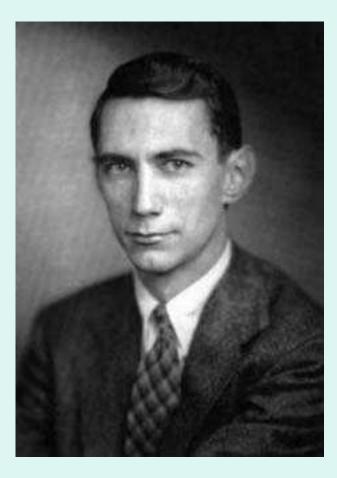
Introduction to Quantum Channel Capacities

Graeme Smith IBM Research

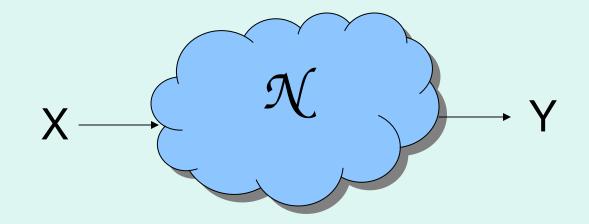
Information Theory

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point"

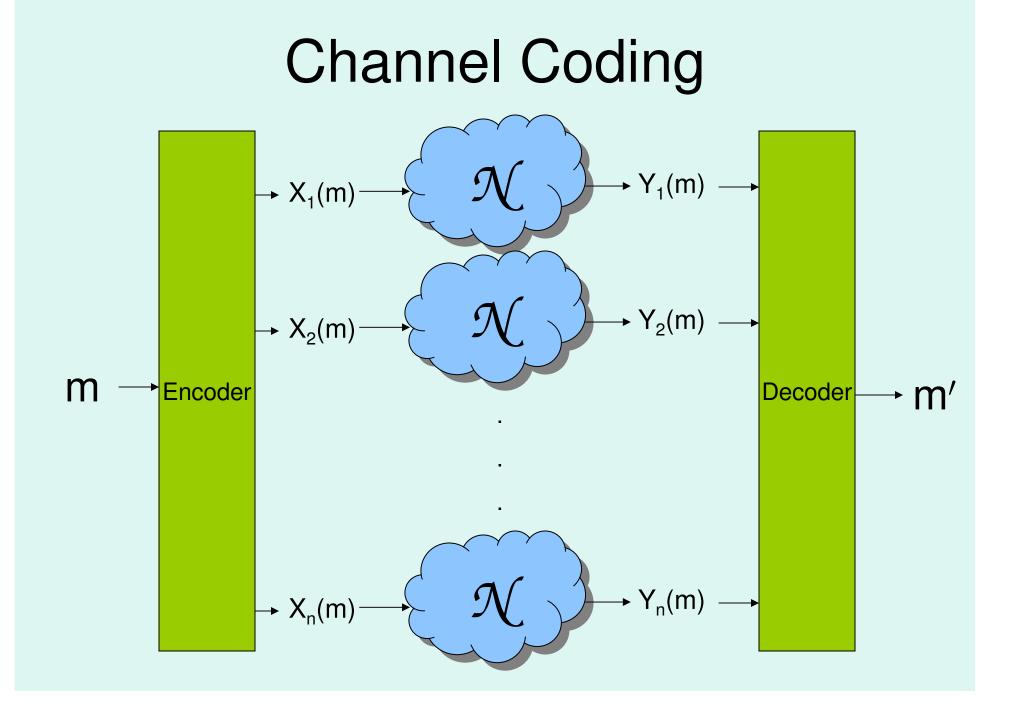


Source coding, channel coding, detection, cryptography...

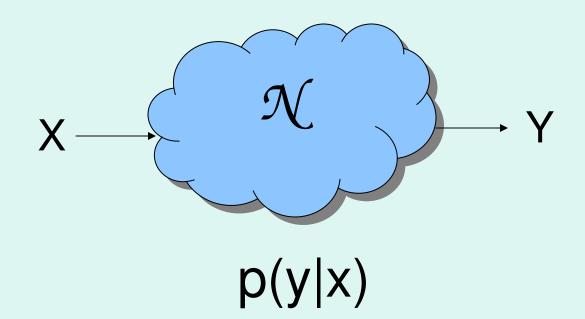
Channel Coding



p(y|x)

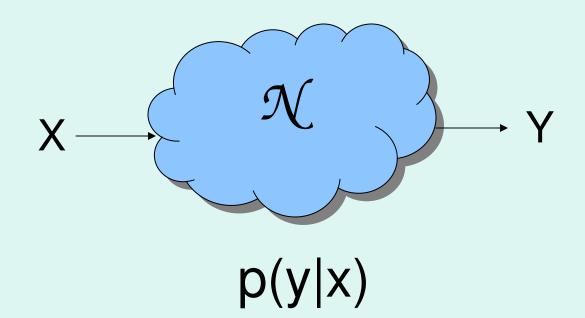


Channel Coding



Capacity: bits per channel use in the limit of many channels Goal 1) understand capacity as a function of p(y|x) Goal 2) find practical constructions for approaching capacity

