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PROTEINS: INTRODUCTION

� Proteins are the versatile building blocks and 
active molecules that form the basis of living 
systems.

� Function follows structure
�We study protein structure and its dynamic 

changes so that we can better understand 
protein function.

�These studies will involve mathematical 
modeling of protein structure using geometric 
analysis, statistics, machine learning, … 
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PROTEIN FUNCTION (1)

Protein function includes:

�Molecular movement

�Enzymatic catalysis

�Structural systems

�Signal transmission
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CENTRAL DOGMA
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AMINO ACIDS

�The monomers of proteins are amino acids.
�They have the following general form:

� A peptide bond is formed by a condensation reaction:



THE TOPIC OF THIS TALK

� Distance Geometry Problems:
� There are various problems that come under this 

heading.

� In general, we are given a set of distances between 
atoms and we are required to compute the 
coordinates of all atoms.

� But first, we will look at protein conformation and its 
implications for the problem.
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DIHEDRAL ANGLES

� Atoms in the “amide plane”
tend to have bond lengths 
and bond angles with little 
variation.
� As a first approximation: 

Backbone conformation is 
determined by the phi & psi 
dihedral angles.
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PROTEIN CHIRALITY

� Distance information alone does not determine atomic 
positions with appropriate chirality.
� An independent check is needed. 

� Looking down the H-Calpha bond (from H) the L-form can 
be read clockwise as “CORN”.  
� The D-form can be read as “NRCO”.

� Protein amino acids always have the L-form.
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LEVELS OF STRUCTURE FOR PROTEINS

�Primary Structure
� The primary structure is simply the sequence of amino acids.

�Secondary Structure
� Secondary structure is described by categorizing the amino acids as 

being part of alpha helices, beta-sheets, or loops.

�Tertiary Structure
� The helices and sheets combine to form a definite three dimensional 

conformation of the molecule.

�Quaternary Structure
� Quaternary structure is specified by combining multiple tertiary 

structures (molecules) to form a working unit.

�Not all proteins do this.
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THE ALPHA HELIX

� The consecutive peptide planes 
twist into a helix.

� The side chains typically point 
outside the helix.

� The ideal alpha helix has 3.6 
residues for every complete turn 
of the helix.

� Note the hydrogen bond 
between the H on the nitrogen 
atom and the double bonded 
oxygen of the downstream 
carbon atom. Most of the figures in this presentation

were created using USDF Chimera:
http://www.cgl.ucsf.edu/chimera/



HYDROGEN BONDS IN HELICES
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Helix (Backbone atoms only)

Helix (Ribbon with side chains)
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THE BETA SHEET

� The beta-sheet is formed when peptide planes tend to align 
and form hydrogen bonding.

� Note the typical hydrogen bond between the H on the nitrogen 
atom and the double bonded oxygen of a carbon atom that is 
much more distant in the sequence.

Parallel 
Beta 
Sheet
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THE BETA-SHEET  (CONT.)

�Pleated conformation of a beta-sheet:

Same sheet
with side chains:



THE BETA-SHEET  (CONT.)
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Anti-Parallel Beta Sheet



LOOPS

�Loops are chains of amino acids that have 
no particular hydrogen bonding patterns 
with other parts of the protein.
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1ANS: a neurotoxin 
from the sea anemone, 
Anemonia sulcata.



LOOPS   (CONT.)

� Proteins that are “all loop” are fairly rare.  
�Most proteins will have beta sheets and helices 

forming a hydrophobic core and these secondary 
structures will be interconnected by loop segments.
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TERTIARY STRUCTURE

� Helices, Sheets, and Loops combine to give a 
complete molecule in a three dimensional 
conformation:

Chain D of 1A4Y



TERTIARY STRUCTURE: MYOGLOBIN (1)

�A globin fold:
� 1MBN: 153 residues in 8 helices with short loops forming a 

hydrophobic pocket containing a heme group.

(A good example of structure  

� supporting function).
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TERTIARY STRUCTURE: MYOGLOBIN (2)

�Heme group in the globin pocket:
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H93
H64



FLEXIBILITY & FUNCTIONALITY (1)

�Myoglobin will 
slightly 
change 
conformation 
when 
accepting or 
donating the 
O2 molecule.
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PDB ID: IMBN



FLEXIBILITY & FUNCTIONALITY (2)

�Protein flexibility is 
important for protein 
functionality:
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QUATERNARY STRUCTURE

1KPA

�Chains may combine 
to give a higher level 
structure.
�Here we have the 

complete protein: Kinase 
C Interacting Protein (both 
chain A and chain B).

