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Summary of Talk

• Where, Why & What is the Manufacturing Optimization Problem (MOP)?

• How do we Model the MOP Details?

• How do we Solve the MOP Description?

• How do we Integrate the MOP Data?

• How do we Execute the MOP Decisions?, and

• How do we Improve the MOP Deployment?
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Where is the MOP?

• Manufacturing found in Continuous, Batch, Dimensional (1D, 2D, 3D 
shapes) & Discrete Industries always involve the following details:

– Complexity (Spatial, Temporal, Phenomenological, Technological, etc.),

– Hierarchy (Design, Planning, Scheduling, Control, Analysis, Accounting, etc.),

– Uncertainty (Accuracy, Ambiguity, Availability, Abstraction, Reliability, etc.).

• Manufacturing also involves the many requirements of Production, 
Processes, Plants, Projects, Products, Policies & of course People.

• Our focus is on Complexity Management integrated within an established 
Hierarchy subject to omnipresent Uncertainty (of which we know little 
about).
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Why is the MOP Important?

• To find better solutions to problems faster & cheaper automatically 
versus manually using optimization (i.e., a systematic search).

Kelly, J.D., “Logistics: The Missing Link in Blend Scheduling Optimization”, Hydrocarbon Processing, June, 2006.
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Why is the MOP Important?

• More specifically, why is optimization desired over simulation? - there are 
three main reasons:

– Specificity = automatic identification of non-basic, basic & super-basic variables,

– Feasibility = solutions are better than with user/modeler defined specificity,

– Optimality = solutions are better than just satisfying feasibility.

• Simulation requires the modeler to apriori or “heuristically” determine the 
variable specifications to find “good” solutions where many specification 
scenarios, situations or settings are necessary requiring “lots” of effort both at 
modeling-time & solving-time, for example:

– If we have the “implicit/open” tank material balance: Hopen + Fin – Hclose – Fout = 0

– Then we need 4 “explicit/closed” balance constraints to be modeled in the 

simulation system depending on the specification of each variable at solve-time:
• Hopen = -Fin + Hclose + Fout

• Fin = -Hopen + Hclose + Fout

• Hclose = Hopen + Fin – Fout where the LHS variable is dependent/basic & the RHS variables are

• Fout = Hopen + Fin – Hclose; independent/non-/super-basic i.e., a “square” problem with zero DoF.
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What is the MOP?

• MOP’s typically involve large networks or “superstructures” similar to a 
decision-tree or map that represents the capability of the system.

• Capability is the combination of configuration, connectivity, capacity, 
compatibility, constituency, consolidation, commandability & cost.
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What is the MOP? (cont’d)
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• MOP’s may include only a portion of the overall problem such as key 
bottlenecks in the manufacturing facility, enterprise or supply-chain.

• MOP’s involve to some degree or another the following situations: 

– Complicated environmental, governmental & international regulations, 

– Scarce & expensive resources of decreasing quality with higher demands on less 

costly finished goods,

– Aggressive & sustained production at or above design or safe operating limits,

– Tighter delivery schedules & shorter lead-times transporting over longer distances,

– More advanced processing technologies increasingly located in harsher 

environments & politically unstable geographical regions.
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How do we Model the MOP?

• Our approach is to describe the manufacturing using spatial objects of 
“units”, “operations”, “ports” & “states”, phenomenological attributes of 
“quantity”, “logic” & “quality” & temporal incidences of “time-periods” & 
“time-points”.

Kelly, J.D., “Production Modeling for Multimodal Operations”, Chemical Engineering Progress, March, 2004.

