D. Pelletier

Canada Research Chair
Characterization and Optimization of Complex Flows

Département de Génie Méecanique
Ecole Polytechnique de Montréeal

Fields Institute Optimization Seminar
Toronto, November 3rd , 2009

«0O0>» «F» «)>» « Q>

v



0 Background: who am I, what | do, CFD 101...

Q Introduction

9 Verification and Validation: Definitions

0 Code Verification: the Method of Manufactured Solution
Q Verification and Validation of simulations

0 Sensitivity and Uncertainty Analysis

o Optimal design of airfoils

Q Conclusion

«0>» «F>» « Er» « Q>

it
v
it



GRMIAQ: leaders in CFD since 1984

R. Camarero A. Garon F. Guibault

B Ozell D Pelletier J-Y.Trepanier

D. Pelletier (EPM) Simulation-Based Design CFD 2009 3/69



In the beginning ... the fluid

Héraclite Archiméde

(536-470 AD) (287 -212AD) D¢ Vinc Newton
. De moto
Everything flows Eureka F = ma
dell’acqua

(

Navier Stokes

D. Bernouilli
(1700-1782)

p + 5 U? = const

Euler
(1785-183p)  (1707-1783) (1818 - 1903)
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Optimization problem

@ Find design parameters a* such as

J(U(a®),a”) <min J(U(a), @)
with G(U,a) =0

@ G = Navier-Stokes Equations

Continuity: V-u=0
Momentum: p(u-Viu=-Vp+V.-r(u)y+f

with 7(u) = (Vu + VTu)
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CFD: Art of replacing fluid flows
PDEs (impossible to solve) by a huge
easier to solve Ax = b.
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CFD : Where does it stand?

Analyses and design proceed by:

@ Experimentation, intuition and empiricism

» Wind tunnel
» Collection of Measurements
» The Wright brothers

@ Development of simplified analytical models

» Closed form solutions
» Explanation, insight
» BUT usually very simplified approximations of reality

@ CFD = Applied Mathematics + Computing + Engineering Science

» Almost no simplification
» BUT mathematical model of physics Is critical (turbulence ...)
» solution = set of discrete values
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CFD was painful and slow!! Who?

@ 1910 Richardson: Human computors

» in 1910: 2000 ops/week
» in 2009: 10° ops/sec

@ 1933 Thom : first CFD computation for a cylinder
@ 1953 Kawaguti: Mechanical calculator

» Navier-Stokes flow around a cylindre
» 20 hours / week for 18 months
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Trigger events, When ?

The

UNIVAC - 3
SYSTEM Cray X-MP 1983

univac
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Why CFD ?

CFD because of its cost/benefit ratio.
@ free from physical limitations of experiments
@ free from simplifications in analytical and empirical models
@ applicable where measurements are impossible to make
@ provides all information everywhere
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CFD makes its own room

Computing costs drop, cost of experiments explodes
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Accuracy; a Never Ending Challenge?

D. Mavriplis, Unstructured-Mesh Discretizations and Solvers for
Computational Aerodynamics, AIAA Journal , Vol 46, No 6, pp.
1281-1298, June 2008.

@ Anisotropic grids: 1, 3, 9, and 72 x 10° points,

@ Drag converges to 2" order, but

@ 65 x 10° point grid with isotropic surface mesh

@ Mach = 0.75: Cp = 0.0280 — 0.0255 but Cp,,, = 0.0270),
@ Mesh Resolution is most important factor,

@ Issues: Accuracy, Reliability, Uncertainty

Accuracy: How to get there? How to make sure we are there?
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Modeling and Simulation - 1

Mathematical

Physics f--------- =
y Model
Modeling
Errors
Measurement
c FEM
rrors
Numerical
Errors
?2 7?2 7 N H
. 1 umerical
Observations |[<d-------- = .
Solution
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Numerical Techniques : Finite Element Method

From PDEsto Ax=b

@ Weak forms of the equations

@ Streamline Upwind/Petrov-Galerkin stabilized formulations

@ RANSE : Velocity-pressure formulation

@ Newton’s linearization and sparse direct solver

@ Equations solved in a partly segregated manner

@ Taylor-Hood element (P> — Py) : formal orders of accuracy
u, v, K, & 1 ||.ll.e = O(h®) and ||.||51 = O(K?)
p : |llli2 = O(h?) and ||.[|41 = O(h)
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Numerical Techniques : Adaptive procedure