�Often the tertiary 
components are 
replicates 
(as shown here).



QUATERNARY STRUCTURE: INSULIN (4)

�Hexamer 
structure of 
insulin.
PDB ID: 1znj
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DIGRESSION (1)

�A Cyclotide protein 
as Sculpture
�Kalata, 2004

� Stainless steel, length 50" 
(1.30 m)

� The protein Kalata is a 
small cyclic protein that 
has been recently found 
to be the utero-active 
component in a traditional 
African herbal medicine 
used to accelerate labor 
in childbirth.

http://www.julianvossandreae.com/Work
/protein6gallery/pages/Kalata.html



DIGRESSION (2)

� Voss-Andreae (quantum physicist & sculptor):
� Heart of Steel (Hemoglobin) (2005)
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DIGRESSION (3)

� Voss-Andreae :

26

Light-Harvesting Complex (2003) Unravelling Collagen (2005)



DIGRESSION (4)

� Voss-Andreae
� Angel of the West (2008)

27Scripps Research Institute



DIGRESSION (5)

� Voss-Andreae
� Vitruvian Man & Antibody
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QUATERNARY STRUCTURE: INSULIN (4)

�Hexamer 
structure of 
insulin.
PDB ID: 1znj
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INSULIN: ALL ATOMS VISIBLE

�Hexamer 
structure of 
insulin.
PDB ID: 1znj
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QUATERNARY STRUCTURE: INSULIN (4)

�Hexamer 
structure of 
insulin.
PDB ID: 1znj
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INTRODUCTION (1)

� Distance Geometry Problems:
� There are various problems that come under this heading.

� In general, we are given a set of distances between atoms 
and we are required to compute the coordinates of all atoms.

� Computed coordinates are typically with respect to a frame of 
reference that has its origin at the centroid of the atoms.

� Notation:
� The coordinates of the atoms are

� So, we are dealing with a molecule that has n atoms.

� We want to calculate these  x(i), when given all or some subset of:

�
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INTRODUCTION (2)

� Variants of the problem differ with respect to:

� Number of distances givenNumber of distances givenNumber of distances givenNumber of distances given:

� The full set of “n choose 2” distances makes the problem fairly easy to 
solve.

� In most practical applications we are only given an O(n) sparse set of 
distances.

� Accuracy of distances givenAccuracy of distances givenAccuracy of distances givenAccuracy of distances given:

� Distances may be considered as exact, or

� The problem may specify upper and lower bounds on distances.

� Distance may be given as probability distributions.
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INTRODUCTION (3)

�So, there are four types of problems:

P1: A complete set of exact distances

P2: A complete set of approximate distances

P3: A sparse set of exact distances

P4: A sparse set of approximate distances.
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MOTIVATION (1)

�NMR
�While most of the protein structures in the 

PDB have been computed using X-ray analysis, 
about 15% have been determined by NMR 
(Nuclear Magnetic Resonance).

�Advantages:
�Unlike X-ray analysis, NMR does not require 

crystals – the proteins may be in solution.
�Consequently, we can have more confidence that 

their conformations are close to that present in 
the cytosolic environment.
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MOTIVATION (2)

�NMR
�Disadvantages:

�NMR experiments only report distances between 
atoms.

�The atoms must be close to one another (typically 
within 5 Åwithin 5 Åwithin 5 Åwithin 5 Å of each other). 

� This means the number of distances is much less than          .

�These distances have some experimental errorexperimental errorexperimental errorexperimental error.
� This means we have reduced accuracy.

�NMR can only be used for shorter proteins.
� “Short proteins” means less than a few hundred amino 

acids. 
Distance Geometry
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NOTATION

� We work in a 3D Euclidean vector space:
� The coordinates of the atoms are

� So, we are dealing with a molecule that has n atoms.

� We want to calculate these  x(i), when given all or some subset of the 
inter-atomic distances:

� An n by n matrix X is used to store the x(i) vectors in a column 
by column fashion.  
� The n by n symmetric matrix D2 holds the squares of distances: 

The Gram matrix G is defined by:    

We use      to represent an approximation of the distance       and we set        
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RELATED WORK

� Given all the      values, we can compute a Gram 
matrix using the “double centering formula”:

which can be rewritten as:

where:

and    is an n-dimensional vector with each 
component equal to 1.