Kelly, J.D., “Formulating Production Planning Models”, Chemical Engineering Progress, January, 2004.
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How do we Model the MOP? (cont’d)

• Sets of spatial objects or “pointers” usually include:

– Units = { Equipment, Vessels, Machines, etc. }

– Operations = { Tasks, Jobs, Activities, etc. }

– Ports =  { Nozzles, Stubs, Connectors, etc. }

– States = { Materials, Parts, Signals, Time, etc. } 

• Sets of phenomenological attributes or “poles” usually include:

– Quantity = { Flows, Rates, Holdups, Yields, Durations (Quanta) }

– Logic = { Setups, Startups, Switchovers, Shutdowns, Statuses }

– Quality = { Densities, Components, Properties, Conditions }

• Other spatial objects are created as set relations/cross-products/tables of 
Units x Operations, Unit-Operations x Port-States, etc. & these are called 
projectional objects as they are the product of physical (unit-port) and 
procedural (operation-state) objects & form either an “open-shop” or “closed-
shop” superstructure.

Pole(P,o,i,n,t,e,r,s) = Spatial,     

Phenomenological,

Temporal Profiles

Zyngier, D., Kelly, J.D., “Multiproduct Inventory Logistics Modeling in the Process Industries”, Chapter 2, W. Chaovalitwongse et al. (eds.), 

Optimization and Logistics Challenges in the Enterprise, Springer, 2009.
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How do we Model the MOP? (cont’d)

• Specifically, what is “logic”?

• Logic variables & constraints manage the “discrete” & ”disjunctive”  (non-
continuous) nature of manufacturing. 

Kelly, J.D., Zyngier, D., “An Improved MILP Modeling of Sequence-Dependent Switchovers for Discrete-Time Scheduling Problems”, 

Industrial Engineering Chemistry Research, 46, 2007.

FSVT = fixed-size, variable-time

y  = setup

su = startup

sd = shutdown

sw = switchover
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How do we Model the MOP? (cont’d)

• More than just algebraic & arrayic – it is an “allegory” of how 
manufacturing works as a whole using “arrayic-algebraic” model forms.

Baker, T.E., Ladson, L.S., “Successive Linear Programming at Exxon”, Management Science, 31, 1985.

“Arrayic-Algebraic”-Form

(Middle-School)

“Algorithmic”-Form

(Old School)

“Allegoric”-Form

(New School)

A “figurative” language. Jones, C., Baker, T.E., “MIMI/G: A Graphical Environment for 

Mathematical Programming and Modeling”, Interfaces, 26, 1996.

Simple Tabular & Traversal Views
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How do we Model the MOP? (cont’d)

• “Allegoric” details are developed from the actual/material-world to the 
abstract/mathematical-world into arrays allowing for the formation of 
general, dynamic, differential/integral, non-convex & non-linear algebraic 
calculations, constraints, complements & cuts.

• “Arrayic” details are deployed as efficient internal-memory, “home-grown” 
multi-dimensional (set-based) sparse arrays (MDSA) in Fortran 2003 
exploiting its whole array processing, dynamic allocation, operator 
overloading & parallelization capabilities.  These MDSA’s then allow a 
“declarative” formation of the algebra in a “procedural” language.  

• “Algorithmic” details are dispatched to the solver as variable and 
constraint dense vectors as well as first and second-order partial 
derivative sparse matrices (Jacobian & Hessian) derived using the novel 
complex-step derivative method (as “accurate” as analytical derivatives 
but computed numerically using complex-number algebra & almost as 
fast as finite-difference).

Martins, J.R.R.A., Sturdza, P., Alonso, J.J., “The Complex-Step Derivative Approximation”, ACM TOMS, 29, 2003.
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How do we Model the MOP? (cont’d)

• Our “home-grown” MDSA’s are classified into the following 
library or language “resources”:

– Series-Sets = vector of integer head, tail & stride tuple

– Simple-Sets = vector of integer keys with integer value tuple

– Symbol-Sets = vector of string keys with integer value tuple

– Lists = tensor of integer keys with integer value tuple

– Parameters = tensor of integer keys with real value tuple

– Catalogs = tensor of integer keys with string value tuple

– Variables = tensor of integer keys with real or complex value tuple

– Constraints = tensor of integer keys with real or complex value tuple

– Terms = tensor of integer keys with variable-address value tuple

– Derivatives = matrix in sparse row-ordered coordinate storage format

– Expressions = tensor of integer keys with RPN operator-operand tuple

– Functions = tensor of integer keys with DLL-address value

– Rules = tensor of integer keys with WHEN()-THEN() tuple

Only Store 

Non-Zeros
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How do we Model the MOP? (cont’d)

• Each MDSA resource is a hybrid of an “associative-array” or hash-
table/dictionary/map with an “appendable-array” or value-tuple both 
of varying length or arity (similar to Google’s Bigtable design).

