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• Alice and Bob share a pure bipartite state ϕAB ∈ HA ⊗HB .

• They want to transform ϕAB into another state ψAB using only local
operations and classical communication ; LOCC.

• Local operations:

1 local unitaries (UA ⊗ IB , IA ⊗ UB or UA ⊗ UB);
2 local measurements (observables XA ⊗ IB , IA ⊗ XB or XA ⊗ XB).

Question
Under what conditions can Alice and Bob realize the LOCC transformation

ϕAB → ψAB ?
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Nielsen’s result

• Consider Schmidt decompositions for ϕ (the input state) and ψ (the target
state):

ϕ =

d
∑

i=1

√
xi ai ⊗ bi ,

ψ =

d
∑

i=1

√
yi ci ⊗ di .
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√
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ψ =

d
∑

i=1

√
yi ci ⊗ di .

Theorem (Nielsen ’98)

Alice and Bob can LOCC-transform ϕ into ψ if and only if

x ≺ y .

• Only Schmidt vectors x and y appear in the condition; Alice and Bob can
change basis locally.
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• Consider Pd = {x ∈ R
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maximal elements (1, 0, . . . , 0) and its permutations.

• (1/d , 1/d , . . . , 1/d) ; maximal entangled state: anything can be obtained
from a maximally entangled input.

• (1, 0, . . . , 0) ; separable state: only separable states can be obtained starting
with a separable state.
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The majorization relation ≺

Proposition

For two probability vectors x , y ∈ Pd , the following assertions are equivalent:

1 x ≺ y,

2 ∀t ∈ R,
∑d

i=1 |xi − t| 6
∑d

i=1 |yi − t|,
3 There exists a bistochastic matrix B such that x = By,

4 x ∈ Sd(y) = {(yσ(1), yσ(2), . . . , yσ(d)) | σ ∈ Sd}.
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∑d

i=1 |yi − t|,
3 There exists a bistochastic matrix B such that x = By,

4 x ∈ Sd(y) = {(yσ(1), yσ(2), . . . , yσ(d)) | σ ∈ Sd}.

• Moreover, the relation ≺ behaves well with respect to tensor products:
x1 ≺ y1 and x2 ≺ y2 imply x1 ⊗ x2 ≺ y1 ⊗ y2.

• Converse is false !!! Two manifestations:

1 Entanglement catalysis
2 Multiple-copy transformations.
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• Jonathan and Plenio [’98]: entanglement can help LOCC transformations,
without being consumed.

• There are states ϕ, ψ such that ϕ can not be LOCC-transformed into ψ but,
with the help of a catalyst state χ, the transformation ϕ⊗ χ→ ψ ⊗ χ
becomes possible.

• Mathematically: there exist vectors x , y ∈ Pd and z ∈ Pk such that x ≺ y
does not hold, but x ⊗ z ≺ y ⊗ z holds.

• Example: x = (0.4, 0.4, 0.1, 0.1), y = (0.5, 0.25, 0.25, 0) and z = (0.6, 0.4).

Definition

Let x , y ∈ Pd . We say that x is ELOCC -majorized (or trumped) by y (x ≺T y) if
there exists a probability vector z ∈ Pk such that

x ⊗ z ≺ y ⊗ z .
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MLOCC transformations

• Bandyopadhyay, Roychowdhury and Sen [’02]: transforming multiple copies
at the same time can benefit LOCC transformations.
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• There are states ϕ, ψ such that ϕ can not be LOCC-transformed into |ψ〉
but, n copies of ϕ can be transformed into n copies of ψ: ϕ⊗n → ψ⊗n.

• Mathematically: there exist vectors x , y ∈ Pd such that x ≺ y does not hold,
but x⊗n ≺ y⊗n holds for an integer n > 2.

• Example: x = (0.4, 0.4, 0.1, 0.1), y = (0.5, 0.25, 0.25, 0) et n = 3.

Definition

Let x , y ∈ Pd . We say that x is MLOCC -majorized by y (x ≺M y) if there exists
an integer n > 1 such that

x⊗n ≺ y⊗n.
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More complicated relations
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• For all y , Sd(y) ⊆ Md(y) ⊆ Td(y). For the last inclusion, use catalyst

z =
1

n
(x⊗n ⊕ x⊗(n−1) ⊗ y ⊕ · · · ⊕ y⊗n).

• Td(y) is convex.

• One may need arbitrarily large z and n.

• Md(y) and Td(y) are typically not closed.

Question

Provide“nice”descriptions of Md(y) and Td(y). Does Md(y) = Td(y) ?
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• f : R
d → R is sad to be Schur convex if x ≺ y ⇒ f (x) 6 f (y).

• For a probability vector x ∈ Pd and a real parameter p ∈ R, define the ℓp
“norm”of x by

Np(x) =

d
∑

i=1

xp
i .
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• Hence, x ∈ Md(y) ⊆ Td(y) implies Np(x) 6 Np(y) or Np(x) > Np(y)
(depending on the value of p).

• Are those conditions sufficient ?
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= ∪n>dTn(y)
ℓ1

.

Theorem (Aubrun + N. ’08)

(A)+(B) ⇔ x ∈ Md+1(y) = Td+1(y).