Distance Geometry
38

2

ijd

( ) ( )2 2 2 2

2

1 1 1 1

1 1 1
, .

2

n n n n

i j

ij ij ij ij ij

i j i j

d d d d x x G
n n

= = = =

  
  + − − = =
    
∑ ∑ ∑∑

21

2
G HD H= −

1
11TH I

n
= −

1



P1: DERIVING COORDINATES GIVEN G    (1)

�Theorem:
�Given matrix D2, there exists a set of 

points                            in       such that
if and only if G is 

positive semidefinite with rank at most k.
In this case G = X TX.      

�To calculate X we start with the spectral 
decomposition of G:         
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P1: DERIVING COORDINATES GIVEN G    (2)

�Using the spectral decomposition of G:
�For any fixed integer                          we form 

the k by n matrix Y(k) defined as:

where            is the k by k matrix
and U(k) is the n by k

matrix with column entry equal to eigenvector 
u(i).

Distance Geometry
40

{ }1,2, ,k n∈ K

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T th

T
1 2

1 2

 column of  is:

, , ,
i k

i i k i

Y k k U k i Y k

y k u u uλ λ λ

= Λ ⇒  

 =    L

( )kΛ

( )1 2, , , kdiag λ λ λL



P1: DERIVING COORDINATES GIVEN G    (3)

� Then it can be shown that:

� If the given inter-atomic distances are all exact and 
consistent with a set of consistent with a set of consistent with a set of consistent with a set of n atoms in a 3D Euclidean atoms in a 3D Euclidean atoms in a 3D Euclidean atoms in a 3D Euclidean 
spacespacespacespace then the rank of the Gram matrix will be 3 and 
all eigenvalues beyond      will be zero.  

� In this case, the last sum is zero.  
� Consequently, we can take X to be the 3 by n matrix 

Y(3) and this becomes our solution for problem P1.
Distance Geometry
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P2: DERIVING COORDS GIVEN NOISY G   (1)

� When given a complete set of distances that 
have been subjected to a small amount of noise, 
we follow the strategy used by Trosset (1998), 
which reformulates the problem as follows:

minimize                 subject to

where                        and

is the set of non-negative n by n semidefinite 
matrices of rank k. 
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P2: DERIVING COORDS GIVEN NOISY G   (2)

� They solve the minimization problem by using 
the following theorem:
Let                            denote the eigenvalues of  
with spectral decomposition                 where 

Define:
for i = 1,2,..., k and          
for i = k+1,,..., n.  

Let                        
Then                    is a global minimiser (and we 
can use the strategy for P1 with C* replacing G).               
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P3: SPARSE BUT EXACT DISTANCES (1)

� For problem P3 we are given exact distances but only 
for atoms that are closer than some upper threshold.

� Geometric Buildup (Wu et al. 2003, 2007, 2008)

� Find four atoms, not in the same plane, such that allallallall
inter-atomic distances are known.

� Using the P1 strategy described earlier, derive the 
coordinates of all four atoms.

� While there are atoms with undetermined positions 
repeat:
�Find an atom with undetermined position but with known 

distances to four other non-coplanar atoms whose 
positions are known.

�Determine the position of the undetermined atom using a 
triangulation strategy.

Distance Geometry
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P3: SPARSE BUT EXACT DISTANCES (2)

�Triangulation:
� Let                       represent the coordinates of four 

non-coplanar atoms with known positions and x(j)

holds undetermined coordinates of a nearby atom. 
Then:

� For each i = 1,2,3we subtract equation i from equation i+1:
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P3: SPARSE BUT EXACT DISTANCES (3)

� Rearranging terms:

�The three equations in matrix form:
Bx(j) = c

where:
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P3: SPARSE BUT EXACT DISTANCES (4)

� Triangulation issues:
� If only three atoms with 

known positions were used 
then the position of the 
undetermined atom would be 
ambiguous (Fig. 1(a) or Fig. 1(b)?)

�We need four atoms but they 
cannot be coplanar.

�Even if they are “almost 
coplanar” we have a problem. 
An ill-conditioned system is 
very susceptible to noise.
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P4: SPARSE AND NOISY DISTANCES (1)

� Problem P4: we are given approximate distances for 
atoms that are closer than some upper threshold.

