2$$

2nd Order:

$$\sigma_F^2 = \sum_{i=1}^n \left(\underbrace{\frac{\partial \boldsymbol{F}}{\partial a_i}}_{s_F^{a_i}} \sigma_{a_i} \right)^2 + \frac{1}{2!} \sum_{i,j=1}^n \left(\underbrace{\frac{\partial^2 \boldsymbol{F}}{\partial a_i \partial a_j}}_{s_F^{a_i a_j}} \sigma_{a_i} \sigma_{a_j} \right)^2$$

Flow and 1st Order Sensitivity Equations

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \rho + \nabla \cdot \left[\mu \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) \right]$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

SEM: differentiate then discretize

$$\frac{\partial}{\partial a} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right] = 0 \qquad \rightarrow \qquad \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial a} \right) + \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial a} \right) = 0$$

$$\frac{\partial s_u}{\partial x} + \frac{\partial s_v}{\partial y} = 0$$

1st Order Momentum Sensitivity

$$\frac{\partial}{\partial \boldsymbol{a}} \left[\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \boldsymbol{p} + \nabla \cdot \left[\mu \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) \right] \right]$$

$$\rho_{a}' \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \rho \boldsymbol{s}_{u}^{a} \cdot \nabla \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{s}_{u}^{a} = -\nabla \boldsymbol{s}_{p}^{a}$$
$$+ \nabla \cdot \left[\mu_{a}' \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{T} \right) + \mu_{a} \left(\nabla \boldsymbol{s}_{u}^{a} + (\nabla \boldsymbol{s}_{u}^{a})^{T} \right) \right]$$

Newton linearization 1 linear system of PDE / parameter

2nd Order Sensitivity Equations

$$\frac{\partial}{\partial \boldsymbol{b}} \left[\begin{array}{l} \rho_{\boldsymbol{a}}' \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \rho \boldsymbol{s}_{\boldsymbol{u}}^{\boldsymbol{a}} \cdot \nabla \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{s}_{\boldsymbol{u}}^{\boldsymbol{a}} = -\nabla \boldsymbol{s}_{\boldsymbol{p}}^{\boldsymbol{a}} \\ + \nabla \cdot \left[\mu_{\boldsymbol{a}}' \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) + \mu_{\boldsymbol{a}} \left(\nabla \boldsymbol{s}_{\boldsymbol{u}}^{\boldsymbol{a}} + (\nabla \boldsymbol{s}_{\boldsymbol{u}}^{\boldsymbol{a}})^T \right) \right] \end{array} \right]$$

$$\Downarrow$$

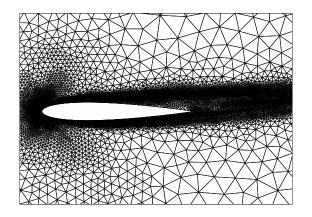
$$\rho \mathbf{s}_{u}^{ab} \cdot \nabla \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{s}_{u}^{ab} + \nabla \mathbf{s}_{p}^{ab} - \nabla \cdot \left(\mu (\nabla \mathbf{s}_{u}^{ab} + (\nabla \mathbf{s}_{u}^{ab})^{T}) \right) =$$

$$- \left[\rho'_{ab} \mathbf{u} \cdot \nabla \mathbf{u} + \rho'_{a} (\mathbf{s}_{u}^{b} \cdot \nabla \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{s}_{u}^{b}) + \rho'_{b} (\mathbf{s}_{u}^{a} \cdot \nabla \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{s}_{u}^{a}) + \rho (\mathbf{s}_{u}^{a} \cdot \nabla \mathbf{s}_{u}^{b} + \mathbf{s}_{u}^{b} \cdot \nabla \mathbf{s}_{u}^{a}) \right]$$

$$+ \nabla \cdot \left[\mu'_{ab} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}) + \mu_{a} (\nabla \mathbf{s}_{u}^{b} + (\nabla \mathbf{s}_{u}^{b})^{T}) + \mu_{b} (\nabla \mathbf{s}_{u}^{a} + (\nabla \mathbf{s}_{u}^{a})^{T}) \right]$$

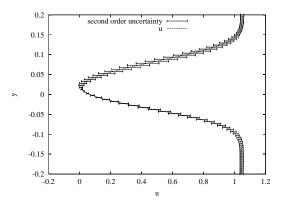
Uncertainty analysis

$$Re = 2000 - \alpha = 3^{\circ} \pm 1\%$$
 and $U_{\infty} = 1 \pm 1\%$

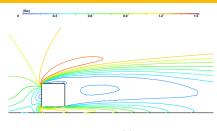


Uncertainty in Near Wake, x = 1.05

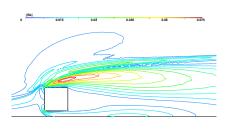
$$Re = 2000 - \alpha = 3^{\circ} \pm 1\%$$
 and $U_{\infty} = 1 \pm 1\%$



