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The trace norm and state distinguishability

Throughout this talk, X, Y, Z and W are vector spaces of the form Cn

(for possibly different n > 1).

The trace norm of an operator X ∈ L (X) is defined as

‖X‖1 = Tr
√

X∗X.

It is commonly used in the theory of quantum information because it
describes how well two given quantum states can be distinguished by
means of a measurement .

Theorem (Holevo 1973, Helstrom 1976)
The minimum error probability to correctly distinguish two quantum states
ρ0 and ρ1 by means of a measurement, assuming they are given with
probabilities λ and 1 − λ, respectively, is

1

2
−

1

2
‖λρ0 − (1 − λ)ρ1‖1 .

Semidefinite programs for completely bounded norms 2 / 17



The completely bounded trace norm

There is an analogous norm for mappings of the form

Φ : L (X) → L (Y) ,

called the completely bounded trace norm (and also commonly called the
diamond norm).

To define this norm, we first consider the norm induced by the trace norm:

‖Φ‖
1

def
= max {‖Φ(X)‖1 : X ∈ L (X) , ‖X‖

1 6 1} .

The completely bounded trace norm is now defined as

|||Φ|||
1

def
= sup

k>1

∥

∥

∥
Φ ⊗ 1L(Ck)

∥

∥

∥

1
=

∥

∥Φ ⊗ 1L(X)

∥

∥

1
.

(Other notations include ‖Φ‖cb,1 and ‖Φ‖
⋄
.)
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Quantum channel distinguishability

In the problem of quantum channel distinguishability , two quantum
channels (or completely positive and trace preserving maps)

Φ0,Φ1 : L (X) → L (Y)

are fixed.

A single evaluation of one of the two channels is made available. With
probability λ the given channel is Φ0 and with probability 1 − λ it is Φ1.

The goal is to correctly identify which channel was given, using an
“interactive measurement”.

1. A quantum state of the form ρ ∈ D (X ⊗ W) is prepared.
2. The given channel is applied to X, resulting in one of the states

σ0 =
(

Φ0 ⊗ 1L(W)

)

(ρ) or σ1 =
(

Φ1 ⊗ 1L(W)

)

(ρ).

3. The states σ0 and σ1 are distinguished by a measurement.
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Optimal quantum channel distinguishability

The minimum error probability to distinguish the outcomes is

1

2
−

1

2

∥

∥λ
(

Φ0 ⊗ 1L(W)

)

(ρ) − (1 − λ)
(

Φ1 ⊗ 1L(W)

)

(ρ)
∥

∥

1

Optimizing over all choices of ρ ∈ D (X ⊗ W) gives a quantum channel
analogue to the Holevo–Helstrom theorem.

Theorem
The minimum error probability to correctly distinguish channels Φ0 and Φ1

given with probabilities λ and 1 − λ, respectively, is

1

2
−

1

2
|||λΦ0 − (1 − λ)Φ1|||1 .
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The completely bounded (spectral) norm

The same process can be attempted for any other operator norm. In
particular, we may consider the spectral norm

‖X‖∞

def
= λ1

(√
X∗X

)

.

This induces a norm on maps of the form Φ : L (X) → L (Y) as

‖Φ‖∞

def
= max {‖Φ(X)‖∞ : X ∈ L (X) , ‖X‖∞ 6 1} .

The completely bounded spectral norm is now defined as

|||Φ|||∞
def
= sup

k>1

∥

∥

∥
Φ ⊗ 1L(Ck)

∥

∥

∥

∞
=

∥

∥Φ ⊗ 1L(Y)

∥

∥

∞
.

This norm is commonly called the completely bounded norm and is
denoted ‖Φ‖cb.
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Comparison: spectral and trace CB-norms

The trace and spectral norms are dual, meaning

‖A‖1 = max {|〈B,A〉| : ‖B‖∞ 6 1},

‖A‖∞ = max {|〈B,A〉| : ‖B‖1 6 1},

where 〈B,A〉 def
= Tr (B∗A).

Given a mapping Φ : L (X) → L (Y), we define Φ∗ : L (Y) → L (X) to be
the unique mapping that satisfies

〈Y,Φ(X)〉 = 〈Φ∗(Y),X〉

for all X ∈ L (X) and Y ∈ L (Y).

By the duality of the trace and spectral norms, it follows that

|||Φ|||1 = |||Φ∗|||∞

for every mapping Φ : L (X) → L (Y).
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Properties and uses of these norms

There are many nice properties of the completely bounded trace and
spectral norms. For example, they are multiplicative with respect to tensor
products:

|||Φ ⊗ Ψ|||
1 = |||Φ|||

1
|||Ψ|||

1 .

The existence of an “auxiliary space” in their definitions allow them to be
used in various computational and cryptographic settings.

They have found several applications in the theory of quantum information.
For instance:

1. Bounding errors in quantum computations
[KITAEV 1997; AHARONOV, KITAEV & NISAN 1998].

2. Error reduction in quantum interactive proof systems
[KITAEV & W. 2000]

3. Study of Bell inequality violations
[PÉREZ–GARCÍA, WOLF, PALAZUELOS, VILLANUEVA AND JUNGE 2008]
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Statement of results

Main result of this work
The completely bounded trace and spectral norms can be expressed in a
simple and efficient way through the use semidefinite programming .

There are two consequences of this fact:

1. For a given mapping Φ, the values |||Φ|||
1 and |||Φ|||∞ can be efficiently

computed through the use of semidefinite programming algorithms.