Channel Coding



Capacity: bits per channel use in the limit of many channels Goal 1) understand capacity as a function of p(y|x) Goal 2) find practical constructions for approaching capacity

Outline

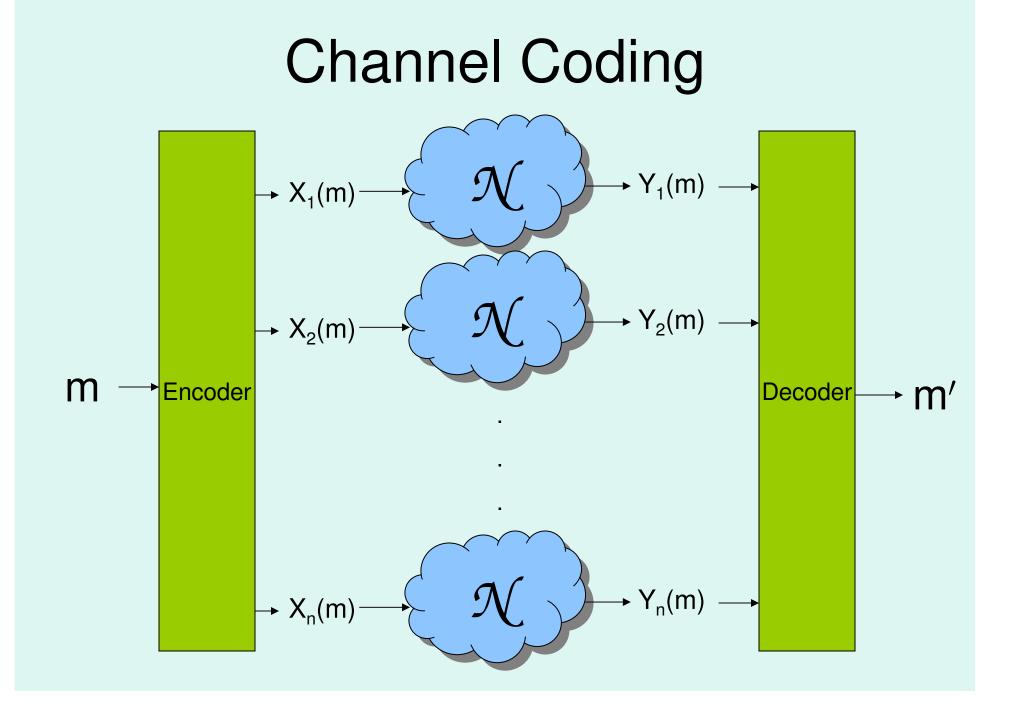
- Classical coding theorem with converse
- Quantum states and channels
- Three quantum coding theorems
- Questions of additivity (where's the converse?)

Classical Coding Theorem: Typical Sequences

- Let $X_1, ..., X_n$ be i.i.d.(independent identically distributed) 0/1 r.v.s with Pr(X = 1) = p, Pr(X=0)=1-p
- If we look at the string $(X_1, ..., X_n)$ then w.h.p. it'll have \approx pn 1's and \approx (1-p)n 0's.
- Call these typical sequences.
- How many? n choose pn $\approx 2^{n H(p)}$, where H(p) = -p log₂ p - (1-p) log₂ (1-p)
- Similar story for nonbinary variables.

Classical Coding Theorem: Conditionally Typical Sequences

- Now we have $(X_1, Y_1), ..., (X_n, Y_n)$
- Let's say I tell you $(X_1, ..., X_n)$. For a typical $(X_1, ..., X_n)$, is there a high probability set that $(Y_1, ..., Y_n)$ almost certainly lives in?
- Yes! Call these Y's "conditionally typical".
- How many are there? $\approx 2^{n\,H(Y|X)},$ where H(Y|X) = $\sum p_x\,H(Y|x)$ = H(YX)-H(X)