— Adaptive grids: from Ax = b to Accuracy
@ Zhu-Zienkiewicz error estimator

@ Mesh size obtained based on the convergence rate of the FEM
and the principle of equi-distribution of the error

@ Advancing front mesh generator

@ Adaptation based on error estimates for ||u||y, ||K||eqv, ||€]]eqvs
1t logv

D. Pelletier (EPM) Simulation-Based Design CFD 2009 18/69



Numerical Techniques : Error Estimation (1)

— Zhu-Zienkiewicz error estimator
@ Nodal-based Least-squares derivative recovery technique

@ Measure of the error : difference between a post-processed field
and a discontinuous FE field

@ An example :

\// Vp-VpdQ
JQ

lolly =
Hep||,e_lx1a = \//Q(Vpexa — Vpp) - (VPexa — Vpp) dQ
llepl%4 = \//Q(szz — Vpn) - (Vpzz — Vpp) dQ
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dx

dT

92 = /(qex _ qh)zdx

92 ~ E2 = /(q* _ qh)2dx
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Grid Adaption Process

B
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4 3]

Cycle -4 Tags Cycle -4
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Adaptive Grids Sequence
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Final Mesh

Cycle - 6
How do we know if we are there ?
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VnV: Modeling and Simulation - 4

A Measurements by Kim et al.

Mansour Morel

Pollard ‘
Rodi et al. ‘
Launder et al

Abdelmeguid et al ‘

Demirdzic et al. ‘

Donaldson et al. ‘

llegbusi et al.

Nallasamy et al.

Syed et al.

llinca et al ‘

4 5 6 7

Ty
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Verification and Validation

@ In an English thesaurus Verification and Validation are
synonymous.

@ In CFD the words have acquired accepted technical meanings.

@ The same word can have different Technical meanings in
different contexts.

In mechanical and aerospace engineering:

@ Verification: Are we solving these equations right?
@ Validation: Are we solving the right equations for this problem?
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Verification

Verification is a mathematical activity
@ Mathematics
@ Numerical methods

Are we doing good numerical analysis for solving the differential
equations at hand?

@ Is the scheme/code O(6x?)? (Code Verification)
@ Is it O(6x?) on this problem? (Simulation Verification)

D. Pelletier (EPM) Simulation-Based Design CFD 2009
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Validation

Validation means having
@ The proper physics.
@ The proper science.
@ An appropriate engineering model.

Are we doing good engineering modeling for the problem at hand?

Requirements:
@ detailed measurements
@ quality measurements
@ quality predictions

D. Pelletier (EPM) Simulation-Based Design
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Verification and Validation

Verification: Are we solving the equations right?
@ 2 steps
@ (1) Code Verification: MMS = true error, grid refinement study
@ (2) Simulation Verification: Error estimator, grid refinement study

Validation: Are we solving the right equations?
@ Code has been verified,
@ Simulation has been verified
@ Compare to quality data
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The Method of Manufactured solution - 2

G. Polya: Only a fool starts at the beginning; the wise starts at the end.

Method of manufactured solutions:
@ Pick a non-trivial continuum solution.
Substitute in PDE (Navier-Stokes, Darcy, etc.)

Determine source term Q(t, x, y) for balance.

Perform grid refinement study.

°
°

@ Implement in solver.

°

@ MMS = Code Accuracy and Reliablility
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The Method of Manufactured solution - 2

We can pick the solution before we specify the governing equations or
the boundary conditions.

