
Systems and Control Applications in 
Diabetes

B. Wayne Bequette

• Background
• Type 1 (Juvenile) Diabetes

• Glucose monitoring
• Estimation & Hypoglycemia Alarms 
• Glucose Control (Artificial Pancreas)
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Healthy Pancreas: Blood Glucose Regulation

Source: howstuffworks.com

Two manipulated inputs:
Insulin - lowers glucose
Glucagon - raises glucose

Beta cell: 
Insulin secretion



Diabetes Diagnosis

Diabetes was characterized by Arataeus in the 
1st century as a disease which resulted in the 
"melting down of the flesh and limbs into urine"



Insulin Therapy



Diabetes

• Type 1 (Juvenile) Diabetes
– Pancreas Beta cells do not produce insulin
– Must inject insulin or use insulin pumps

• Type 2 Diabetes
– Insulin resistance
– Often associated with age and obesity
– Oral medications, diet
– Increasingly: insulin therapy

• Pre-diabetes
– Insulin resistance



Type 1 Diabetes: 
Intensive Insulin Therapy

DCCT (1983-93) 1400 Type 1  volunteers
• Advantages - reduced risk of:

– Eye disease by 76%
– Kidney failure by 50%
– Nervous disease by 60%

• Disadvantages
– Three times risk of hypoglycemia (low blood glucose)
– Frequent, painful, “finger stick” capillary blood 

measurements



Blood Glucose Control
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Blood Glucose Control

Controller Sensorpump subject
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Meal knowledge: Feedforward

Feedback

Insulin infusion rate

Glucose sensor signal

Amount of carbohydrates? Insulin pharmacokinetics
& pharmacodynamics (time-lags)

Changes in absorption

Sensor noise & calibration uncertainty

Remember to bolus?



Biostator

IV infusion and 
glucose sampling



Glucose Meter Technology

1971 – Ames Reflectance Meter Accu ChekUrine test strips

1993 – 2007 (Wikipedia)



Insulin Delivery

• Basal
– Steady-state “non-meal” periods

• Long-acting insulin (injection)
• Insulin pump

– Fast-acting insulin delivered continuously
– Different rates for different periods during the day

• Bolus
– Fast-acting insulin

• Meal time to compensate for meal carbohydrates
• Correction for high blood glucose



Insulin Pump Technology

1963 – first pump delivers 
insulin & glucagon

1980 - Autosyringe

1990s - MiniMed

Deltec Cozmo

Animas

OmniPod



Current State of Blood Glucose Monitoring

• Infrequent “fingerstick”
samples

• Adjust insulin dose
– Bolus “wizard”
– Insulin-on-board

• Many “highs” and “lows” are 
missed

• Long- & short-term problems

Roche

A1c
vascular problems
eye disease, etc.

High BG Low BG

drowsiness, 
diabetic coma,
driving dangers, etc.



Continuous Glucose Monitors

Medtronic MiniMedGlucowatch Abbott (Therasense)

Sensor signals are related to subcutaneous glucose values

Dexcom

Goals: blood glucose estimation
• Estimate blood glucose from noisy subcutaneous sensor signal
• Hypoglycemia detection/prediction
• Closed-loop control
• First, need a model…



Blood/Subcutaneous Dynamics

Rebrin et al. Am. J. Phys. (1999)
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Estimate Blood Glucose – Naïve Method
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Sensitivity to Noise

Need to use optimal estimation techniques…
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Optimal Estimation - Kalman Filter

• Trade-off Probability of Measurement noise vs. 
Process “Noise” (real change in blood glucose)
– Which is causing a particular measurement change?

• If little measurement noise
– Trust measurement more than model

• If much measurement noise
– Trust model more than measurement

• Estimate unmeasured states
– Estimate blood glucose based on subcutaneous 

measurement



State Model
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State Estimation Results
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B.W. Bequette, 2004 American Control Conference



Hypoglycemia Concerns

• False alarm rate

Buckingham, American Diabetes Association (2004)

DirecNet

Simulation Studies

Palerm, Bequette, Desemone, Willis
Diabetes Technology & Therapeutics (2005)



3-State vs. 2-State Models
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State Estimation: Kalman Filter
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Simple Outlier Detection/Compensation

• Measurement invalid if

• If measurement is invalid, then simply use the prediction & 
not the measurement update
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Comparison 2-state vs. 3-state

Palerm, C.C., B.W. Bequette Journal of Diabetes Science and Technology, 1(5), 624-629 (2007).

Assumes constant first 
derivative for predictions

Assumes constant second
derivative for predictions



Receiver Operating Characteristic Curve

Palerm, C.C., B.W. Bequette Journal of Diabetes Science and Technology, 1(5), 624-629 (2007).

True Positive
Rate

False Positive Rate

60 mg/dL

90 mg/dL

Alarm Threshold

Hypoglycemia defined as < 70 mg/dL



Control Challenges
• Meal glucose

– Variability in rate of absorption into circulation
• Subcutaneous insulin delivery

– Variability in absorption. Lag in peak effect
– Need for insulin bolus at meal-time

• Varying insulin sensitivity (“gain”)
– Dawn phenomenon
– Effect of exercise

• Sensor issues
• Model “Identification”

– Clinical data often not rich enough



Model Predictive Control

Find current and future insulin 
infusion rates that best meet a 
desired future glucose trajectory. 
Implement first “control move”
(infusion rate).

t k
current 
  step

setpoint (desired glucose)
y

actual glucose (past)

P
Prediction 
Horizon

past control 
moves

u
 max

 min

M
Control Horizon

past future

model prediction

insulin

• Type of model for predictions?
• Information needed at step k for predictions?
• Objective function and optimization technique?
• Correction for model error?