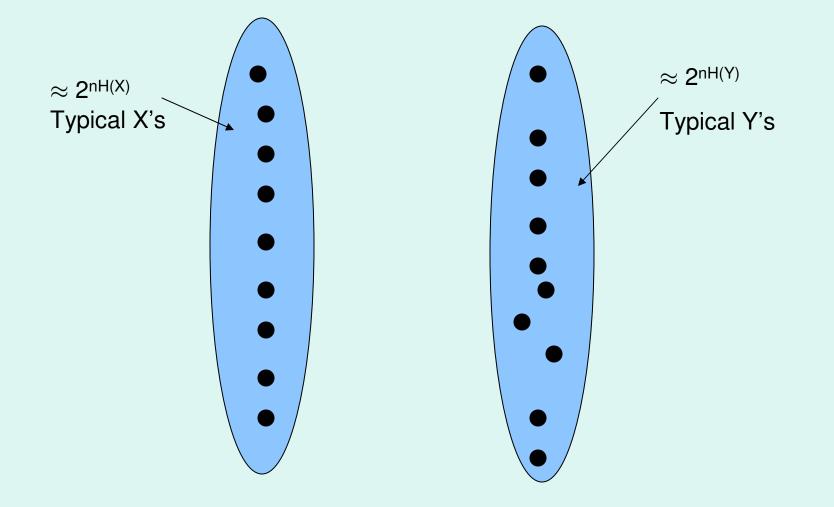
Classical Coding Theorem

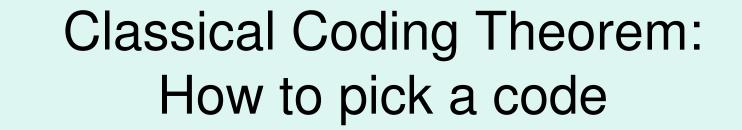
- We have a channel \mathcal{N} with probs p(y|x)
- The capacity of \mathcal{N} is the maximal number of bits per channel use we can send given a large number of uses.
- Shannon's Theorem:

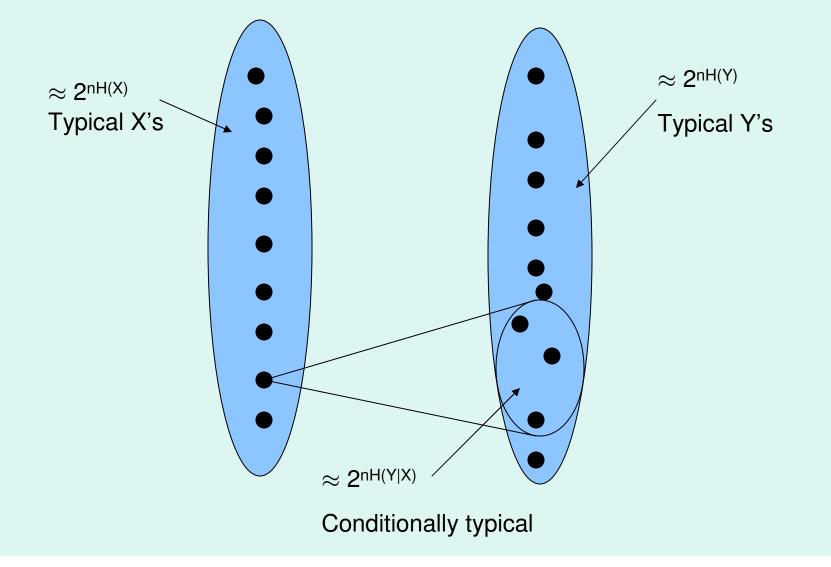
 $C(\mathcal{N}) = \max_{X} I(X;Y),$

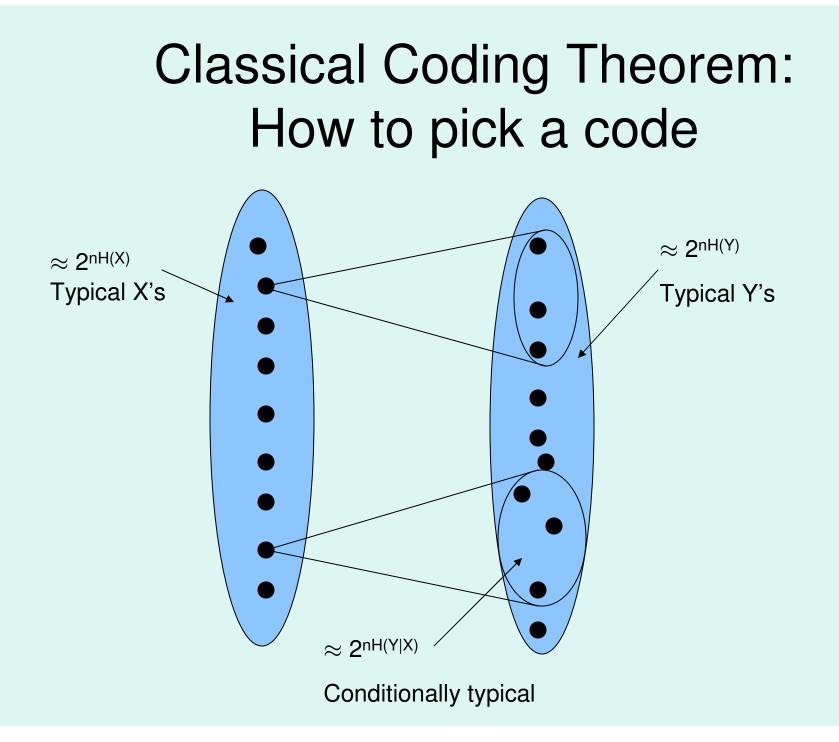
where I(X;Y) = H(Y) - H(Y|X)= H(Y) + H(X) - H(XY)

