Majorization, entanglement catalysis, stochastic domination and ℓ_p norms

Ion Nechita

University of Ottawa and Université Lyon 1 joint work with Guillaume Aubrun

Fields Workshop on Operator Structures in Quantum Information Toronto, July 7, 2009

LOCC transformations & majorization

• Alice and Bob share a pure bipartite state $\varphi_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.

- Alice and Bob share a pure bipartite state $\varphi_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.
- They want to transform φ_{AB} into another state ψ_{AB} using only local operations and classical communication \sim LOCC.

- Alice and Bob share a pure bipartite state $\varphi_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.
- They want to transform φ_{AB} into another state ψ_{AB} using only local operations and classical communication \sim LOCC.
- Local operations:

- Alice and Bob share a pure bipartite state $\varphi_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.
- They want to transform φ_{AB} into another state ψ_{AB} using only local operations and classical communication \sim LOCC.
- Local operations:
 - **1** local unitaries $(U_A \otimes I_B, I_A \otimes U_B \text{ or } U_A \otimes U_B)$;

- Alice and Bob share a pure bipartite state $\varphi_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.
- They want to transform φ_{AB} into another state ψ_{AB} using only local operations and classical communication \sim LOCC.
- Local operations:
 - **1** local unitaries $(U_A \otimes I_B, I_A \otimes U_B \text{ or } U_A \otimes U_B)$;
 - **2** local measurements (observables $X_A \otimes I_B$, $I_A \otimes X_B$ or $X_A \otimes X_B$).

- Alice and Bob share a pure bipartite state $\varphi_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.
- They want to transform φ_{AB} into another state ψ_{AB} using only local operations and classical communication \sim LOCC.
- Local operations:
 - **1** local unitaries $(U_A \otimes I_B, I_A \otimes U_B \text{ or } U_A \otimes U_B)$;
 - **2** local measurements (observables $X_A \otimes I_B$, $I_A \otimes X_B$ or $X_A \otimes X_B$).

Question

Under what conditions can Alice and Bob realize the LOCC transformation

$$\varphi_{AB} \rightarrow \psi_{AB}$$
 ?

Nielsen's result

- Consider Schmidt decompositions for φ (the input state) and ψ (the target state):

$$\varphi = \sum_{i=1}^{d} \sqrt{x_i} \ a_i \otimes b_i,$$

$$\psi = \sum_{i=1}^{d} \sqrt{y_i} \ c_i \otimes d_i.$$

Nielsen's result

• Consider Schmidt decompositions for φ (the input state) and ψ (the target state):

$$arphi = \sum_{i=1}^d \sqrt{x_i} \ a_i \otimes b_i,$$
 $\psi = \sum_{i=1}^d \sqrt{y_i} \ c_i \otimes d_i.$

$$\psi = \sum_{i=1}^{d} \sqrt{y_i} \ c_i \otimes d_i.$$

Theorem (Nielsen '98)

Alice and Bob can LOCC-transform φ into ψ if and only if

$$x \prec y$$
.

Nielsen's result

 Consider Schmidt decompositions for φ (the input state) and ψ (the target state):

$$\varphi = \sum_{i=1}^d \sqrt{x_i} \ a_i \otimes b_i,$$

$$\psi = \sum_{i=1}^{d} \sqrt{y_i} \ c_i \otimes d_i.$$

Theorem (Nielsen '98)

Alice and Bob can LOCC-transform φ into ψ if and only if

$$x \prec y$$
.

 Only Schmidt vectors x and y appear in the condition; Alice and Bob can change basis locally.

• Consider $P_d = \{x \in \mathbb{R}^d | x_i \ge 0 \text{ and } \sum x_i = 1\}$, the simplex of probability vectors of size d. We have $P_d \subset P_{d+1} \subset \cdots$.

- Consider $P_d = \{x \in \mathbb{R}^d | x_i \geqslant 0 \text{ and } \sum x_i = 1\}$, the simplex of probability vectors of size d. We have $P_d \subset P_{d+1} \subset \cdots$.
- For $x \in P_d$, consider $x^{\downarrow} = (x_1^{\downarrow} \geqslant x_2^{\downarrow} \geqslant \cdots \geqslant x_d^{\downarrow})$ the decreasing rearrangement of x.

- Consider $P_d = \{x \in \mathbb{R}^d | x_i \geqslant 0 \text{ and } \sum x_i = 1\}$, the simplex of probability vectors of size d. We have $P_d \subset P_{d+1} \subset \cdots$.
- For $x \in P_d$, consider $x^{\downarrow} = (x_1^{\downarrow} \geqslant x_2^{\downarrow} \geqslant \cdots \geqslant x_d^{\downarrow})$ the decreasing rearrangement of x.

