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Summary of Talk
Where, Why & What is the Manufacturing Optimization Problem (MOP)?

How do we Model the MOP Details?

How do we Solve the MOP Description?

How do we Integrate the MOP Data?

How do we Execute the MOP Decisions?, and

How do we Improve the MOP Deployment?
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Where is the MOP?

« Manufacturing found in Continuous, Batch, Dimensional (1D, 2D, 3D
shapes) & Discrete Industries always involve the following details:

— Complexity (Spatial, Temporal, Phenomenological, Technological, etc.),
— Hierarchy (Design, Planning, Scheduling, Control, Analysis, Accounting, etc.),
— Uncertainty (Accuracy, Ambiguity, Availability, Abstraction, Reliability, etc.).

« Manufacturing also involves the many requirements of Production,
Processes, Plants, Projects, Products, Policies & of course People.

« QOur focus is on Complexity Management integrated within an established
Hierarchy subject to omnipresent Uncertainty (of which we know little
about).

Honeywell Proprietary



Honeywell

Honeywell.com

Why is the MOP Important?

« To find better solutions to problems faster & cheaper automatically

versus manually using optimization (i.e., a systematic search).
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Quantity-quality trade-off curve with logistics isotherms.

Kelly, J.D., “Logistics: The Missing Link in Blend Scheduling Optimization”, Hydrocarbon Processing, June, 2006.
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Why is the MOP Important?

* More specifically, why is optimization desired over simulation? - there are
three main reasons:

— Specificity = automatic identification of non-basic, basic & super-basic variables,
— Feasibility = solutions are better than with user/modeler defined specificity,
— Optimality = solutions are better than just satisfying feasibility.

« Simulation requires the modeler to apriori or “heuristically” determine the
variable specifications to find “good” solutions where many specification
scenarios, situations or settings are necessary requiring “lots” of effort both at
modeling-time & solving-time, for example:

— If we have the “implicit/open” tank material balance: Hopen + Fin — Hclose — Fout = 0

— Then we need 4 “explicit/closed” balance constraints to be modeled in the
simulation system depending on the specification of each variable at solve-time:
* Hopen = -Fin + Hclose + Fout
* Fin = -Hopen + Hclose + Fout
e Hclose = Hopen + Fin — Fout where the LHS variable is dependent/basic & the RHS variables are
* Fout = Hopen + Fin — Hclose; independent/non-/super-basic i.e., a “square” problem with zero DoF.
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What is the MOP?

« MOP’s typically involve large networks or “superstructures” similar to a
decision-tree or map that represents the capability of the system.

« Capability is the combination of configuration, connectivity, capacity,
compatibility, constituency, consolidation, commandability & cost.
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What is the MOP? (cont’d)

« MOP’s may include only a portion of the overall problem such as key
bottlenecks in the manufacturing facility, enterprise or supply-chain.
 MOP’s involve to some degree or another the following situations:
— Complicated environmental, governmental & international regulations,

— Scarce & expensive resources of decreasing quality with higher demands on less
costly finished goods,

— Aggressive & sustained production at or above design or safe operating limits,
— Tighter delivery schedules & shorter lead-times transporting over longer distances,

— More advanced processing technologies increasingly located in harsher
environments & politically unstable geographical regions.
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How do we Model the MOP?

« Qur approach is to describe the manufacturing using spatial objects of
“units”, “operations”, “ports” & “states”, phenomenological attributes of
“quantity”, “logic” & “quality” & temporal incidences of “time-periods” &

“time-points”.
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. T . o . M Figure 1. Production flow network for the small plant example.
M Figure 2. Anatomy of an oil-refinery atmospheric or vacuum distillation unit mode!.