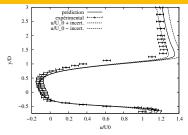
Square obstacle: sensitivity w.r.t U_0 and k_0



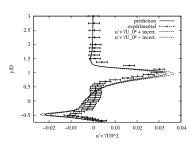
w.r.t. *U*₀



w.r.t. *k*₀



 U/U_0

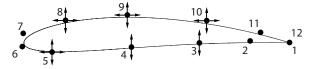


Outline

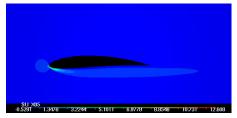
- Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- Code Verification: the Method of Manufactured Solution
- 5 Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

Maximize Lift to Drag ratio

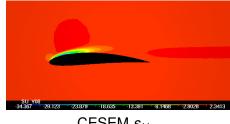
- Baseline: NACA 4512 at 0° and Re = 1000
- NURBS representation:12 control points



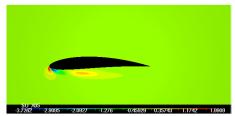
- Selection of the most influent parameters: 10 degrees of freedom
- Maximization of $\mathcal{J} = \frac{C_L}{C_D}$
- Initial guess: $C_D^0 = 0.1234$, $C_L^0 = 0.01902$ and $\mathcal{J}^0 = 0.1541$



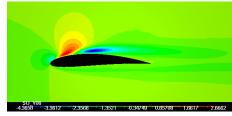
CESEM $s_{U_{X_5}}$



CESEM $s_{U_{Y_8}}$



CLSEM $S_{U_{X_5}}$



CLSEM $S_{U_{Y_8}}$

Results: CLSEM - 7 iterations

	Initial	Optimized
C_D	0.1234	0.1190
C_L	0.01902	0.1960
\mathcal{J}	0.1541	1.647

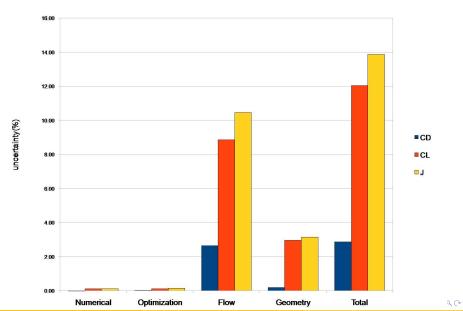


Uncertainty analysis

- C_L , C_D and \mathcal{J} suffer from uncertainty due to
 - Numerical uncertainties: discretization errors
 - Stopping criteria δX^{opt} (active parameters only)
 - ▶ Uncertain inlet flow δRe , $\delta \alpha$
 - Geometrical uncertainties δX^{geo} (coordinates of the control points)
- Evaluation of the uncertainties:

$$\Delta C_D = \sum_{\alpha_i} \left| \frac{DC_D}{D\alpha_i} \right| \Delta \alpha_i \quad \text{and} \quad \Delta C_L = \sum_{\alpha_i} \left| \frac{DC_L}{D\alpha_i} \right| \Delta \alpha_i$$
$$\Delta \mathcal{J} = \frac{C_D \Delta C_L + C_L \Delta C_D}{C_D^2}$$

Results of the uncertainty analysis



Outline

- 1 Background: who am I, what I do, CFD 101...
- 2 Introduction
- Verification and Validation: Definitions
- Code Verification: the Method of Manufactured Solution
- Verification and Validation of simulations
- 6 Sensitivity and Uncertainty Analysis
- Optimal design of airfoils
- 8 Conclusion

Conclusion

- CFD can be a very powerful tool if used properly:
 - not a black box by a lng shot
 - much research is fet to do
- Vrification: tackles Accuracy:
 - Code Verification using MMS: Cude accuracy and reliability
 - Simulation Verification: accuracy of PDE solution
- Simulation Validation: Reliability/Realism of mathematical model
 - Not as trivial as it seems
- Sensitivity equation method:
 - Provides insight into complex flows
 - Provides uncertainty bands on flow response
 - Provides quantitative data on which parameter exerts most influence on the flow and where
- successful application to airfoil optimization. Then again ...

Conclusion

- There is much left to discover and to do.
- Job security does not look so bad for some of us!

CFD is like scientific computing...

Hamming

1973: The purpose of computing is insight, not numbers.

anonymous

1980 The purpose of computing is is not yet in sight