U(t,x) = A+ sin(x + Ct)

@ Here applied to two different problems:

» two sets of governing PDE’s
» two sets of boundary conditions
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The Method of Manufactured solution - 3

Example 1 : Burgers equation

ou, ou_ P
ot ox  Ox?

ou  du  d%u

However, U(x, t) is not a solution of above

LU(t,x)) # 0
L(U(t,x)) = Q(t x)
Qi(t,x) = L(U(t x))

D. Pelletier (EPM) Simulation-Based Design CFD 2009
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The Method of Manufactured solution - 4

Qi(t,x)= C cos(x+Ct)
+ [A+sin(x + Ct)]cos(x + Ct)
+ asin(x+ Ct)

U(x,t) = A+ sin(x + C t) is then solution of modified PDE

ou, ou_ Pu
ot 6x Yox2

with compatible initial and boundary conditions

+ Qi(t, x)
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The Method of Manufactured solution - 6

Note:
@ Domain not specified,
@ Domaincouldbe 0 < x < 1
@ Domain could be —10 < x < 100
@ Boundary conditions will differ for different domains
@ Boundary conditions type not specified
@ Same U(t, x) can be solution of many different BC combinations
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The Method of Manufactured solution - 10

Example 2 : Burgers-like equation
Idealized 1-D mixing length turbulence model

ou  du Ru [( 8u>2
T = L ((XE

ot ox 0x2 ox ox
0%u ou 502U
= a2+2)\ <8x> +X6x2]
Qo(t,x) = L(u) = us + uux — «Uxy

- 2\ [x(ux)2 + x2uxx}
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The Method of Manufactured solution

U(t, x) = Asin(x + Ct)
is solution of 2 PDE’s:

Ut + Uly = alixx+ +Q4(t, x)
Ut + Uly = alxy + 2) [x(ux)2 + X2 Uy +Q(t, X)

Note:

The same solution can be used to verify two different ‘codes’ solving
two different governing differential equations!

The source term changes to maintain the solution across codes
(PDE’s).
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The Method of Manufactured solution - 17

Use of MMS
@ Error: E=f, — fox = ChP
@ Grid refinement study : Monitor p

h E=ch E = ooh?
hi=nh Ei=E E, = E,
hszg E3%§:% E; (Z)zzfg
h4:g E4mg:i0 E4%(g)2:6EZ
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cos | T u = et
" - v (1-e )
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p = 0.5In(2x — x? +0.25)In
x (4y® — 3y? +1.25)

2
0 I —= k = kmax7712161 T+ ak
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Vmax
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MMS - Turbulent boundary layer

Grid 5

D. Pelletier (EPM)
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Simulation Verification: The Good, the Bad, and ...
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... and the Ugly! (Impinging jet)

009 —

008 E277 cycle0 ——-
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Turn Around Duct
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Square Cylinder close to Ground

405D
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dx
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Square Cylinder close to Ground
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Square Cylinder close to Ground

0.78 T T 0.25
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Figure: Grid convergence with adaptive cycles

D. Pelletier (EPM) Simulation-Based Design CFD 2009 47 /69



Square Cylinder close to Ground: Validation - 1

3 — ‘ 3
numerical +
25 experimental  + + 4 25 3
+
2 4 1 2 1
1
15+ 5O\ 15+ 1
Q
1r . = 1t .
0.5 q 0.5 q
o : o :
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-0.2 0 02 04 06 08 1 1.2 1. -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.2
u/Uq viUq
Uatx=1D Vatx=1D
Validated Validated ?
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Validation: summary

@ Code Verification = code and its use are reliable

@ Simulation Verification = solution accuracy estimated

@ Simulation Validation = numerical model accurate and reiable
-

@ \ery accurate, exhaustive data needed to ensure that simulation
and experiment are for same problem
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kZ
X:

T =T(x; Tq, T2, k1, k2, X1, Xi, X2)
Sensitivity with respect to a

oT
ST = —

oa

ac{Ty, T2, K1, K2, X1, Xj, X2 }
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Sensitivities: uses

Gradient based optimization

min J(u(a), p(a); a)

d _0J ou 0J op 0
da  0u 0o, 0p Oa, O«
~~ ~~
Su Sp

Fast nearby solution via Taylor series

an 82Cp 5&2
Cp(X; ag 4 da) = Cp(x; ag) + Do do + 02 o
\\/ g ap
. _ _ 9Ct Cy|  da”
Cr(x; a0 +d0) = Ci(X;a0) + 5| ot —— | —-

(7)) ap
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Forward uncertainty propagation

Cascade input data uncertainty into CFD outputs

1st Order:
n
OF
=3 (5 ol
=1~
sf_f
2nd Order:
n n
OF 9%F
2 2
oF Z(a?,- 7a) + i Z aa,aa 7373
i=1 N~ 71_
sp Si_iaj
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Flow and 1st Order Sensitivity Equations

