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e Alice and Bob share a pure bipartite state pag € Ha ® Hp.

e They want to transform pap into another state ¥ap using only local
operations and classical communication ~» LOCC.
e Local operations:

@ local unitaries (Ua ® Ig, Ia ® Ug or Ua ® Ug);
@® local measurements (observables Xa ® Ig, Ia ® Xg or Xa ® Xg).

Under what conditions can Alice and Bob realize the LOCC transformation
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o Consider Schmidt decompositions for ¢ (the input state) and ¢ (the target
state):
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d
U= \Vyic®d

i=1

Theorem (Nielsen '98)

Alice and Bob can LOCC-transform  into 1 if and only if
X <y.

e Only Schmidt vectors x and y appear in the condition; Alice and Bob can
change basis locally.
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Let x,y € Py. We say that x is majorized by y (x < y) iff

Vk=1,2,....d > x} <)y

e < is a partial order on Py with minimal element (1/d,1/d,...,1/d) and
maximal elements (1,0, ...,0) and its permutations.

e (1/d,1/d,...,1/d) ~ maximal entangled state: anything can be obtained
from a maximally entangled input.

e (1,0,...,0) ~» separable state: only separable states can be obtained starting

with a separable state.
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The majorization relation <

For two probability vectors x,y € Py, the following assertions are equivalent:

O x<y,

d d
@VteR, Y |xi—t[<Xilyi—t
© There exists a bistochastic matrix B such that x = By,

O x¢ Sd(y) = {(yo(l)»y0(2)7' 00 7ya'(d)) | oS Sd}

’

e Moreover, the relation < behaves well with respect to tensor products:
x1 < y1and xo < yz imply x1 @ x2 < y1 ® ya.
e Converse is false !l Two manifestations:

@ Entanglement catalysis
@® Multiple-copy transformations.
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ELOCC transformations

e Jonathan and Plenio ['98]: entanglement can help LOCC transformations,
without being consumed.

e There are states ¢, 1 such that ¢ can not be LOCC-transformed into ¢ but,
with the help of a catalyst state Y, the transformation p ® x — ¥ ® x
becomes possible.

e Mathematically: there exist vectors x,y € Py and z € Py such that x < y
does not hold, but x ® z < y ® z holds.

e Example: x =(0.4,0.4,0.1,0.1), y = (0.5,0.25,0.25,0) and z = (0.6,0.4).

Let x,y € Py. We say that x is ELOCC-majorized (or trumped) by y (x <71 y) if
there exists a probability vector z € Py such that

XQ®Qz<y®z.
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o Bandyopadhyay, Roychowdhury and Sen ['02]: transforming multiple copies
at the same time can benefit LOCC transformations.

o There are states ¢, 1 such that ¢ can not be LOCC-transformed into |4)
but, n copies of ¢ can be transformed into n copies of 1: E®" — ®",

e Mathematically: there exist vectors x,y € P4 such that x < y does not hold,
but x®" < y®" holds for an integer n > 2.

e Example: x =(0.4,0.4,0.1,0.1), y = (0.5,0.25,0.25,0) et n = 3.

Definition

Let x,y € Py. We say that x is MLOCC-majorized by y (x <u y) if there exists
an integer n > 1 such that
x®n < y®n,
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More complicated relations

e For y € Py, we introduce the following sets:

Ta(y) ={x€ePy|x<ryeIzePrst. xz<yR®z},
My(y) ={x € Py | x <my & 3In>1st x®" < y®"}

For all y, Sq4(y) € Ma(y) C Tq4(y). For the last inclusion, use catalyst

1
z= ;(x®" ox®Dgya...¢y°o).

T4(y) is convex.
e One may need arbitrarily large z and n.

My(y) and T4(y) are typically not closed.

Provide “nice” descriptions of My(y) and T4(y). Does My(y) = Ta(y) ?

10 / 20
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These quantities are Rényi entropies in disguise:

NP(X)

Hy(x) = 522

The function N, is Schur convex for p >
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These quantities are Rényi entropies in disguise:

log Np(x) '

HP(X): 1—p

The function N, is Schur convex for p > 1 and p < 0, and Schur concave for

pe[0,1].

N, are multiplicative: Ny(x ® y) = Np(x)Np(y).

e Hence, x € My(y) C Ty(y) implies Ny(x) < Np(y) or Np(x) = Ny(y)
(depending on the value of p).

e Are those conditions sufficient ?
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Main results

o Let y € Py, Ymin > 0.
e Consider the following conditions:

(A) Np(x) < Np(y), for p>1;
(B) Np(x) = Np(y), for0< p<1;
(C) Np(x) < Np(y), for p < 0.