� As long as the distances are positive there is always a As long as the distances are positive there is always a As long as the distances are positive there is always a As long as the distances are positive there is always a 
solution, but it may reside in a space with dimension solution, but it may reside in a space with dimension solution, but it may reside in a space with dimension solution, but it may reside in a space with dimension 
higher than 3.higher than 3.higher than 3.higher than 3.

� If the given distances are true 3D distances with a small If the given distances are true 3D distances with a small If the given distances are true 3D distances with a small If the given distances are true 3D distances with a small 
amount of error then the first three eigenvalues will be amount of error then the first three eigenvalues will be amount of error then the first three eigenvalues will be amount of error then the first three eigenvalues will be 
quite different from quite different from quite different from quite different from 0 and the fourth and later eigenvalues and the fourth and later eigenvalues and the fourth and later eigenvalues and the fourth and later eigenvalues 
will be quite close to will be quite close to will be quite close to will be quite close to 0....

� Simply ignoring these values (in effect, projecting from a Simply ignoring these values (in effect, projecting from a Simply ignoring these values (in effect, projecting from a Simply ignoring these values (in effect, projecting from a 
high dimension space down to 3D) will produce an high dimension space down to 3D) will produce an high dimension space down to 3D) will produce an high dimension space down to 3D) will produce an 
approximate solution typically characterized as “crowded” approximate solution typically characterized as “crowded” approximate solution typically characterized as “crowded” approximate solution typically characterized as “crowded” 
since contributions to a distance are being ignored.since contributions to a distance are being ignored.since contributions to a distance are being ignored.since contributions to a distance are being ignored.
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P4: SPARSE AND NOISY DISTANCES (2)

� Related strategies:  
� To avoid the crowding issue, Biswas, Toh, and Ye (2008) 

formulate the problem as an optimization problem:
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P4: SPARSE AND NOISY DISTANCES (3)

� Related strategies:  
� They then cast the problem as semidefinite programming 

(SDP) relaxation:

where e is the vector of all ones, and eij is the zero vector with 
entry i changed to +1 and entry j changed to -1.
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P4: SPARSE AND NOISY DISTANCES (4)

� Biswas, Toh and Ye (continued):  
� The SDP strategy, just described, is a heuristic that tries to deal 

with the noise issue.  
How do they handle the sparseness of the data? 
� Atoms are grouped into clusters such that all inter-atomic distances are 

known for all possible atom pairs in a cluster.
� They then use the SDP approach to derive the coordinates of atoms in each cluster.

� Stitching: Since each cluster will have its own frame of reference, it is 
necessary to do translate and rotate operations that will bring one set of 
atoms into the same frame of reference as the neighbouring cluster of 
atoms.

� This process is continued until all the atoms are in the same frame of reference.

Distance Geometry
51



P4: MDS & OVERLAPPING CLIQUES (1)

� We now describe our strategy for handling the P4 
problem (sparse and noisy distances).

� Clique formation:  
� Start by grouping neighbouring atoms to form “cliques”:

� All inter-atomic distances are known for the atoms in a clique.

� Recall that we are given all inter-atomic distances less that some 
threshold (say,     Angstroms).

� Each clique will surround a particular atom called the clique center.
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P4: MDS & OVERLAPPING CLIQUES (2)

�A clique formation heuristic

�Suppose atom A is to be a clique center.
� Place all atoms that are within         Angstroms of A

into an initially empty clique set.

� Collect all the atoms that are within     Angstroms but 
beyond         Angstroms from atom A, and sort them in 
ascending order with respect to their distance from A.

� Go through the sorted list formed in step (b) and add 
an atom to the clique set  if the input data includes all 
inter-atomic distances between that atom and every 
current member of the clique set . 
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P4: MDS & OVERLAPPING CLIQUES (3)

� Choosing clique centers
� Clique centers are chosen so that the clique has 

biological relevance.  Each amino acid provides 
centers for two cliques:
�A clique centered on the alpha carbon atom:

�Since the clique center is also a chiral center, we can 
be sure that the computed coordinates have the 
appropriate chirality.

�A clique centered on the carbonyl oxygen atom.
�This clique overlaps the alpha carbon clique and also 

includes the hydrogen bonds responsible for helix and 
strand formation.
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P4: MDS & OVERLAPPING CLIQUES (4)

�Calculating atomic positions

�For each clique there is a full set of 
distance values and so we can use the P2 
algorithm discussed earlier.
� Sometimes called an MDS (Multidimensional Scaling) strategy.