V-u=0
pu-vu=-Vp+V- [u <Vu+(Vu)T)}

ox oy

SEM: differentiate then discretize
0 8u+8v 0 0 [ou n o [ov 0
—_— —_— —_— _= —_— —_— —_— —_— —_— =
oa|ox 0Oy ox \ 0a dy \ 0a

95y | 0s
ox ay

=0
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1st Order Momentum Sensitivity

8%1 pu-Vu=—-Vp+V- [u (Vu+ (Vu)T>H

J
pLu-Vu+psé .- Vu+pu-Vsi = Vs
a u u o}

V- [u; (Vu + (Vu)T) + lia (ng +(Vsd) T)}

Newton linearization 1 linear system of PDE / parameter
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2nd Order Sensitivity Equations

0
ob| +

pau Vu+ps]-Vu+pu-Vs] = -Vs3
[ua (Vu+ (Vu) ) + i (Vsﬁ + (ng)T)] ]

J
psI - Vu+pu-VsP + Vs - V. (M(Vsib + (Vsﬁb)T)> =
B [p/abu VU (S0 VU + U - VD) + p(sh- Vu+ u- Vs))
+p(s?-Vsh+sb. st’,)}

+V - [i(Tu+ (VU)T) + ia( V85 + (T85)T) + n(Vs§ + (Vs3)T)]
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Uncertainty analysis

Re=2000-a=3"+1%and U, =1+1%
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Uncertainty in Near Wake , x = 1.05

Re=2000-a=3"+1%and U, =1+ 1%

0.2

second order uncértainty - E
YR
015 e
01F -

0.05 F =

=

==
> 0 WHNHH“LH_"_‘
-005 | e S
-01 k,:«a
-0.15 - %
02 L L L L L i
-0.2 0 0.2 0.4 0.6 0.8 1 12

D. Pelletier (EPM) Simulation-Based Design CFD 2009

58 /69



Square obstacle: sensitivity w.r.t Uy and kg

- S prédiction
o o o os 12 B expérimental
WU_0 +incert

u/U_0 — incert.

prédiction
........ — expériment:
o Gaie asi a0is a6 s 25+ WU 02 + incer

uv/U_0? - incert. -

y/D

-0.02  -001 0 0.01 0.02 003 004

u'v/uor2
! 2
w.r.t. Ko —u'v'/Ug
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Maximize Lift to Drag ratio

Baseline: NACA 4512 at 0° and Re = 1000

NURBS representation:12 control points

@ Selection of the most influent parameters: 10 degrees of freedom
@ Maximization of J = G
Cp

Initial guess: C% = 0.1234, CY = 0.01902 and 7° = 0.1541
D L
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Initial
CD

Optimized

0.1234 pumze
C, | 0.01902 07960
J | 0.1541 e




Uncertainty analysis

@ C;, Cp and 7 suffer from uncertainty due to

Numerical uncertainties:discretization errors
Stopping criteria §X°P! (active parameters only)
Uncertain inlet flow 6 Re, da

v

v vy

@ Evaluation of the uncertainties:

DCD DCL

ACD— A« and ACL— A()é,'

B CpAC, + CLACD

A
J c3
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Geometrical uncertainties 6. X9¢° (coordinates of the control points)
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Conclusion

@ CFD can be a very powerful tool if used properly:

» not a black box by a Ing shot
» much research is fet to do

@ Vrification: tackles Accuracy:

» Code Verification using MMS : Cude accuracy and reliability
» Simulation Verification: accuracy of PDE solution

@ Simulation Validation: Reliability/Realism of mathematical model
» Not as trivial as it seems
@ Sensitivity equation method:

» Provides insight into complex flows

» Provides uncertainty bands on flow response

» Provides quantitative data on which parameter exerts most
influence on the flow and where

@ successful application to airfoil optimization. Then again ...
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@ There is much left to discover and to do.

@ Job security does not look so bad for some of us!

«40>» «F)>r «=) « > = Q>



CFD is like scientific computing...

1973: The purpose of computing is
insight, not numbers.

Hamming

1980: The purpose of computing is
is not yet in sight

anonymous
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