Kelly, J.D., “Formulating Production Planning Models”, Chemical Engineering Progress, January, 2004.
Kelly, J.D., “Production Modeling for Multimodal Operations”, Chemical Engineering Progress, March, 2004.
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How do we Model the MOP? (cont'd)

« Sets of spatial objects or “pointers” usually include:
— Units = { Equipment, Vessels, Machines, etc. }
— Operations = { Tasks, Jobs, Activities, etc. }
— Ports = { Nozzles, Stubs, Connectors, etc. }
— States = { Materials, Parts, Signals, Time, etc. }

« Sets of phenomenological attributes or “poles” usually include:

— Quantity = { Flows, Rates, Holdups, Yields, Durations (Quanta) }
— Logic = { Setups, Startups, Switchovers, Shutdowns, Statuses }
— Quality = { Densities, Components, Properties, Conditions }

» Other spatial objects are created as set relations/cross-products/tables of
Units x Operations, Unit-Operations x Port-States, etc. & these are called
projectional objects as they are the product of physical (unit-port) and
procedural (operation-state) objects & form either an “open-shop” or “closed-
shop” superstructure.

Zyngier, D., Kelly, J.D., “Multiproduct Inventory Logistics Modeling in the Process Industries”, Chapter 2, W. Chaovalitwongse et al. (eds.),
Optimization and Logistics Challenges in the Enterprise, Springer, 2009.

Pole(P,0,i,n,t,e,r,s) = Spatial,
Phenomenological,
Temporal Profiles
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How do we Model the MOP? (cont'd)

 Specifically, what is “logic”?

» Logic variables & constraints manage the “discrete” & "disjunctive” (non-

continuous) nature of manufacturing.
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Kelly, J.D., Zyngier, D., “An Improved MILP Modeling of Sequence-Dependent Switchovers for Discrete-Time Scheduling Problems”,

Industrial Engineering Chemistry Research, 46, 2007.
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How do we Model the MOP? (cont’d

More than just algebraic & arrayic — it is an “allegory” of how
manufacturing works as a whole usmg “arrayic-algebraic” model forms.
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Refinery Example Jones, C., Baker, T.E., “MIMI/G: A Graphical Environment for

The simple refinery example shown in Figure | illustrates the application of SLP o

158 ot e enrt Sk o T T (4 s ¢ ot Mathematical Programming and Modeling”, Interfaces, 26, 1996.
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Baker, T.E., Ladson, L.S., “Successive Linear Programming at Exxon”, Management Science, 31, 198S5.
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How do we Model the MOP? (cont'd)

“Allegoric” details are developed from the actual/material-world to the
abstract/mathematical-world into arrays allowing for the formation of
general, dynamic, differential/integral, non-convex & non-linear algebraic
calculations, constraints, complements & cuts.

“Arrayic” details are deployed as efficient internal-memory, “home-grown”
multi-dimensional (set-based) sparse arrays (MDSA) in Fortran 2003
exploiting its whole array processing, dynamic allocation, operator
overloading & parallelization capabilities. These MDSA'’s then allow a
“declarative” formation of the algebra in a “procedural” language.

“Algorithmic” details are dispatched to the solver as variable and
constraint dense vectors as well as first and second-order partial
derivative sparse matrices (Jacobian & Hessian) derived using the novel
complex-step derivative method (as “accurate” as analytical derivatives
but computed numerically using complex-number algebra & almost as
fast as finite-difference).

Martins, J.R.R.A., Sturdza, P., Alonso, J.J., “The Complex-Step Derivative Approximation”, ACM TOMS, 29, 2003.
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How do we Model the MOP? (cont'd)

« Our “home-grown” MDSA'’s are classified into the following
library or language “resources’:

— Series-Sets = vector of integer head, tail & stride tuple

— Simple-Sets = vector of integer keys with integer value tuple

— Symbol-Sets = vector of string keys with integer value tuple

— Lists Non-Zeros | = tensor of integer keys with integer value tuple

— Parameters = tensor of integer keys with real value tuple

— Catalogs = tensor of integer keys with string value tuple

— Variables = tensor of integer keys with real or complex value tuple
— Constraints = tensor of integer keys with real or complex value tuple
— Terms = tensor of integer keys with variable-address value tuple
— Derivatives = matrix in sparse row-ordered coordinate storage format
— Expressions = tensor of integer keys with RPN operator-operand tuple
— Functions = tensor of integer keys with DLL-address value

— Rules = tensor of integer keys with WHEN()-THEN() tuple

Honeywell Proprietary
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How do we Model the MOP? (cont'd)

- Each MDSA resource is a hybrid of an “associative-array” or hash-
table/dictionary/map with an “appendable-array” or value-tuple both
of varying length or arity (similar to Google’s Bigtable design).

