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e NO !l
e p > 1: Hayden '07, Hayden 4+ Winter '08
e p = 1: Hastings '09



Random quantum channels

o Counterexamples to additivity conjectures are random.



Random quantum channels

o Counterexamples to additivity conjectures are random.
e Random quantum channels from random partial isometries (Hayden, Hastings
+ King)

®(p) = Trax(VpV7),
where V is a Haar partial isometry

V- (Cin N (Cout ® Caux.



Random quantum channels

o Counterexamples to additivity conjectures are random.

e Random quantum channels from random partial isometries (Hayden, Hastings
+ King)
®(p) = Trax(VpV7),

where V is a Haar partial isometry

V- (Cin N (Cout ® Caux.

e Equivalently, via the Stinespring dilation theorem

®(p) = Trax(U(p @ P,)U*),

out X aux

where y € CTn and U € Moutxaux(C) is a Haar unitary matrix.
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Our model

Choice of parameters

e in = tnk,
e out = k,
e aux = n,

where n, k € N and t € (0,1). In general, we shall assume that
°® n— oo
o k is fixed, but “large”;

e t is fixed, and may depend on k.

We are thus considering random channels

(O Mtnk((C) — Mk(C)
p Tra[U(p ® P,)UY,

where y € Ct " is fixed (and irrelevant) and U € U(nk) is a Haar random unitary
matrix.
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How to get counterexamples 7

e Choose ® to be random and ¥ = ®.
e Find lower bounds for H?. (®) = HP

min

e Find upper bounds for H?. (¢ ® ®).

(®) ~ next talk.

e Use trivial bound

HE:(® ® @) < HP ([0 © ](X12)),

for a particular choice of X132 € Mk (C) @ Mk (C).

e X1p = X; ® X5 do not yield counterexamples = choose a maximally
entangled state Xio = Egk.

e Bound entropies of the (random) density matrix

Z = [® ® O(Eink) € My2(C).
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Main result for product channel

Theorem (Collins + N. '09)

For all k,t, almost surely as n — oo, the eigenvalues of Z = [® ® ®](Esnk)
converge to

1—t 1—t 1—t
b+ =
~—_——

k2—1 times

e Previously known bound: for all t, n, k, the largest eigenvalue of Z is at least
t.

e Two improvements:

@ “better” largest eigenvalue,
® knowledge of the whole spectrum.

e However, smaller eigenvalues are the “worst possible”.

e Precise knowledge of eigenvalue ~» optimal estimates for entropies.
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e Tensor contractions (or traces) V @ V* — C ~» wires.
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o Bell state o7 ="V 0 g€ Vi @ Uy

wl-




Graphical representation of quantum channels

e Single channel

o Decorations/labels

® __n B~k ® _ (ink A _ 1
O_C D_C O—C A_C
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Proof strategy for a.s. spectrum of random channels

e Use the method of moments
@ Convergence in moments:

ETr(2%) — (t+ 1,:2t)p+(k2—1)(1,:2t>p;

@ Borel-Cantelli for a.s. convergence:

i E [(Tr(zp) - ETr(z")f] < .

n=1

e We need to compute moments E [Tr(ZP1)% ... Tr(ZP)%].
e Example

A

A

U*
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e There is a graphical way of reading this formula on the diagrams !
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“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U*.
Apply the following removal procedure:

© Start by replacing U* boxed by U boxes (by reversing decoration shading).

@ By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of U boxes, then ED = 0.

©® Otherwise, choose a pair of permutations (a, 3) € Sﬁ. These permutations
will be used to pair decorations of U/U boxes.

O Foralli=1,...,p, add a wire between each white decoration of the i-th U
box and the corresponding white decoration of the a(i)-th U box. In a similar
manner, use (3 to pair black decorations.

O Erase all U and U boxes. The resulting diagram is denoted by D(a,p)-

ED = Do, We(d,ap™?).
o,

13 /16
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Application: product conjugate channel

e We want to compute, for all p > 1, ETr(ZP).

 One needs to compute the contribution of each diagram D(, 3), where
a,f e Sgp.

® D(q,p) is a collection of loops associated to vector spaces of dimensions n, k
and tnk.

o After doing the loop combinatorics, one is left with maximizing over 522p
quantities such as

#(77la) + (a7 B) + #(6710),

where v and § are permutations coding the initial wiring of U/U boxes and
#(-) is the number of cycles function.

e Geodesic problems in symmetric groups = non-crossing partitions = free
probability.
e Asymptotic for Weingarten weights:

Wg(d, o) = d~PHl7D(Mob(c) + O(d~2)).
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Concluding remarks

e Graphical calculus for random matrices

e Powerful and intuitive reinterpretation of the Weingarten formula

e Adapted to tensor products and partial traces

e Almost sure asymptotic eigenvalues for product conjugate channels

e Almost sure asymptotic eigenvalues for product of independent channels
e Improved bounds for MOE of product channels

e Other applications to QIT (work in progress with B. Collins and K.
Zyczkowski)



Thank you !

Next talk ~» bounds for 1 channel

http://arxiv.org/abs/0905.2313
http://arxiv.org/abs/0906.1877
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