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Information Theory

“The fundamental 

problem of 

communication is that 

of reproducing at one 

point either exactly or 

approximately a 

message selected at 

another point”

Source coding, channel coding, detection, cryptography…
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Outline

• Classical coding theorem with converse

• Quantum states and channels

• Three quantum coding theorems

• Questions of additivity

(where’s the converse?)



Classical Coding Theorem:

Typical Sequences
• Let X1, …, Xn be i.i.d.(independent identically distributed)

0/1 r.v.s with Pr(X = 1) = p, Pr(X=0)=1-p

• If we look at  the string (X1, …, Xn) then w.h.p. it’ll have  
≈ pn 1’s and ≈ (1-p)n 0’s.

• Call these typical sequences. 

• How many?  n choose pn ≈ 2n H(p),

where H(p) = -p log2 p – (1-p) log2 (1-p)

• Similar story for nonbinary variables.



Classical Coding Theorem:

Conditionally Typical Sequences

• Now we have (X1,Y1),… (Xn,Yn)

• Let’s say I tell you (X1,…,Xn).  For a typical 
(X1,…,Xn), is there a high probability set that 
(Y1,…,Yn) almost certainly lives in?

• Yes!  Call these Y’s “conditionally typical”.  

• How many are there?  ≈ 2n H(Y|X), where H(Y|X) 
= ∑ px H(Y|x) = H(YX)-H(X)
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Classical Coding Theorem

• We have a channel N with probs p(y|x)

• The capacity of N is the maximal number of bits per 
channel use we can send given a large number of uses.

• Shannon’s Theorem:

C(NNNN ) = maxX I(X;Y),

where I(X;Y) = H(Y) –H(Y|X) 

= H(Y)+H(X)-H(XY)
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Classical Coding Theorem:

How to pick a code

≈ 2nH(X)

Typical X’s

≈ 2nH(Y)

Typical Y’s

≈ 2nH(Y|X)

Conditionally typical

Keep adding typical X’s to 

your code until you just 

barely fill up the set of 

typical Y’s with their 

images.  

How many X’s can you 

take?

≈ 2nH(Y)/2nH(Y|X)

= 2n I(X;Y)



Classical Converse

• We showed that any R ≤ maxX I(X;Y) is 

achievable.

• Now we want that any R > maxX I(X;Y) is not.



Classical Converse

• Step one: 
show  C(N ) ≤ limn → ∞(1/n)max I(X(n); Y(n))

X(n) is a r.v. on n inputs to the channel

• Step two:
show max I(X(n),Y(n))≤ n max I(X;Y)

• Step one involves continuity of entropy

(see, e.g., Debbie Leung’s talk)

• Step two is about additivity.  It fails in most quantum 
cases (see Chris King’s & B. Collins’ talks, also Toby 
Cubitt’s ). 



Quantum States and Channels

• Pure state: |ψ〉 ∈ Cd

• Mixed state: ρ ∈ B(Cd) ρ ≥ 0, Tr ρ = 1

• In General: ρ = ∑ι λi |ψi〉〈ψi|

• N  : B(Cd) → B(Cd), completely positive 
trace preserving.

• N (ρ) = ∑κ AkρAk
† with ∑ Ak

†Ak = I

• N (ρ) = TrE UρU† with U : A→ BE isometry.



Entropy and Typical Spaces

• Any ρB = TrA |ψ〉〈ψ|AB

• H(ρB) = -Tr ρ log ρ is the entropy

• It measures the uncertainty in B

• Given n copies of |ψ〉, can reversibly map 

B to a space of dimension 2n H(ρB). This is 
the “typical space”.



Quantum Coding Theorems

There are several kinds of information you can 
try to send with a quantum channel:

• Classical Information

• Private Classical Information

• Quantum Information

There are different capacities for each of these.

Actually, there are even more:  I might give you 
free entanglement or free two-way classical 
communication to help.  



Quantum Coding Theorems:

Classical Information

• Our channel maps  N  : A′ → B

• We want a code {1,…,M} → ρm ∈ B((A′)n)

• Want large log M  and N  ⊗n (ρm) 

distinguishable (≈ orthogonal) 



Quantum Coding Theorems:

Achievable Classical Rate

• Our channel maps  N  : A′ → B

• Let X ↔ px, and φx ∈ B(A′).  

We call E = {px, φx} an ensemble.

• χ(N , E ) = I(X;B), eval. on ∑px|x〉〈x|⊗N (φx)

• χ(N , E )  is achievable by random coding 

and “square-root measurement” (HSW 98)
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Quantum Coding Theorems:

Achievable Classical Rate

≈ 2nH(X)

Typical X’s

Typical space

≈ 2nH(B)

dimensions

Conditionally typical 
space

≈ 2nH(B|X)

dimensions

N : A → B,  X → φx → N (φx) = ρx   and let ρ = ∑ξ px ρx

Keep adding typical X’s 

until their typical image 

is just a bit smaller than 

the typical space of B.  

Total number of X’s:

≈ 2nI(X;B)



Quantum Coding Theorems:

Partial Converse
• We saw that χ(N , E ) is achievable. 

• Let χ(N ) = maxE χ(N , E ). 

Then (1/n) χ(N  ⊗n) is achievable too.

• In fact, C(N ) = limn → ∞(1/n) χ(N  ⊗n)

• For some channels  C(N )  = χ(N ), but not for 
others.