Chang, F., et. al. “Bigtable: A Distributed Storage System for Structured Data”, OSDI ‘06, 2006.

« Accessing the non-zero entries to perform the “whole array”
algebra can either be random/spot versus running/sequential and
hence requires no lexicographic sorting required for heterogeneous
tensor operations/manipulations (Bader & Kolda).
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Bader, B.W., Kolda, T.G., “Algorithm 862: MATLAB Tensor Classes for Fast Algorithm Prototyping”, ACM TOMS, 32, 2006.
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How do we Model the MOP? (cont'd)

- MDSA resources are declared, inserted, viewed & updated
(accessed) using the following routines:

— Reserve() = allocate memory for the resources dynamically
— Roster() = procure a unique roster within the resource i.e., primary key
— Register() = declare a roster with its rank (dimension of rack) & range

— Refer() = point to or reference a particular key tuple for a roster — reference
index is “memorized” for future accesses (iterations/successions).
— Receive() = insert or update a roster reference value tuple given its key tuple

— Retrieve() = view a roster reference value tuple given its key tuple

— Restrain() = populate the lower & upper bounds for a variable or constraint
— Ratio() = define constraint-variable 1st-order derivative elements symbolically
— Restrict() = prevent any further inserts of key/value entries for the roster.

Honeywell Proprietary
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How do we Model the MOP? (cont'd)

- Why have our own “set-based” modeling-system (AML) instead of using GAMS,
AIMMS, AMPL, LINGO, MPL, MOSEL, MATLAB, OPL, OML, OptimJ, ZIMPL, etc.?

PRO: Uses drastically less internal-memory (<20% of AML) to instantiate a problem
instance thus enabling “multiple problem” parallelization i.e., executing many problem
instances on different CPU’s.

PRO: Is significantly faster (>20-times) to generate/iterate a problem instance using
the whole-array processing for a discretized spatial, phenomenological or temporal
dimension & the memorization of reference/hash/map-indices after iteration 1.

PRO: Has surprisingly little code (<20,000 LOC in Fortran 2003) to support &
availability/re-use of existing “classical” Fortran/C language scientific utilities is high.

PRO: Can be used in either “reverse” & “callback” communication modes when
interfacing to non-linear/iterative solvers i.e., can be embedded as a subroutine.

PRO: Easily extensible with Fortran 2003 DLL’s to maintain propriety of code.
PRO: Straightforward to interface new solvers using their API’s by modelers.
PRO: No royalties for each copy sold & has a less costly development environment.

CON: Harder to formulate the arrayic-algebraic constraints because it does not have a
“meta-language” (language within a language) to automate/abstract the programming
details of the manipulations i.e., sparsity of Jacobian entered manually by modeler.
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How do we Model the MOP? (cont'd)

- What are the other forms of modeling besides set-based?

 Structure-based (object-oriented) modeling e.g., NOVA-MS,
Milano, SIMULA, Modelica, gPROMS, ASCEND, etc. useful
for process simulation or optimization but limited to the
local details of sub-models or modules (globally unaware of
superstructure) & difficult to “sparsify”.

— Unit(u).Operation(o).Port(p).-State(s).FLOW.Time(t) = ... opposed to
FLOW(u,o0,p,s,t) = ... where FLOW is a MDSA variable roster.

— Desirable for data-modeling but difficult for data-manipulation.
Mougin, P., Ducasse, S., “OOPAL: Integrating Array Programming in Object-Oriented Programming”, ACM, 2003.