• Accessing the non-zero entries to perform the “whole array” 
algebra can either be random/spot versus running/sequential and 
hence requires no lexicographic sorting required for heterogeneous 
tensor operations/manipulations (Bader & Kolda).

“Rack” of Keys “Range” of Values

“Roster” of Entries

Bader, B.W., Kolda, T.G., “Algorithm 862: MATLAB Tensor Classes for Fast Algorithm Prototyping”, ACM TOMS, 32, 2006.

Chang, F., et. al. “Bigtable: A Distributed Storage System for Structured Data”, OSDI ‘06, 2006.
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How do we Model the MOP? (cont’d)

• MDSA resources are declared, inserted, viewed & updated 
(accessed) using the following routines:

– Reserve() = allocate memory for the resources dynamically

– Roster() = procure a unique roster within the resource i.e., primary key

– Register() = declare a roster with its rank (dimension of rack) & range

– Refer() = point to or reference a particular key tuple for a roster – reference        

index is “memorized” for future accesses (iterations/successions). 

– Receive() = insert or update a roster reference value tuple given its key tuple

– Retrieve() = view a roster reference value tuple given its key tuple

– Restrain() = populate the lower & upper bounds for a variable or constraint

– Ratio() = define constraint-variable 1st-order derivative elements symbolically

– Restrict() = prevent any further inserts of key/value entries for the roster.
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How do we Model the MOP? (cont’d)

• Why have our own “set-based” modeling-system (AML) instead of using GAMS, 
AIMMS, AMPL, LINGO, MPL, MOSEL, MATLAB, OPL, OML, OptimJ, ZIMPL, etc.?

– PRO: Uses drastically less internal-memory (<20% of AML) to instantiate a problem 

instance thus enabling “multiple problem” parallelization i.e., executing many problem 
instances on different CPU’s.

– PRO: Is significantly faster (>20-times) to generate/iterate a problem instance using 
the whole-array processing for a discretized spatial, phenomenological or temporal 

dimension & the memorization of reference/hash/map-indices after iteration 1.

– PRO: Has surprisingly little code (<20,000 LOC in Fortran 2003) to support & 
availability/re-use of existing “classical” Fortran/C language scientific utilities is high.

– PRO: Can be used in either “reverse” & “callback” communication modes when 
interfacing to non-linear/iterative solvers i.e., can be embedded as a subroutine.

– PRO: Easily extensible with Fortran 2003 DLL’s to maintain propriety of code. 

– PRO: Straightforward to interface new solvers using their API’s by modelers.

– PRO: No royalties for each copy sold & has a less costly development environment.

– CON: Harder to formulate the arrayic-algebraic constraints because it does not have a 

“meta-language” (language within a language) to automate/abstract the programming 

details of the manipulations i.e., sparsity of Jacobian entered manually by modeler.
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How do we Model the MOP? (cont’d)

• What are the other forms of modeling besides set-based?

• Structure-based (object-oriented) modeling e.g., NOVA-MS, 
Milano, SIMULA, Modelica, gPROMS, ASCEND, etc. useful 
for process simulation or optimization but limited to the 
local details of sub-models or modules (globally unaware of 
superstructure) & difficult to “sparsify”.
– Unit(u).Operation(o).Port(p).State(s).FLOW.Time(t) = … opposed to 

FLOW(u,o,p,s,t) = … where FLOW is a MDSA variable roster.

– Desirable for data-modeling but difficult for data-manipulation.

• Scalar-based modeling e.g., Excel, RPMS, PIMS, GRTMPS, 
PCOMP, MATLAB (no native sparse tensors) encode the 
pointers inside the symbol (or cell) name of the variable.
– FLOWuops(t) = … where “uops” is hard-coded for each u,o,p,s

instance.