(Chapter 16…)



Model Predictive Control

Find current and future insulin 
infusion rates that best meet a 
desired future glucose trajectory. 
Implement first “control move”
(infusion rate).

Correct for model mismatch,
then perform new optimization.

t k
current 
  step

setpoint (desired glucose)
y

actual glucose (past)

P
Prediction 
Horizon

past control 
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u
 max

 min

M
Control Horizon

past future

model prediction

t k+1
current 
  step

setpoint (glucose)y

P
Prediction 
Horizon

past control 
moves

u
 max

 min

M
Control Horizon

model prediction 
from k

new model prediction

insulin

insulin

At next sample time:

Disturbances vs. model 
uncertainty



Concise Review of MPC-AP Applications

• Doyle, Parker, Peppas (IEEE TBME, 1999)
• Lynch, Bequette (ACC 2002)
• Hovorka et al. (Phys. Meas., 2004)
• Damiano, El-Khatib (DTM, 2008)
• Cobelli, Kovatchev, Patek et al. (DTM, 2008)
• Doyle, Dassau, Zisser et al. (IFAC, 2008; DTM, 

2008)
• Lee, Bequette (IFAC, 2008; JDST 2009)



Closed-Loop Artificial Pancreas Framework



Simulation Model

• Compartment-based
– Hovorka: includes s.c. insulin kinetics
– Dawn phenomena and time-dependent variations

Figure from Hovorka et al. Physiol. Meas. (2004); Wilinksa et al. IEEE TBME (2005)

pharmacokinetics

pharmacodynamics

s.c. insulin
infusion

glucose



Modeling Experiments

Traditional Insulin Injection Multisine-basal rate Injection

Approach of “Plant Friendly ID”
(Lee and Rivera, 2005)



Model Validation



Major Concerns

• Hypoglycemia (low blood glucose)
– Short-term problems

• Hyperglycemia (high blood glucose)
– Long-term problems

• Missed meal boluses
– More than 65% of adolescents miss one or more meal 

boluses each week
– Two missed meal boluses each week increases the A1c 

by 0.5

Need a Meal Detection Algorithm



Meal Detection AlgorithmMeal Detection Algorithm

36

Lunch

2 Hours

Detection < 30 minDetection < 30 min

E. Dassau, B.W. Bequette, B.A.  Buckingham, F.J. Doyle III, Diabetes Care, 
31(2), 295-300 (2008)



MPC-based Glucose Control Cases

• Case 1: measured meal case considers all meal 
announcement for exact carbohydrates sizes of 
meal contents.

• Case 2: unmeasured meal case considers all 
unmeasured meal disturbances without any meal 
announcement.

• Case 3: estimated meal case uses the meal size 
estimation algorithm to allow automatic meal bolus 
whenever meal announcement is not given.



In Silico Closed-loop Evaluation
under constant insulin sensitivity

Unmeasured meal case 
shows highest values for 
MAD, Mean, Min and 
Max.

Estimated meal case 
produces improved 
closed-loop glucose 
control compared to 
the unmeasured case.

Three meals [50 50 50]g 
are considered per day.

MPC Tuning & Constraints:

P=36, M=3, Wy=1, Wu=5, Umax=4.4U/hr, 
umin=0 U/hr, dumax=2.2 U/hr



Clinical Studies: Artificial PancreasClinical Studies: Artificial Pancreas
• Artificial Pancreas Software

– Communication with sensors & pumps
– Modularity, Plug-and-Play (PnP) 
– Human Machine Interfaces (HMIs)
– Physician control
– Data storage
– Audio & Visual alarms
– Standalone application
– Data recording
– Safety and redundancy 



First Step: Automated Pump Shut-off

Buckingham, B.A., E. Cobry, P Clinton, K Caswell, V. Gage, N. Forghani, B. Vanderwel, E. Dassau, F
Cameron, H. Lee, F.J. Doyle III, B.W. Bequette, G. Niemeyer, H.P. Chase “Preventing Nocturnal 
Hypoglycemia Using Predictive Algorithms and Pump Suspension,” Diabetes, 58(S1), A6 (2009).



Current Effort: 
Multiple Model Probabilistic Predictive Control

t k
current 
  step

setpoint (desired glucose)
y

actual glucose (past)

P
Prediction 
Horizon

past control 
moves

u
 max

 min

M
Control Horizon

past future

model prediction

insulin

(mean)

confidence intervals



Related Topic: ICU Glucose Control

• Critical Illness & Hyperglycemia
– Independent of Diabetes

• Insulin Infusion to Regulate Glucose
– i.v. delivery

• Current State:
– Sample blood every 1-4 hours
– Table look-up for Insulin Infusion

• Closed-loop algorithms



ICU Algorithms
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Bequette BW “Analysis of Algorithms for ICU Blood Glucose Control,” J. Diabetes Sci. Tech, 2007;1(6),813-824

Davidson et al., Diabetes Care, 28(10), 2418-23 (2005)

Table look-up and related algorithms
are often proportional-controllers



Summary Diabetes and Glucose Control

• Overview and current state of technology
• Continuous glucose monitoring
• Hypoglycemic prediction/detection
• Meal detection & meal size estimation
• Closed-loop control

– Model development: “Human-friendly” and changes in 
clinical procedures

• Intensive Care Unit (ICU) blood glucose control



Hyunjin Lee Cesar Palerm
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Other Projects
• Model-based Control

– Nonlinear Systems
• Circadian Effects & Physiology
• Energy

– Fuel Cell Systems
– IGCC Power Plants

• Pharma/Biochemical
– Process scale-up: operability
– Microbial reactors