Classical Coding Theorem: How to pick a code

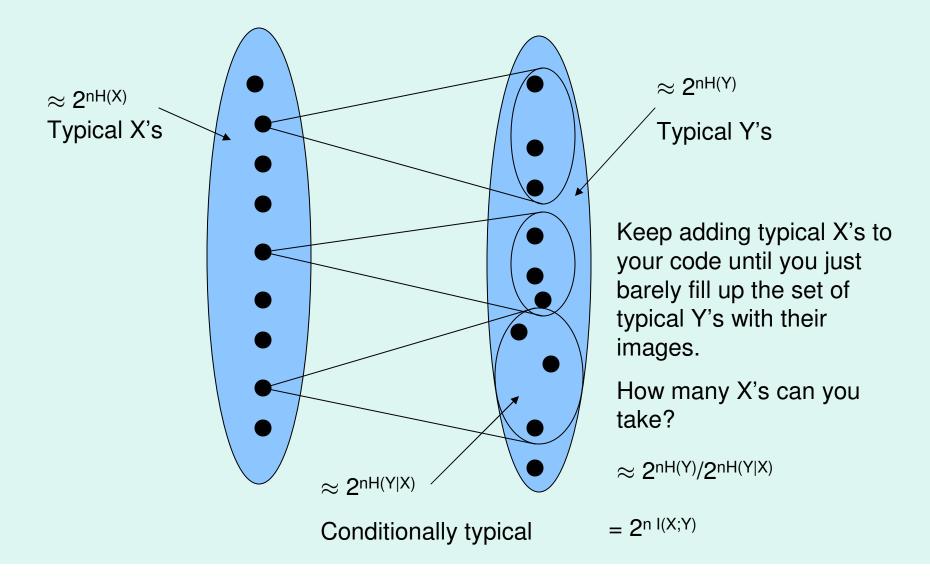








Classical Coding Theorem: How to pick a code



Classical Converse

- We showed that any $R \le \max_X I(X;Y)$ is achievable.
- Now we want that any $R > max_X I(X;Y)$ is not.

Classical Converse

- Step one: show $C(\mathcal{N}) \leq \lim_{n \to \infty} (1/n) \max I(X^{(n)}; Y^{(n)}) X^{(n)}$ is a r.v. on n inputs to the channel
- Step two: show max I(X⁽ⁿ⁾,Y⁽ⁿ⁾)≤ n max I(X;Y)
- Step one involves continuity of entropy (see, e.g., Debbie Leung's talk)
- Step two is about additivity. It fails in most quantum cases (see Chris King's & B. Collins' talks, also Toby Cubitt's).

Quantum States and Channels

- Pure state: $|\psi
 angle\in\mathsf{C}^{\mathsf{d}}$
- Mixed state: $\rho \in B(C^d) \ \rho \ge 0$, Tr $\rho = 1$
- In General: $\rho = \sum_{i} \lambda_{i} |\psi_{i}\rangle \langle \psi_{i}|$
- $\mathcal{N} \colon B(C^d) \to B(C^d),$ completely positive trace preserving.
- $\mathcal{N}(\rho) = \sum_{\kappa} A_{k} \rho A_{k}^{\dagger}$ with $\sum A_{k}^{\dagger} A_{k} = I$
- $\mathcal{N}(\rho) = \mathrm{Tr}_{\mathrm{E}} \, \mathrm{U}\rho \mathrm{U}^{\dagger}$ with $\mathrm{U} : \mathrm{A} \rightarrow \mathrm{BE}$ isometry.

Entropy and Typical Spaces

- Any $\rho_B = \text{Tr}_A |\psi\rangle\langle\psi|_{AB}$
- $H(\rho_B) = -Tr \rho \log \rho$ is the entropy
- It measures the uncertainty in B
- Given n copies of |ψ⟩, can reversibly map B to a space of dimension 2^{n H(ρB)}. This is the "typical space".