• Even better: for some N   any code with 

rate R > χ(N ) has exponentially bad fidelity 
(“Strong Converse” cf Stephanie Wehner’s talk).



Quantum Coding Theorems:

Private Classical Information
• Recall N  (ρ) = TrEUρU† and let N  ′(ρ)=TrB UρU†

• Want to send classical information to B but 
ensure E learns nothing of the message.

• Let P1 (N  ) = maxE χ(N , E ) -χ(N  ′,E ).  

Then P1(N ) is acheivable.

• This is proved in two steps. 1) you can 
communicate to B at rate χ(N , E ). By averaging 
over these messages at a rate of χ(N  ′,E ) we can 
smear out any information E gets.



Quantum Coding Theorems:

Private Classical Information

• Like the classical capacity, we have

P(N ) = limn → ∞(1/n)P1(N  ⊗n)

• P(N ) = P1(N ) for degradable channels.  
That means B can simulate E.

• However, even for qubit channels we can 
find instances of P(N ) ≠ P1(N ).  The 
difference can be large.



Quantum Coding Theorems:

Quantum Information

• Our channel maps  N  : A′ → B

• We want to find a subspace C ⊂ (A′)⊗n and 
a decoding operation D such that 

D   N  ⊗n|C ≈ idC

• log dim C will be the number of qubits we 
can send.
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We can handle a code of 

dimension that satisfies

dC 2nH(E) ≤ 2nH(B)

so we can achieve rate

R \leq H(B)-H(E)



Quantum Coding Theorems:

Quantum Information
• Recall N  (ρ) = TrEUρU† and let N  ′(ρ)= TrB UρU†

• Let Q1(N  ) = maxρ H(B)-H(E), where the entropies are on 
N  (ρ) and N  ′(ρ), respectively.

• Q(N ) = limn → ∞(1/n)Q1(N  ⊗n)

• Q(N ) = Q1(N ) for some channels but not for others.  They 
can be very different.

• Get similar answer even if you’re uncertain of the 
channel (see Igor Bjelakovic’s talk)



Entanglement assisted capacity:

The only one that’s totally solved
• Lets say in addition to N   I give Alice and Bob an 

arbitrary |ψ〉AB to use.  Note: |ψ〉AB is no good for 
communication alone. 

• In this setting the classical capacity of N   is 

CE(N ) = max I(A;B)

• No regularization needed!



Additivity Primer

Mutual Information: max I(A;B)

Yes 

(Bennett-Shor-Smolin-Thaplyial ‘01)

E.A. Capacity

Yes (Bennett-Shor-Smolin-

Thaplyial ‘01)

Entanglement 
Assisted 
Classical

Coherent Information: max S(B)-S(E)

No (Div-Shor-Smolin ‘98)

Quantum Capacity

No (S-Yard ‘08)

Quantum

Private Information: max I(X;B)-I(X;E)

No (S-Renes-Smolin ‘08)

Private Capacity

No(Li-Winter-Zou-Guo ’09)

Private

Holevo Information: χ = max I(X;B)

No (Hastings ‘09)

Classical Capacity

?

Classical

InformationCapacityInformation  \ Quantity

A function on channels is additive if f(N ⊗M) = f(N) + f(M).

An additive information measure may give simple capacity formulas.

An additive capacity uniquely quantifies communication capability.



Additivity Primer

Even though most natural information measures and 
capacities are nonadditive in general, there are nontrivial 

examples where additivity holds.  We want more!

• Entanglement Breaking Channels:  If N  is EB and M  is arbitrary,

χ(N  ⊗M )=χ(N )+χ(M ).  Even better, C(N  ⊗M ) = C(N )+C(M ).

• Degradable Channels:  B can simulate E.  Coherent information is
additive.  Any two such channels have additive capacity.  The 
private capacity equals the quantum, so this behaves too.

• Unital qubit channels, depolarizing channels, bosonic gaussian
channels and others have additive χ.



Known unknowns:

Some things I haven’t mentioned
• Multiple access channels, broadcast channels, and multi-user 

information theory (Careful, though: some of these are hard 
classically).

• How do we actually achieve these rates?
(slightly unsatisfying answer: Forney construction.)

• Coding theory, fault-tolerance, etc.
• Pure-state source coding  (aka “data compression”) is actually 

solvable.
• Two-way capacities and relationship to entanglement and LOCC.  
• PPT criterion and NPT bound entanglement?

• P ≠ Q
• Connections between Quantum Key Distribution and private 

capacities (tomography, non-iid, etc.).
• Beyond i.i.d. (symmetrization and de Finetti arguments)
• Identification capacity, environment assisted capacity, capacity of 

unitary interactions, symmetric side channels, commitment capacity, 
reverse Shannon theorem, embezzling states, entanglement 
measures, zero-error…





Rocket Channels

• Simple channel displaying extensive 
nonadditivity of private capacity when 
used with a 50% erasure.

• Actually, even small classical capacity and 
they have large joint quantum capacity.

• Circuit diagram looks like a rocket!



Rocket Channels
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Rd = E( RU,V
d ⊗ |UV〉〈 UV|)



A nice identity

A ⊗ I |φd〉 = ∑Ai,j |i〉 |j〉

=

A

AT

I ⊗ B |φd〉 = ∑Bj,i |i〉 |j〉

|φd〉 = ∑ |i〉 |i〉



Bob can undo interaction

B
′
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B
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E

B

B′

=
U

V

U

VT