Theorem (Aubrun + N. '07)

L1

(A) & X € UpzdMa(y) ' = UnzaTaly) -

Theorem (Aubrun + N. '08)

(A)+(B) & x € Myt1(y) = Ta41(y)-

Theorem (Turgut '08)

(A)+(B)+(C) & x € T4(y).

12 /20
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From vectors to atomic measures

e The main idea of the proof (cf. G. Kuperberg): to a probability vector
x € Py, associate a probability measure

d
Hx = § Xi5logx;~
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From vectors to atomic measures

e The main idea of the proof (cf. G. Kuperberg): to a probability vector
x € Py, associate a probability measure

d
Hx = § Xi6logx;~
i=1

o Examples: ji(10,....0) = d0, H(1/d,....1/d) = O—logd-
e For x € Py, consider a random variable V, ~ py.

Definition (Stochastic domination)

Let u and v be probability measures.
u < V& pft,00) < v[t,00) VieR.

Equivalently, u <q v iff. there exist some realizations X ~ p, Y ~ v such that
X < Y almost surely.

14 / 20
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o |dea: replace vectors with probability measures and majorization with
stochastic domination.

e Pros:
@ The application x — puy behaves well with respect to tensor products:

Uxgy = Hx * [y,

w,n

where “x" is the convolution of probability measures.
@® Stochastic domination implies majorization:

Ux Sst by = X < Y.

e Cons:
@ The converse of the previous implication does not hold: the two relations are
not equivalent.
® In particular,
tx st pby = size(x) > size(y).
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¢, norms, Laplace transform and large deviations

o By the definition of V, ~ py, Ny11(x) = Eexp(pVs).

e Hence, ¢, inequalities for vectors translate to inequalities on Laplace
transforms Ee* of the associated measures.

Theorem (Cramér’s large deviations theorem)

Let X be a r.v. and assume N(\) := log Ee*X < +oco. Introduce \*, the Legendre
transform of A\:

A" (t) = ?\LEJ%M — A(N).

Then, for all t € (min X, max X), we have

0 if

1
lim = log P(Xy + -~ X, > nt) =
im, o log P + ) {_/\*(t) if

where X1, X, ... denote i.i.d. copies of X.
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Stochastic domination for sums of i.i.d. r.v.

Corollary

Consider two random variables X and Y such that
© V) >0, EeM < EeMY < o0;
® V) <0, EeY < EeM < oo;
©® EX<EY;
® max X <maxY;
® minX <minY.

Then, there exists an integer N such that for all n > N,
Xyt Xn ot Yoot Yo

where X1, Xa,... and resp. Y1, Yo, ... are i.i.d. copies of X resp. Y.
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Corollary

Consider two random variables X and Y such that
© V) >0, EeM < EeMY < o0;
® V) <0, EeY < EeM < oo;
©® EX<EY;
® max X <maxY;
® minX <minY.

Then, there exists an integer N such that for all n > N,
Xyt Xn ot Yoot Yo
where X1, Xa,... and resp. Y1, Yo, ... are i.i.d. copies of X resp. Y.

¢ Note that the result fails if we replace strict inequalities by large ones.
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Asymptotic stochastic domination: show that f, < g, for n large enough.

Cramér's theorem gives limits for  log f, on [EX, max X] and for
Llog(1 — £,) on [min X,EX]. Idem for g, and Y.

Strict Legendre transform inequalities = strict inequalities for the limit
functions.

e Since limits are continuous and monotone on a compact set, the inequality
fy < g, should hold uniformly for some finite n.

18 / 20



In terms of majorization

Corollary

Consider two probability vectors x € Py, and y € Py, such that
O V1<p< oo, Ny(x) < Ny(y),
OV —oco<p<l, Ny(x)> Ny(y),
® H(x) > H(y), (note that EV, = —H(x))
O Xmax < Ymax;
O Xmin < Ymin-

Then, there exists an integer N such that for all n > N, x®" < y®"_ In other
words, x € Mg (y).




In terms of majorization

Corollary

Consider two probability vectors x € Py, and y € Py, such that
O V1<p< oo, Ny(x) < Ny(y),
OV —oco<p<l, Ny(x)> Ny(y),
® H(x) > H(y), (note that EV, = —H(x))
O Xmax < Ymax;
O Xmin < Ymin-

Then, there exists an integer N such that for all n > N, x®" < y®"_ In other
words, x € Mg (y).

e From this corollary, one can deduce our two theorems by replacing
approximating x by

(= 5oxa= Sy ) or (= Soxa = 50e)
1 da"'vd d’k’.”’k 1 dv”',d dv )
for small enough ¢ (and large enough k).
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Thank you !

http://arxiv.org/abs/quant-ph/0702153
Comm. Math. Phys. 278 (2008), no. 1, 133-144

and

http://arxiv.org/abs/0707.0211
to appear in Ann. Inst. H. Poincaré Probab. Statist.
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