Quantum Coding Theorems

There are several kinds of information you can try to send with a quantum channel:

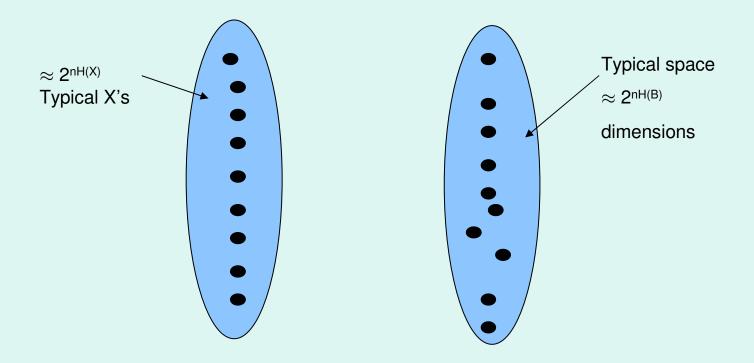
- Classical Information
- Private Classical Information
- Quantum Information

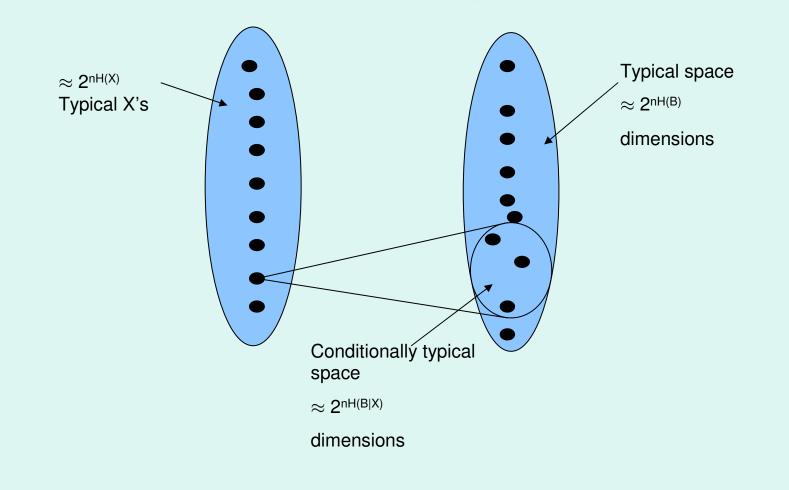
There are different capacities for each of these. Actually, there are even more: I might give you free entanglement or free two-way classical communication to help.

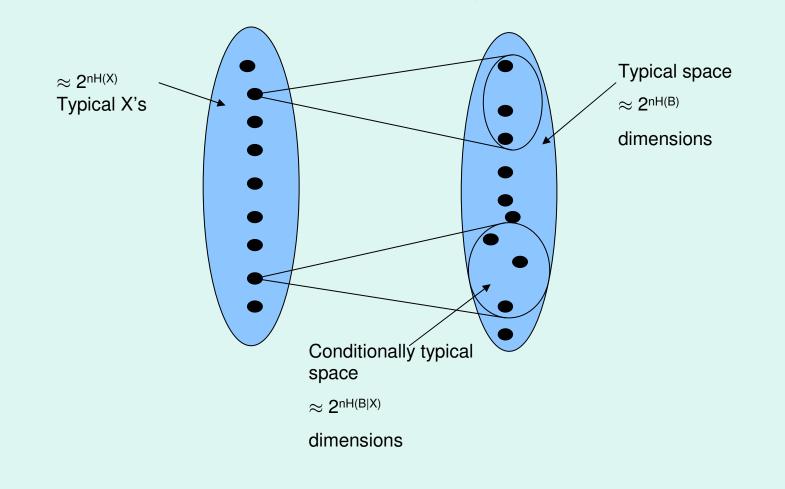
Quantum Coding Theorems: Classical Information

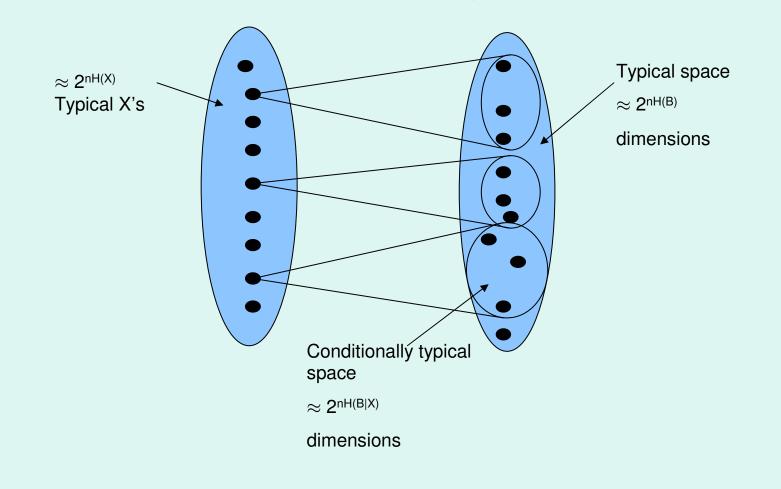
- Our channel maps $\mathcal{N} : A' \to B$
- We want a code {1,...,M} $\rightarrow \rho_m \in B((A')^n)$
- Want large log M and $\mathcal{N}^{\otimes n}(\rho_m)$ distinguishable (\approx orthogonal)