Theorem (Turgut ’08)

(A)+(B)+(C) ⇔ x ∈ Td(y).
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The proof



From vectors to atomic measures

• The main idea of the proof (cf. G. Kuperberg): to a probability vector
x ∈ Pd , associate a probability measure

µx =

d
∑

i=1

xiδlog xi
.
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x ∈ Pd , associate a probability measure

µx =

d
∑

i=1

xiδlog xi
.

• Examples: µ(1,0,...,0) = δ0, µ(1/d,...,1/d) = δ− log d .

• For x ∈ Pd , consider a random variable Vx ∼ µx .

Definition (Stochastic domination)

Let µ and ν be probability measures.

µ 6st ν ⇔ µ[t,∞) 6 ν[t,∞) ∀t ∈ R.

Equivalently, µ 6st ν iff. there exist some realizations X ∼ µ, Y ∼ ν such that
X 6 Y almost surely.
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Pros & Cons

• Idea: replace vectors with probability measures and majorization with
stochastic domination.
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where“∗” is the convolution of probability measures.
2 Stochastic domination implies majorization:

µx 6st µy ⇒ x ≺ y .

• Cons:

1 The converse of the previous implication does not hold: the two relations are
not equivalent.

2 In particular,
µx 6st µy ⇒ size(x) > size(y).
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ℓp norms, Laplace transform and large deviations

• By the definition of Vx ∼ µx , Np+1(x) = E exp(pVx).
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ℓp norms, Laplace transform and large deviations

• By the definition of Vx ∼ µx , Np+1(x) = E exp(pVx).

• Hence, ℓp inequalities for vectors translate to inequalities on Laplace
transforms Eeλ· of the associated measures.

Theorem (Cramér’s large deviations theorem)

Let X be a r.v. and assume Λ(λ) := log EeλX < +∞. Introduce Λ∗, the Legendre
transform of Λ:

Λ∗(t) = sup
λ∈R

λt − Λ(λ).

Then, for all t ∈ (minX ,maxX ), we have

lim
n→∞

1

n
log P(X1 + · · ·Xn > nt) =

{

0 if t 6 EX ,

−Λ∗(t) if t > EX ,

where X1,X2, . . . denote i.i.d. copies of X .
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Stochastic domination for sums of i.i.d. r.v.

Corollary

Consider two random variables X and Y such that

1 ∀λ > 0, EeλX < EeλY <∞;

2 ∀λ < 0, EeλY < EeλX <∞;

3 EX < EY ;

4 maxX < maxY ;

5 minX < minY .

Then, there exists an integer N such that for all n > N,

X1 + · · · + Xn 6st Y1 + · · · + Yn,

where X1,X2, . . . and resp. Y1,Y2, . . . are i.i.d. copies of X resp. Y .
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Then, there exists an integer N such that for all n > N,

X1 + · · · + Xn 6st Y1 + · · · + Yn,

where X1,X2, . . . and resp. Y1,Y2, . . . are i.i.d. copies of X resp. Y .

• Note that the result fails if we replace strict inequalities by large ones.
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Sketch of proof

• Define

fn(t) := P(X1 + · · · + Xn > nt),

gn(t) := P(Y1 + · · · + Yn > nt).
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fn(t) := P(X1 + · · · + Xn > nt),

gn(t) := P(Y1 + · · · + Yn > nt).

• Asymptotic stochastic domination: show that fn 6 gn for n large enough.

• Cramér’s theorem gives limits for 1
n

log fn on [EX ,maxX ] and for
1
n

log(1 − fn) on [minX ,EX ]. Idem for gn and Y .

• Strict Legendre transform inequalities ⇒ strict inequalities for the limit
functions.

• Since limits are continuous and monotone on a compact set, the inequality
fn 6 gn should hold uniformly for some finite n.
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In terms of majorization

Corollary

Consider two probability vectors x ∈ Pdx
and y ∈ Pdy

such that

1 ∀ 1 < p < +∞, Np(x) < Np(y);

2 ∀ −∞ < p < 1, Np(x) > Np(y);

3 H(x) > H(y); (note that EVx = −H(x))

4 xmax < ymax;

5 xmin < ymin.

Then, there exists an integer N such that for all n > N, x⊗n ≺ y⊗n. In other
words, x ∈ Mdx

(y).
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such that

1 ∀ 1 < p < +∞, Np(x) < Np(y);

2 ∀ −∞ < p < 1, Np(x) > Np(y);

3 H(x) > H(y); (note that EVx = −H(x))

4 xmax < ymax;

5 xmin < ymin.

Then, there exists an integer N such that for all n > N, x⊗n ≺ y⊗n. In other
words, x ∈ Mdx

(y).

• From this corollary, one can deduce our two theorems by replacing
approximating x by

(

x1 −
ε

d
, . . . , xd − ε

d
,
ε

k
, . . . ,

ε

k

)

or
(

x1 −
ε

d
, . . . , xd − ε

d
, ε

)

,

for small enough ε (and large enough k).
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Thank you !

http://arxiv.org/abs/quant-ph/0702153

Comm. Math. Phys. 278 (2008), no. 1, 133-144

and

http://arxiv.org/abs/0707.0211

to appear in Ann. Inst. H. Poincaré Probab. Statist.
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