�The coordinates of all atoms in a clique will 
be relative to a frame of reference that is 
only suitable for that clique.
�We need to modify coordinates so that all 

atoms are in the same frame of reference.
Distance Geometry
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P4: MDS & OVERLAPPING CLIQUES (5)

�Combining cliques

�When cliques overlap, with at least 4 atoms 
in their intersection, we may combine them:
�This involves a translate and rotate of the 

second atom set so that both sets have the 
frame of reference used by the first atom set.

�The atoms in the intersection will define the 
appropriate translate and rotate operations.

�The intersection atoms cannot be coplanar.
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P4: MDS & OVERLAPPING CLIQUES (6)

�Combining cliques (continued)

�Recall that we are using                 where
and

�Noise in the given distance data will increase 
the magnitude of     and thus compromise the 
ability of C* to yield the “true” 3D coordinates.

�Consequently, the positions of atoms in the 
intersection of two cliques will not be precise.
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P4: MDS & OVERLAPPING CLIQUES (7)

�Combining cliques (continued)

�Repeating: Because of noise in the distance 
data, the computed positions of atoms in the 
intersection of two cliques are not exact:
�The translate and rotate operations when doing 

clique combining can still proceed because the 
super-positioning of atoms in the intersection is 
done in the least squares sense.

�However, it is still necessary to determine the final 
positions of atoms in the intersection.
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P4: MDS & OVERLAPPING CLIQUES (8)

�Modifying distance estimates:
�BeforeBeforeBeforeBefore getting both cliques into the same 

frame of reference we can try to reduce 
distance errors by averaging: 
�We can recalculate the squares of distances by 

using the C* matrix: 
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P4: MDS & OVERLAPPING CLIQUES (9)

�Modifying distance estimates (continued) :
�For any pair of atoms (indexed by i, j) within 

the intersection, each clique will have a 
different value of  
�We can try to reduce distance errors by 

computing an average and then replacing all 
such distances with the average distance.

�After this is done, coordinates are computed 
and one clique can be brought into the frame 
of reference of the other clique.
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P4: MDS & OVERLAPPING CLIQUES (10)

�Averaging distances:
� Using this strategy we can continue to combine cliques until all Using this strategy we can continue to combine cliques until all Using this strategy we can continue to combine cliques until all Using this strategy we can continue to combine cliques until all 

atoms are in the same frame of reference.  Some results:atoms are in the same frame of reference.  Some results:atoms are in the same frame of reference.  Some results:atoms are in the same frame of reference.  Some results:

Here: Here: Here: Here: 
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PDB ID

Atom 

Count

Residue 

Count

RMSD  

σ = 

0.05

RMSD  

σ = 

0.10

RMSD  

σ = 

0.15

RMSD  

σ = 

0.20

RMSD  

σ = 

0.25

1HOE 581 97 0.041 0.139 0.307 0.543 1.123

1LFB 641 78 0.045 0.150 0.321 0.544 0.817

1POA 1067 271 0.096 0.412 0.705 0.993 1.638

1HSG 1677 317 0.056 0.228 0.553 1.080 1.741

1RGS 2059 266 0.141 0.444 1.022 1.985 3.693

1BPM 3673 483 0.124 0.404 0.901 1.596 2.514

1TIM 3740 494 0.197 0.662 1.100 3.723 9.878

1HQQ 4116 700 0.279 0.308 0.905 4.267 6.506

( )( )2ˆ max 0,1 0, .ij ijd d N σ= +



P4: MDS & OVERLAPPING CLIQUES (11)

�Weighted averages:
� “Not all cliques are created equal”:“Not all cliques are created equal”:“Not all cliques are created equal”:“Not all cliques are created equal”:

�We can use available information We can use available information We can use available information We can use available information to roughly 
assess the validity of the C* matrix for a clique 
(for example, using the magnitude of    ).

�Our current experiments involve weighting 
schemes to compute a weighted averaging of

values (the clique with a smaller    is 
given more weight in the calculation).
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P4: MDS & OVERLAPPING CLIQUES (12)

� Calculating positions of atoms in the intersection:

� AfterAfterAfterAfter getting both cliques into the same frame of 
reference:
� Each clique will determine a particular position for any 

atom in the intersection. Which one do we use?
�Assuming that both cliques have equal validity in the 

calculated positions, we can simply compute the midpoint 
of the two positions.

�Or as with distances we can choose a weighted average to 
get the final position.
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