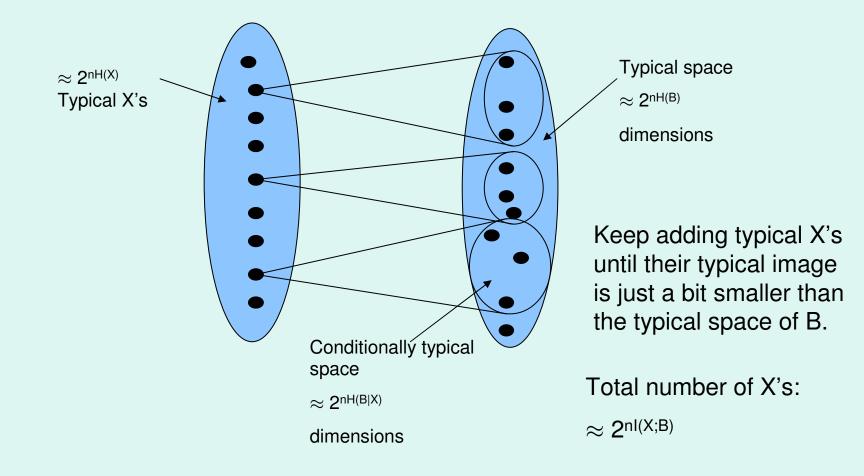
- Our channel maps $\ {\cal N}\colon A'\to B$
- Let $X \leftrightarrow p_x$, and $\phi_x \in B(A')$. We call $\mathcal{E} = \{p_x, \phi_x\}$ an ensemble.
- $\chi(\mathcal{N}, \mathcal{E}) = I(X;B)$, eval. on $\sum p_x |x\rangle \langle x| \otimes \mathcal{N}(\phi_x)$
- χ(𝔍 𝔅) is achievable by random coding and "square-root measurement" (HSW 98)











Quantum Coding Theorems: Partial Converse

- We saw that $\chi(\mathcal{N} \mathcal{E})$ is achievable.
- Let $\chi(\mathcal{N}) = \max_{\mathcal{E}} \chi(\mathcal{N}, \mathcal{E})$. Then (1/n) $\chi(\mathcal{N}^{\otimes n})$ is achievable too.
- In fact, $C(\mathcal{N}) = \lim_{n \to \infty} (1/n) \chi(\mathcal{N}^{\otimes n})$
- For some channels $C(\mathcal{N}) = \chi(\mathcal{N})$, but not for others.
- Even better: for some *x* any code with rate R > χ(*x*) has exponentially bad fidelity ("Strong Converse" cf Stephanie Wehner's talk).

Quantum Coding Theorems: Private Classical Information

- Recall $\mathcal{N}(\rho) = \text{Tr}_{\text{E}} U \rho U^{\dagger}$ and let $\mathcal{N}'(\rho) = \text{Tr}_{\text{B}} U \rho U^{\dagger}$
- Want to send classical information to B but ensure E learns nothing of the message.
- Let $P^1(\mathcal{N}) = \max_{\mathcal{E}} \chi(\mathcal{N}, \mathcal{E}) \chi(\mathcal{N}', \mathcal{E})$. Then $P^1(\mathcal{N})$ is acheivable.
- This is proved in two steps. 1) you can communicate to B at rate χ(𝔍, 𝔼). By averaging over these messages at a rate of χ(𝔍',𝔅) we can smear out any information E gets.

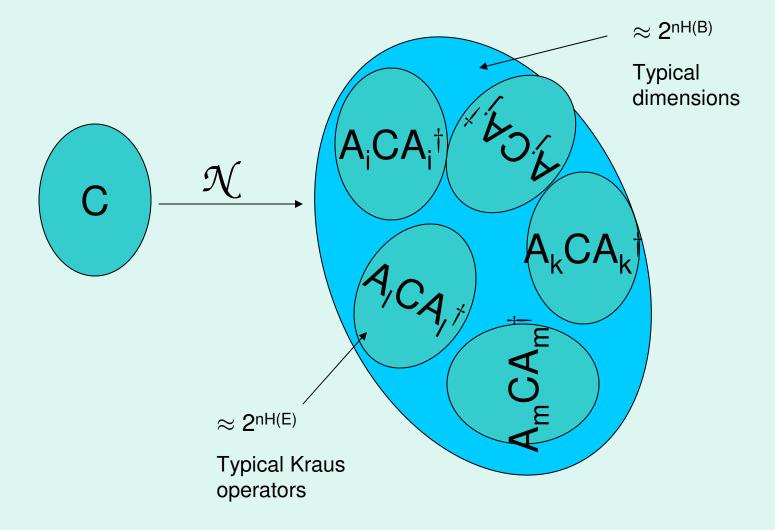
Quantum Coding Theorems: Private Classical Information