- Scalar-based modeling e.g., Excel, RPMS, PIMS, GRTMPS,
PCOMP, MATLAB (no native sparse tensors) encode the
pointers inside the symbol (or cell) name of the variable.

— FLOWuops(t) = ... where “uops” is hard-coded for each u,o0,p,s
instance.
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How do we Solve the MOP?

- Solvers can be both commercial & public-domain in the form of linear
programs (LP), mixed-logic linear programs (MLP), non-linear programs
(NLP), constraint programs (CP) & meta-heuristics (MH) such as genetic
algorithms, simulated annealing, differential evolution, etc. written in any
compiled machine-code language such as Fortran, C or C++.

« Ultimately our modeling-system distills the problem into two dense vectors of
continuous & discrete variable (x+) & constraint (f(x)+...) values & later a
sparse matrix of derivatives (J,H) with the constraint algebra as follows:

Linear Part: IR*(@+-r-)+ID*(d+-d-)+IS+*s++1IS-*s-+ A*x+Db

— where the “r’”’s are the “reliefs”, “d”’s are the “deviations” from target, “s
“slacks/surpluses” & “b’’s are the constraint “balances”.

Non-Linear Part: f(x)+ FX) *x+Q*w+T*v+D *u

S are

— where “f(x)”’s are the non-linear terms, “F(x)”’s are the non-linear coefficients,
“w’’s are the quad-linear terms, “v’”’s are the tri-linear terms & “u’’s are the bi-linear
terms i.e., the “multi-linear” terms of x * x * x * x.
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How do we Solve the MOP? (cont’d)

- Our routines to distill the “algorithmic” description from the “arrayic-
algebraic” details are:

— Sparsity() = manually defined by the modeler (numerically too slow)
— Separability() = partitions the sparsity-pattern into groups

— Sensitivity() = FD/CS Jacobian/Hessian calculations

— Stationarity() = estimates linearity of constraints

— Shapability() = assesses convexity/concavity of constraints

— Shrinkability() = performs a primal pre-solve with “terms”

— Stackability() = re-arranges Jacobian into row or column order
— Scatterability() = pre-orders the Jacobian for factorization

— Scalability() = scales variables & constraints using Jacobian

— Startability() = determines heuristically good starting values

— Solvability() = infeasibility analysis

— Sensability() = observability, redundancy & precision estimates

Honeywell Proprietary
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How do we Solve the MOP? (cont’d)

- How do we derive the LP sub-problem in standard form
from the non-linear algebra?

 Each constraint in the formf(x) +... + A*x + b =0 is called
three times at startup of the problem definition:
— First time with x = 0 to calculate b.

— Second & third time with x = x0 & x =x0 + h (or x = Re(x0) + Im(h)) to
compute the Jacobian.

- During our primal pre-solve the constraints are called at
each “pass” to update the b-balances as we successively
fix variables in linear singleton constraints & substitute out
variables in linear doubleton constraints (connection or
transfer equations) i.e., x(i) — x(j) = 0 then x(j) Is replaced
with x(i) everywhere x(j) appears in a constraint significantly
reducing both the number of variables & constraints.
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How do we Solve the MOP? (cont’d)

- How do we solve large-scale MINLP MOP’s?

« “Scheduling” in continuous & batch-process industries is
an excellent example where we have all three quantity, logic
& quality phenomenon that need to be decided on over a
relatively long time-horizon with a mix of “small & big
bucket” time-intervals (restriction on level of contention).

« Our novel & effective approach applied to many diverse
industrial sites, is to implement a “truncated” Bender’s
Decomposition with two sub-problems solved recursively:

— Solve a “Logistics” MOP (quantity-logic) using MLP then
— Solve a “Quality” MOP (quantity-quality) using NLP then

— Iterate until useful (optimized & feasible) solutions are obtained.

Kelly, J.D. “The Unit-Operation-Stock Superstructure (UOSS) and the Quantity-Logic-Quality Paradigm (QLQP) for Production Scheduling
in the Process Industries. MISTA 2005, 327-333, 2005.

