Random quantum channels
 - graphical calculus -

Ion Nechita
University of Ottawa and Université Lyon 1
joint work with Benoît Collins

Fields Workshop on Operator Structures in Quantum Information Toronto, July 9, 2009

Random quantum channels

$\stackrel{\text { additivity }}{\&}$ problems

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$.

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$.
- Rényi entropies

$$
\begin{aligned}
& H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad p>0 \\
& H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
\end{aligned}
$$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$.
- Rényi entropies

$$
\begin{aligned}
& H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad p>0 \\
& H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
\end{aligned}
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{p}\left(\Phi\left(P_{x}\right)\right) .
\end{aligned}
$$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$.
- Rényi entropies

$$
\begin{aligned}
& H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad p>0 \\
& H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
\end{aligned}
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{\rho}\left(\Phi\left(P_{x}\right)\right) .
\end{aligned}
$$

- Is the p-MOE additive ?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi
$$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$.
- Rényi entropies

$$
\begin{aligned}
& H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad p>0 \\
& H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
\end{aligned}
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{\rho}\left(\Phi\left(P_{x}\right)\right) .
\end{aligned}
$$

- Is the p-MOE additive ?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi
$$

- NO !!!
- $p>1$: Hayden '07, Hayden + Winter '08
- $p=1$: Hastings '09

Random quantum channels

- Counterexamples to additivity conjectures are random.

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random partial isometries (Hayden, Hastings + King)

$$
\Phi(\rho)=\operatorname{Tr}_{\text {aux }}\left(V \rho V^{*}\right),
$$

where V is a Haar partial isometry

$$
V: \mathbb{C}^{\text {in }} \rightarrow \mathbb{C}^{\text {out }} \otimes \mathbb{C}^{\text {aux }}
$$

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random partial isometries (Hayden, Hastings + King)

$$
\Phi(\rho)=\operatorname{Tr}_{\text {aux }}\left(V \rho V^{*}\right),
$$

where V is a Haar partial isometry

$$
V: \mathbb{C}^{\text {in }} \rightarrow \mathbb{C}^{\text {out }} \otimes \mathbb{C}^{\text {aux }}
$$

- Equivalently, via the Stinespring dilation theorem

$$
\Phi(\rho)=\operatorname{Tr}_{\text {aux }}\left(U\left(\rho \otimes P_{y}\right) U^{*}\right),
$$

where $y \in \mathbb{C}^{\frac{\text { out } \times \text { aux }}{\text { in }}}$ and $U \in \mathcal{M}_{\text {out } \times \text { aux }}(\mathbb{C})$ is a Haar unitary matrix.

Our model

Choice of parameters

- in = tnk,
- out $=k$,
- $\mathrm{aux}=n$, where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$;
- k is fixed, but "large";
- t is fixed, and may depend on k.

Our model

Choice of parameters

- in = tnk,
- out $=k$,
- $\mathrm{aux}=n$,
where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$;
- k is fixed, but "large";
- t is fixed, and may depend on k.

We are thus considering random channels

$$
\begin{aligned}
\Phi: \mathcal{M}_{\text {tnk }}(\mathbb{C}) & \rightarrow \mathcal{M}_{k}(\mathbb{C}) \\
\rho & \mapsto \operatorname{Tr}_{n}\left[U\left(\rho \otimes P_{y}\right) U^{*}\right],
\end{aligned}
$$

where $y \in \mathbb{C}^{t^{-1}}$ is fixed (and irrelevant) and $U \in \mathcal{U}(n k)$ is a Haar random unitary matrix.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi}) \leadsto$ next talk.

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi}) \leadsto$ next talk.
- Find upper bounds for $H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi})$.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi}) \leadsto$ next talk.
- Find upper bounds for $H_{\min }^{p}(\Phi \otimes \bar{\Phi})$.

Strategy

- Use trivial bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leqslant H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right),
$$

for a particular choice of $X_{12} \in \mathcal{M}_{\text {tnk }}(\mathbb{C}) \otimes \mathcal{M}_{t n k}(\mathbb{C})$.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi}) \leadsto$ next talk.
- Find upper bounds for $H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi})$.

Strategy

- Use trivial bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leqslant H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right),
$$

for a particular choice of $X_{12} \in \mathcal{M}_{\text {tnk }}(\mathbb{C}) \otimes \mathcal{M}_{\text {tnk }}(\mathbb{C})$.

- $X_{12}=X_{1} \otimes X_{2}$ do not yield counterexamples \Rightarrow choose a maximally entangled state $X_{12}=E_{\text {tnk }}$.

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi}) \leadsto$ next talk.
- Find upper bounds for $H_{\min }^{p}(\Phi \otimes \bar{\Phi})$.

Strategy

- Use trivial bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leqslant H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right),
$$

for a particular choice of $X_{12} \in \mathcal{M}_{t n k}(\mathbb{C}) \otimes \mathcal{M}_{t n k}(\mathbb{C})$.

- $X_{12}=X_{1} \otimes X_{2}$ do not yield counterexamples \Rightarrow choose a maximally entangled state $X_{12}=E_{t n k}$.
- Bound entropies of the (random) density matrix

$$
Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right) \in \mathcal{M}_{k^{2}}(\mathbb{C}) .
$$

Main result for product channel

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

Main result for product channel

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound: for all t, n, k, the largest eigenvalue of Z is at least t.