Mougin, P., Ducasse, S., “OOPAL: Integrating Array Programming in Object-Oriented Programming”, ACM, 2003.
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How do we Solve the MOP?

• Solvers can be both commercial & public-domain in the form of linear 
programs (LP), mixed-logic linear programs (MLP), non-linear programs 
(NLP), constraint programs (CP) & meta-heuristics (MH) such as genetic 
algorithms, simulated annealing, differential evolution, etc. written in any 
compiled machine-code language such as Fortran, C or C++.

• Ultimately our modeling-system distills the problem into two dense vectors of 
continuous & discrete variable (x+) & constraint (f(x)+…) values & later a 
sparse matrix of derivatives (J,H) with the constraint algebra as follows: 

– where the “r”’s are the “reliefs”, “d”’s are the “deviations” from target, “s”’s are 

“slacks/surpluses” & “b”’s are the constraint “balances”.

– where “f(x)”’s are the non-linear terms, “F(x)”’s are the non-linear coefficients, 
“w”’s are the quad-linear terms, “v”’s are the tri-linear terms & “u”’s are the bi-linear 

terms i.e., the “multi-linear” terms of x * x * x * x.   

Non-Linear Part:   f(x) + F(x) * x + Q * w + T * v + D * u

Linear Part:           IR * (r+ - r-) + ID * (d+ - d-) + IS+ * s+ + IS- * s- + A * x + b
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How do we Solve the MOP? (cont’d)

• Our routines to distill the “algorithmic” description from the “arrayic-
algebraic” details are:

– Sparsity() = manually defined by the modeler (numerically too slow)

– Separability() = partitions the sparsity-pattern into groups

– Sensitivity() = FD/CS Jacobian/Hessian calculations

– Stationarity() = estimates linearity of constraints

– Shapability() = assesses convexity/concavity of constraints

– Shrinkability() = performs a primal pre-solve with “terms”

– Stackability() = re-arranges Jacobian into row or column order

– Scatterability() = pre-orders the Jacobian for factorization 

– Scalability() = scales variables & constraints using Jacobian

– Startability() = determines heuristically good starting values

– Solvability() = infeasibility analysis

– Sensability() = observability, redundancy & precision estimates
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How do we Solve the MOP? (cont’d)

• How do we derive the LP sub-problem in standard form 
from the non-linear algebra?

• Each constraint in the form f(x) + … + A*x + b = 0 is called 
three times at startup of the problem definition:
– First time with x = 0 to calculate b.

– Second & third time with x = x0 & x = x0 + h (or x = Re(x0) + Im(h)) to 
compute the Jacobian.

• During our primal pre-solve the constraints are called at 
each “pass” to update the b-balances as we successively 
fix variables in linear singleton constraints & substitute out 
variables in linear doubleton constraints (connection or 
transfer equations) i.e., x(i) – x(j) = 0 then x(j) is replaced 
with x(i) everywhere x(j) appears in a constraint significantly 
reducing both the number of variables & constraints.
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How do we Solve the MOP? (cont’d)

• How do we solve large-scale MINLP MOP’s?

• “Scheduling” in continuous & batch-process industries is 
an excellent example where we have all three quantity, logic 
& quality phenomenon that need to be decided on over a 
relatively long time-horizon with a mix of “small & big 
bucket” time-intervals (restriction on level of contention).

• Our novel & effective approach applied to many diverse 
industrial sites, is to implement a “truncated” Bender’s 
Decomposition with two sub-problems solved recursively:

– Solve a “Logistics” MOP (quantity-logic) using MLP then

– Solve a “Quality” MOP (quantity-quality) using NLP then

– Iterate until useful (optimized & feasible) solutions are obtained.
Kelly, J.D. “The Unit-Operation-Stock Superstructure (UOSS) and the Quantity-Logic-Quality Paradigm (QLQP) for Production Scheduling 

in the Process Industries. MISTA 2005, 327–333, 2005.
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How do we Solve the MOP? (cont’d)

• How do we handle “infeasible” or “inconsistent” MOP’s?