21
Honeywell Proprietary



Honeywell Honeywellom

How do we Solve the MOP? (cont’d)

- How do we handle “infeasible” or “inconsistent” MOP’s?

 Searching for Irreducible Infeasibility Subsets (lIS,
Chinneck) is unfortunately not practical for industrial-
sized MOP’s nor is solving the Primal Simplex “Phase I”
to obtain marginal-values on slacks (Primal too slow).

Chinneck, J.W., “Feasibility and Infeasibility in Optimization”, Springer, 2008.

- We employ the following two techniques:

— Given our automated but “baroque” generation of the problem
(UOPSS/QLQP), primal pre-solve has proven to be very effective on
the first LP sub-problem of either the MLP or NLP to detect, isolate
& identify inconsistencies especially in linear constraints.

— Penalty, artificial or elastic variables are added to specific modeler-
defined constraints & are minimized in our “Archimedean”
objective function. These penalties provide a useful level of
isolation & identification in addition to being displayed graphically.

22
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How do we Integrate the MOP Data?

- We decompose the diverse data requirements into:
— Model-Data + Cycle-Data = Problem-Data ==solve==> Solution-Data

- Model-data provides the “prototype” whereas cycle-data
(cases, changes) provides the “provisos” and overloads
model-data to provide the problem-data “profiles” i.e.,
“pole(p,0,i,n,t,e,r,s) = profile” MDSA’s.

- The data is “presented” & “persisted” in several allegoric
“forms”:

— Graph/Relation/Object/Network-Based ( Traversal), Paragraph/Sentence/Word-
Based ( Textual) & Line/List/'Sheet/Table-Based ( Tabular).

— These data-forms can then be dispatched from its source data depot
as simple files/text streams in CSV or XML formats.

— These files/streams are imported then lexed, parsed & expanded into
the necessary MDSA’s as problem-data & then after solving,

— Solution-data is then exported into these non-array-based forms.

23
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How do we Integrate the MOP Data? (cont'd)

- System Architecture delineated ...

Honeywell.com
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AML
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How do we Execute the MOP Decisions?

 We define three execution environments called “in-line”,
“on-line” & “off-line”.

 In-line MOP’s have “variable feedback” in terms of
past/present data but no or very little “parameter

feedback™” & with “actuation/manipulation” (planning &
scheduling) — exhibits “steady-state offsets”.

Kelly, J.D., Zyngier, D., “Continuously Improve the Performance of Planning & Scheduling Models with Parameter Feedback”, FOCAPO, 2008.

* On-line MOP’s have both variable & parameter feedback
(i.e., bias updating) using past/present data with actuation
(regulatory & maneuvering control).

« Off-line MOP’s may or may not have either or both

“variable” & “parameter” feedback without direct
actuation or with indirect actuation (design & analysis).
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How do we Improve the MOP Deployment?

- Kaizen, POMAI, DMAIC, PECA, Six Sigma, TPS, etc. enable
the necessary “continuous-improvement” we call our
Plan-Perform-Perfect-Loop (also addresses Uncertainty).

Kelly, J.D., “Modeling Production-Chain Information”, Chemical Engineering Progress, February, 2005.

- The core idea is that the modeling, solving, etc. of a MOP
“is not it, but a part of it” & needs to be refined & revisited
regularly in context with the overall business objectives &

obstacles. System Dynamics
| T o o T e T e T e R e R e N W e s LT e 1
I 1
Orders E Feedforward i Objects

: > Plan > Perform >
" 7y I

: I

H Feedback Feedboack :

] 1

' < Perfect

1
I

Fig. 14. The plan—perform—perfect-loop of the HDH with orders-to-objects system dynamics.
Kelly, J.D., Zyngier, D., “Hierarchical Decomposition Heuristic for Scheduling: Coordinated Reasoning for Decentralized &
Distributed Decision-Making”, Computers & Chemical Engineering, 32, 2008.
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« THANK YOU!
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