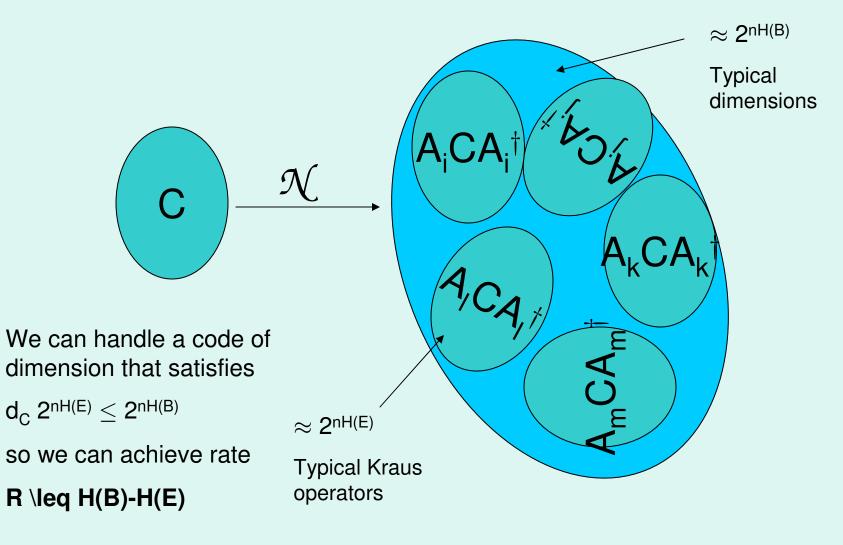
- Like the classical capacity, we have $P(\mathcal{N}) = \lim_{n \to \infty} (1/n) P^1(\mathcal{N}^{\otimes n})$
- $P(\mathcal{N}) = P^1(\mathcal{N})$ for degradable channels. That means B can simulate E.
- However, even for qubit channels we can find instances of P(𝒜) ≠ P¹(𝒜). The difference can be large.

- Our channel maps $\ {\cal N} \colon A' \to B$
- We want to find a subspace $C \subset (A')^{\otimes n}$ and a decoding operation ${\mathcal D}$ such that

 $\mathcal{D} \circ \mathcal{N}^{\otimes n}|_{C} \approx id_{C}$

log dim C will be the number of qubits we can send.





- Recall $\mathcal{N}(\rho) = \text{Tr}_{\text{E}} U \rho U^{\dagger}$ and let $\mathcal{N}'(\rho) = \text{Tr}_{\text{B}} U \rho U^{\dagger}$
- Let $Q^1(\mathcal{N}) = \max_{\rho} H(B)-H(E)$, where the entropies are on $\mathcal{N}(\rho)$ and $\mathcal{N}'(\rho)$, respectively.
- $Q(\mathcal{N}) = \lim_{n \to \infty} (1/n)Q^1(\mathcal{N}^{\otimes n})$
- Q(N) = Q¹(N) for some channels but not for others. They can be very different.
- Get similar answer even if you're uncertain of the channel (see Igor Bjelakovic's talk)

Entanglement assisted capacity: The only one that's totally solved

- Lets say in addition to \mathcal{N} I give Alice and Bob an arbitrary $|\psi\rangle_{\mathcal{AB}}$ to use. Note: $|\psi\rangle_{\mathcal{AB}}$ is no good for communication alone.
- In this setting the classical capacity of $\ensuremath{\mathcal{N}}$ is

$$C_{E}(\mathcal{N}) = \max I(A;B)$$

• No regularization needed!

Additivity Primer

A function on channels is additive if $f(\mathcal{N} \otimes \mathcal{M}) = f(\mathcal{N}) + f(\mathcal{M})$.

An additive information measure may give simple capacity formulas. An additive capacity uniquely quantifies communication capability.

Information \ Quantity	Capacity	Information
Classical	Classical Capacity	Holevo Information: $\chi = \max I(X;B)$
	?	No (Hastings '09)
Private	Private Capacity	Private Information: max I(X;B)-I(X;E)
	No (Li-Winter-Zou-Guo '09)	No (S-Renes-Smolin '08)
Quantum	Quantum Capacity	Coherent Information: max S(B)-S(E)
	No (S-Yard '08)	No (Div-Shor-Smolin '98)
Entanglement	E.A. Capacity	Mutual Information: max I(A;B)
Assisted	Yes (Bennett-Shor-Smolin-	Yes
Classical	Thaplyial '01)	(Bennett-Shor-Smolin-Thaplyial '01)

Additivity Primer

Even though most natural information measures and capacities are nonadditive in general, there are nontrivial examples where additivity holds. We want more!

- Entanglement Breaking Channels: If \mathcal{N} is EB and \mathcal{M} is arbitrary, $\chi(\mathcal{N} \otimes \mathcal{M}) = \chi(\mathcal{N}) + \chi(\mathcal{M})$. Even better, $C(\mathcal{N} \otimes \mathcal{M}) = C(\mathcal{N}) + C(\mathcal{M})$.
- Degradable Channels: B can simulate E. Coherent information is additive. Any two such channels have additive capacity. The private capacity equals the quantum, so this behaves too.
- Unital qubit channels, depolarizing channels, bosonic gaussian channels and others have additive χ .