• Searching for Irreducible Infeasibility Subsets (IIS, 
Chinneck) is unfortunately not practical for industrial-
sized MOP’s nor is solving the Primal Simplex “Phase I” 
to obtain marginal-values on slacks (Primal too slow).

• We employ the following two techniques:
– Given our automated but “baroque” generation of the problem 

(UOPSS/QLQP), primal pre-solve has proven to be very effective on 
the first LP sub-problem of either the MLP or NLP to detect, isolate 
& identify inconsistencies especially in linear constraints.

– Penalty, artificial or elastic variables are added to specific modeler-
defined constraints & are minimized in our “Archimedean” 
objective function.  These penalties provide a useful level of 
isolation & identification in addition to being displayed graphically.

Chinneck, J.W., “Feasibility and Infeasibility in Optimization”, Springer, 2008.
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How do we Integrate the MOP Data?

• We decompose the diverse data requirements into:
– Model-Data + Cycle-Data = Problem-Data ==solve==> Solution-Data

• Model-data provides the “prototype” whereas cycle-data 
(cases, changes) provides the “provisos” and overloads 
model-data to provide the problem-data “profiles” i.e., 
“pole(p,o,i,n,t,e,r,s) = profile” MDSA’s.

• The data is “presented” & “persisted” in several allegoric 
“forms”:
– Graph/Relation/Object/Network-Based (Traversal), Paragraph/Sentence/Word-

Based (Textual) & Line/List/Sheet/Table-Based (Tabular).

– These data-forms can then be dispatched from its source data depot 
as simple files/text streams in CSV or XML formats.

– These files/streams are imported then lexed, parsed & expanded into 
the necessary MDSA’s as problem-data & then after solving,

– Solution-data is then exported into these non-array-based forms. 
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How do we Integrate the MOP Data? (cont’d)

• System Architecture delineated …

MOPI
(Interface)

MOPL
(Library of Constraints)

MOPO
(Optimization)

AML
(Global Data Structures & Subroutines)

C#, 

Java, 

Python

Lindo, 

Gurobi, 

Xpress, 

Nova

Allegoric Arrayic-Algebraic Algorithmic

Presenting-System Modeling-System Solving-System

Problem-Data 

Solution-Data

Model-Data  

Cycle-Data
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How do we Execute the MOP Decisions?

• We define three execution environments called “in-line”, 
“on-line” & “off-line”.

• In-line MOP’s have “variable feedback” in terms of 
past/present data but no or very little “parameter 
feedback” & with “actuation/manipulation” (planning & 
scheduling) – exhibits “steady-state offsets”.

• On-line MOP’s have both variable & parameter feedback 
(i.e., bias updating) using past/present data with actuation 
(regulatory & maneuvering control).

• Off-line MOP’s may or may not have either or both 
“variable” & “parameter” feedback without direct 
actuation or with indirect actuation (design & analysis).

Kelly, J.D., Zyngier, D., “Continuously Improve the Performance of Planning & Scheduling Models with Parameter Feedback”, FOCAPO, 2008.
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How do we Improve the MOP Deployment?

• Kaizen, POMAI, DMAIC, PECA, Six Sigma, TPS, etc. enable 
the necessary “continuous-improvement” we call our    
Plan-Perform-Perfect-Loop (also addresses Uncertainty).

• The core idea is that the modeling, solving, etc. of a MOP 
“is not it, but a part of it” & needs to be refined & revisited 
regularly in context with the overall business objectives & 
obstacles.

Kelly, J.D., Zyngier, D., “Hierarchical Decomposition Heuristic for Scheduling: Coordinated Reasoning for Decentralized & 

Distributed Decision-Making”, Computers & Chemical Engineering, 32, 2008.

Kelly, J.D., “Modeling Production-Chain Information”, Chemical Engineering Progress, February, 2005.
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• THANK YOU!