2. The duality theory for semidefinite programming yields simple proofs
for some interesting (previously known) facts.
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Semidefinite programming

A semidefinite program is a pair of optimization problems, determined by
a mapping

Ψ : Herm(X) → Herm(Y)

and a pair of operators

C ∈ Herm(X) and D ∈ Herm(Y) ,

with the following form:

Primal problem

maximize: 〈C,X〉
subject to: Ψ(X) 6 D,

X ∈ Pos(X) .

Dual problem

minimize: 〈D,Y〉
subject to: Ψ∗(Y) > C,

Y ∈ Pos(Y) .

(Other equivalent formulations include the so-called standard form.)
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An SDP for the completely bounded trace norm

Suppose Φ : L (X) → L (Y) is a mapping given by

Φ(X) = TrZ (AXB∗)

for A,B ∈ L (X,Y ⊗ Z). Consider this semidefinite program:

Primal problem

maximize 〈BB∗,P〉
subject to:

TrY(P) = TrY (AρA∗) ,

ρ ∈ D (X) ,

P ∈ Pos(Y ⊗ Z) .

Dual problem

minimize ‖A∗(1Y ⊗ Q)A‖∞

subject to:1Y ⊗ Q > BB∗,

Q ∈ Pos(Z) .

Claim: the optimal value (of both problems) is |||Φ|||
2

1.
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An abstract game

To see why the claim is true, consider an abstract game as follows.

A

U∗

B∗

u






X

W

Z

Y Y

W

X

Rules of play:

1. Choose W and a unit vector u ∈ X ⊗ W.
2. The operator A is applied to X.
3. Choose a unitary operator U ∈ U (Y ⊗ W) and apply U∗ to Y ⊗ W.
4. The operator B∗ is applied to Z ⊗ Y.

Goal: maximize ‖(B∗ ⊗ 1W) (1Z ⊗ U∗) (A ⊗ 1W) u‖, which is the length
of the resulting vector.
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Optimal length

A

U∗

B∗

u






X

W

Z

Y Y

W

X

Using an optimal strategy, the length of the resulting vector is:

max
U,u

‖(B∗ ⊗ 1W) (1Z ⊗ U∗) (A ⊗ 1W)u‖
= max

U,u,v
|v∗ (B∗ ⊗ 1W) (1Z ⊗ U∗) (A ⊗ 1W) u|

= max
U,u,v

|Tr [(1Z ⊗ U∗) (A ⊗ 1W) uv∗ (B∗ ⊗ 1W)]|

= max
U,u,v

|〈U, TrZ [(A ⊗ 1W) uv∗ (B∗ ⊗ 1W)]〉|

= max
u,v

‖TrZ [(A ⊗ 1W) uv∗ (B∗ ⊗ 1W)]‖
1

= |||Φ|||1 ( for Φ(X) = TrZ (AXB∗)).
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Optimizing over states of subsystems

Now consider the possible “states” of various subsystems as the game is
played:

A

U∗

B∗

u






X

W

Z

Y Y

W

X

ρ

AρA∗ P

B∗PB

The possible choices of P ∈ Pos(Y ⊗ Z) are precisely those that satisfy
TrY(P) = TrY(AρA∗) for some choice of ρ ∈ D (X).

Maximizing over all such choices of P gives:

|||Φ|||
2

1 = max
P

Tr(B∗PB) = max
P

〈BB∗,P〉 .

This maximization corresponds to the primal problem in our SDP.
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CB trace and spectral norm computation

• Algorithms for computing the completely bounded trace and spectral
norms have been known prior to this work:

[V. ZARIKIAN, 2006]

[N. JOHNSTON, D. KRIBS & V. PAULSEN, 2009]

These are iterative methods, and bounds on their rates of
convergence have not been established.

• Computation of |||Φ0 − Φ1|||1 for channels Φ0 and Φ1 was previously
argued to reduce to a convex optimization problem.
[A. GILCHRIST, N. LANGFORD & M. NIELSEN, 2005]

• This work shows that |||Φ|||
1 and |||Φ|||∞ can be efficiently computed

for general maps Φ using algorithms for semidefinite programming.

• Independently, [A. BEN-AROYA AND A. TA-SHMA, 2009] gave a different way
to efficiently compute |||Φ|||1 and |||Φ|||∞ for general maps (using
convex optimization).
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An analytic application

Let Φ : L (X) → L (Y), and consider the set of all pairs (A,B) for which

Φ(X) = TrZ (AXB∗) (for all X ∈ L (X)).

It is known [PAULSEN 2002, KITAEV, SHEN & VYALYI 2002] that

|||Φ|||
1 = inf

(A,B)
‖A‖∞ ‖B‖∞ . (1)

An alternate proof of this fact follows from the dual problem for our SDP.
For any fixed choice of A0 and B0, we have that |||Φ|||

2

1 is given by

minimize : ‖A∗

0(1Y ⊗ Q)A0‖∞

subject to: 1Y ⊗ Q > B0B
∗

0 , Q ∈ Pos(Z) .

Letting Q range over positive definite operators and taking

A =
(1Y ⊗ Q1/2

)

A0 and B =
(1Y ⊗ Q−1/2

)

B0

establishes the non-trivial inequality in (1).
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Conclusion

In this work it has been shown that the completely bounded trace and
spectral norms can be expressed in a simple and efficient way through the
use of semidefinite programming.

This provides a provably efficient and practical way to compute these
norms, and gives simple proofs of a couple of known facts.

Thanks to Patrick, Marius, David, Debbie, Mary Beth, and Andreas for the
invitation to speak, and thank you for your attention!
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