Known unknowns: Some things I haven't mentioned

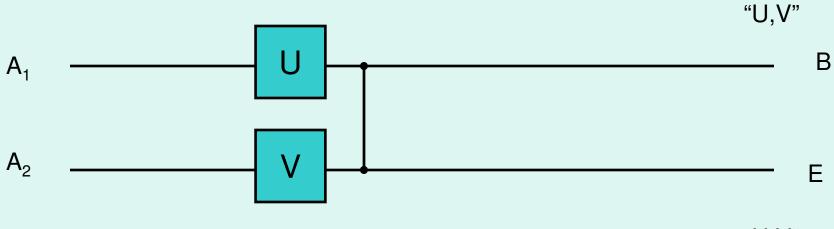
- Multiple access channels, broadcast channels, and multi-user information theory (Careful, though: some of these are hard classically).
- How do we actually achieve these rates? (slightly unsatisfying answer: Forney construction.)
- Coding theory, fault-tolerance, etc.
- Pure-state source coding (aka "data compression") is actually solvable.
- Two-way capacities and relationship to entanglement and LOCC.
- PPT criterion and NPT bound entanglement?
- $P \neq Q$
- Connections between Quantum Key Distribution and private capacities (tomography, non-iid, etc.).
- Beyond i.i.d. (symmetrization and de Finetti arguments)
- Identification capacity, environment assisted capacity, capacity of unitary interactions, symmetric side channels, commitment capacity, reverse Shannon theorem, embezzling states, entanglement measures, zero-error...

Rocket Channels

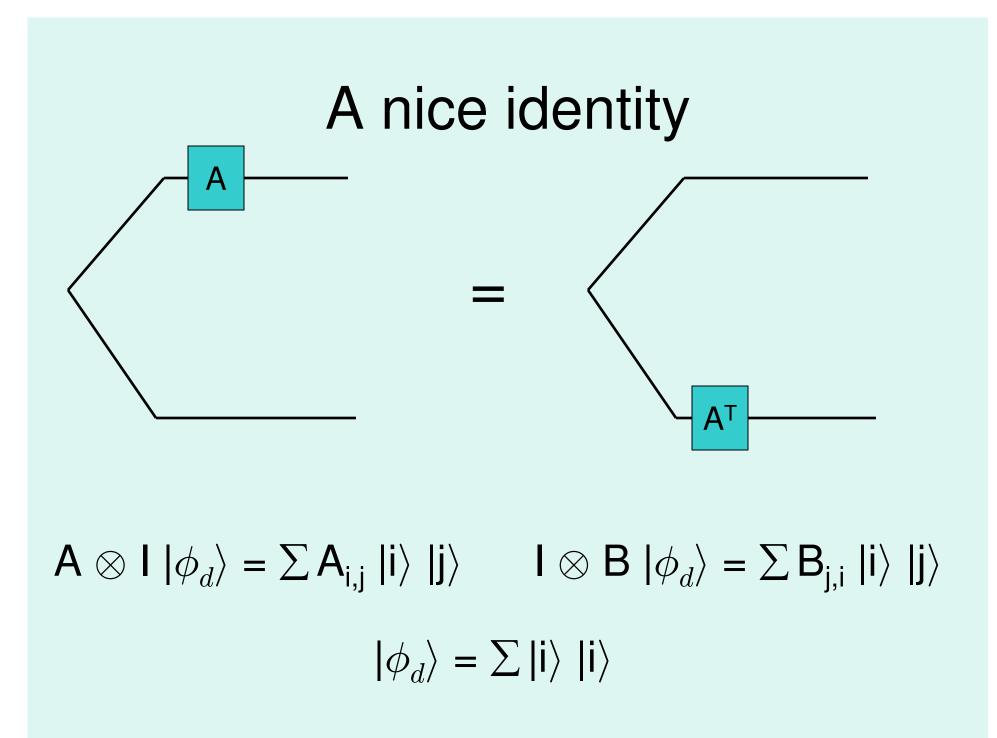
- Simple channel displaying extensive nonadditivity of private capacity when used with a 50% erasure.
- Actually, even small *classical* capacity and they have large joint *quantum* capacity.
- Circuit diagram looks like a rocket!

Rocket Channels

 $\mathcal{R}_{d} = \mathsf{E}(\ \mathcal{R}^{\mathsf{U},\mathsf{V}_{d}} \otimes |\mathsf{U}\mathsf{V}\rangle\langle\ \mathsf{U}\mathsf{V}|)$



"U,V"



Bob can undo interaction