Main result for product channel

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound: for all t, n, k, the largest eigenvalue of Z is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.

Main result for product channel

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound: for all t, n, k, the largest eigenvalue of Z is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.
- However, smaller eigenvalues are the "worst possible".

Main result for product channel

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound: for all t, n, k, the largest eigenvalue of Z is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.
- However, smaller eigenvalues are the "worst possible".
- Precise knowledge of eigenvalue \leadsto optimal estimates for entropies.

Graphical calculus for random quantum channels

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \leadsto decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*} \quad x \in V_{1} \quad \varphi \in V_{1}^{*}
$$

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \leadsto decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*}
$$

$$
x \in V_{1}
$$

$$
\varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \leadsto$ wires.

$$
\operatorname{Tr}(\mathrm{C})
$$

$\operatorname{Tr}_{V_{1}}$ (D)

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \leadsto decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*}
$$

$$
x \in V_{1}
$$

$$
\varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \leadsto$ wires.

$$
\operatorname{Tr}(\mathrm{C})
$$

- Bell state $\Phi^{+}=\sum_{i=1}^{\operatorname{dim} V_{1}} e_{i} \otimes e_{i} \in V_{1} \otimes V_{1}$

Graphical representation of quantum channels

- Single channel

- Product of conjugate channels

- Decorations/labels

$$
\stackrel{\bullet}{\circ}=\mathbf{C}^{n} \quad \stackrel{\quad}{\square}=\mathbf{C}^{k} \quad \stackrel{\diamond}{ }=\mathbf{C}^{t n k} \quad \stackrel{\Delta}{\Delta}=\mathbf{C}^{t^{-1}}
$$

Proof strategy for a.s. spectrum of random channels

- Use the method of moments

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments:

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments:

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z^{p}\right)\right)^{2}\right]<\infty
$$

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments:

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z^{p}\right)\right)^{2}\right]<\infty
$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}\left(Z^{p_{1}}\right)^{q_{1}} \ldots \operatorname{Tr}\left(Z^{p_{s}}\right)^{q_{s}}\right]$.

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments:

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z^{p}\right)\right)^{2}\right]<\infty
$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}\left(Z^{p_{1}}\right)^{q_{1}} \ldots \operatorname{Tr}\left(Z^{p_{s}}\right)^{q_{s}}\right]$.
- Example

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right), \mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{p}^{\prime}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{p}\right)$, $\mathbf{j}^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{p}^{\prime}\right)$ be p-tuples of positive integers from $\{1,2, \ldots, d\}$. Then

$$
\begin{aligned}
& \int_{\mathcal{U}(d)} U_{i_{1} j_{1}} \cdots U_{i_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \ldots \overline{U_{i_{p}^{\prime} j_{p}^{\prime}}} d U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p} i_{\alpha(p)}^{\prime}} \delta_{j_{1} j_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
\end{aligned}
$$

If $p \neq p^{\prime}$ then

$$
\int_{\mathcal{U}(d)} U_{i, j j_{1}} \cdots U_{i j_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \cdots \overline{U_{i_{p^{\prime}, j_{p}^{\prime}}^{\prime}}} d U=0
$$

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right), \mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{p}^{\prime}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{p}\right)$, $\mathbf{j}^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{p}^{\prime}\right)$ be p-tuples of positive integers from $\{1,2, \ldots, d\}$. Then

$$
\begin{aligned}
& \int_{\mathcal{U}(d)} U_{i_{1} j_{1}} \cdots U_{i_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \ldots \overline{U_{i_{p}^{\prime} j_{p}^{\prime}}} d U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p} i_{\alpha(p)}^{\prime}} \delta_{j_{1} j_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
\end{aligned}
$$

If $p \neq p^{\prime}$ then

$$
\int_{\mathcal{U}(d)} U_{i, j} \cdots U_{i j_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \cdots \overline{U_{i_{p^{\prime}}^{\prime} j_{p^{\prime}}^{\prime}}} d U=0
$$

- There is a graphical way of reading this formula on the diagrams !

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.
(3) Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.
(3) Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
(4) For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.
(3) Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
(4) For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.
(5) Erase all U and \bar{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha, \beta)}$.

Theorem

$$
\mathbb{E D}=\sum_{\alpha, \beta} \mathcal{D}_{(\alpha, \beta)} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
$$

Application: product conjugate channel

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.

Application: product conjugate channel

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.

Application: product conjugate channel

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.

Application: product conjugate channel

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- After doing the loop combinatorics, one is left with maximizing over $S_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

Application: product conjugate channel

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- After doing the loop combinatorics, one is left with maximizing over $S_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.

Application: product conjugate channel

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- After doing the loop combinatorics, one is left with maximizing over $S_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.
- Asymptotic for Weingarten weights:

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

Concluding remarks

- Graphical calculus for random matrices

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels
- Other applications to QIT (work in progress with B. Collins and K. Życzkowski)

Thank you!

Next talk \sim bounds for 1 channel
http://arxiv.org/abs/0905.2313
http://arxiv.org/abs/0906.1877