Definition

Let $x, y \in P_d$. We say that x is majorized by y ($x \prec y$) iff

$$\forall k = 1, 2, \dots, d$$
 $\sum_{i=1}^k x_i^{\downarrow} \leqslant \sum_{i=1}^k y_i^{\downarrow}.$

- Consider $P_d = \{x \in \mathbb{R}^d | x_i \geqslant 0 \text{ and } \sum x_i = 1\}$, the simplex of probability vectors of size d. We have $P_d \subset P_{d+1} \subset \cdots$.
- For $x \in P_d$, consider $x^{\downarrow} = (x_1^{\downarrow} \geqslant x_2^{\downarrow} \geqslant \cdots \geqslant x_d^{\downarrow})$ the decreasing rearrangement of x.

Definition

Let $x, y \in P_d$. We say that x is majorized by y ($x \prec y$) iff

$$\forall k = 1, 2, \dots, d$$
 $\sum_{i=1}^{k} x_i^{\downarrow} \leqslant \sum_{i=1}^{k} y_i^{\downarrow}.$

• \prec is a partial order on P_d with minimal element $(1/d, 1/d, \ldots, 1/d)$ and maximal elements $(1, 0, \ldots, 0)$ and its permutations.

- Consider $P_d = \{x \in \mathbb{R}^d | x_i \geqslant 0 \text{ and } \sum x_i = 1\}$, the simplex of probability vectors of size d. We have $P_d \subset P_{d+1} \subset \cdots$.
- For $x \in P_d$, consider $x^{\downarrow} = (x_1^{\downarrow} \geqslant x_2^{\downarrow} \geqslant \cdots \geqslant x_d^{\downarrow})$ the decreasing rearrangement of x.

Definition

Let $x, y \in P_d$. We say that x is majorized by y ($x \prec y$) iff

$$\forall k = 1, 2, \dots, d$$
 $\sum_{i=1}^k x_i^{\downarrow} \leqslant \sum_{i=1}^k y_i^{\downarrow}.$

- \prec is a partial order on P_d with minimal element $(1/d, 1/d, \ldots, 1/d)$ and maximal elements $(1, 0, \ldots, 0)$ and its permutations.
- $(1/d, 1/d, \dots, 1/d) \sim$ maximal entangled state: anything can be obtained from a maximally entangled input.

- Consider $P_d = \{x \in \mathbb{R}^d | x_i \ge 0 \text{ and } \sum x_i = 1\}$, the simplex of probability vectors of size d. We have $P_d \subset P_{d+1} \subset \cdots$.
- For $x \in P_d$, consider $x^{\downarrow} = (x_1^{\downarrow} \geqslant x_2^{\downarrow} \geqslant \cdots \geqslant x_d^{\downarrow})$ the decreasing rearrangement of x.

Definition

Let $x, y \in P_d$. We say that x is majorized by y ($x \prec y$) iff

$$\forall k = 1, 2, \dots, d$$
 $\sum_{i=1}^k x_i^{\downarrow} \leqslant \sum_{i=1}^k y_i^{\downarrow}.$

- \prec is a partial order on P_d with minimal element $(1/d, 1/d, \ldots, 1/d)$ and maximal elements $(1, 0, \ldots, 0)$ and its permutations.
- $(1/d, 1/d, ..., 1/d) \sim$ maximal entangled state: anything can be obtained from a maximally entangled input.
- $(1,0,\ldots,0) \rightsquigarrow$ separable state: only separable states can be obtained starting with a separable state.

Proposition

For two probability vectors $x, y \in P_d$, the following assertions are equivalent:

- $\mathbf{0} \times \mathbf{y}$
- ② $\forall t \in \mathbb{R}$, $\sum_{i=1}^{d} |x_i t| \leq \sum_{i=1}^{d} |y_i t|$,
- **3** There exists a bistochastic matrix B such that x = By,
- **4** $x \in S_d(y) = \{(y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(d)}) \mid \sigma \in S_d\}.$

Proposition

For two probability vectors $x, y \in P_d$, the following assertions are equivalent:

- $\mathbf{0}$ $x \prec y$,
- **2** $\forall t \in \mathbb{R}, \quad \sum_{i=1}^{d} |x_i t| \leq \sum_{i=1}^{d} |y_i t|,$
- **3** There exists a bistochastic matrix B such that x = By,
- Moreover, the relation \prec behaves well with respect to tensor products: $x_1 \prec y_1$ and $x_2 \prec y_2$ imply $x_1 \otimes x_2 \prec y_1 \otimes y_2$.

Proposition

For two probability vectors $x, y \in P_d$, the following assertions are equivalent:

- $\mathbf{0}$ $x \prec y$,
- ② $\forall t \in \mathbb{R}, \quad \sum_{i=1}^{d} |x_i t| \leq \sum_{i=1}^{d} |y_i t|,$
- **3** There exists a bistochastic matrix B such that x = By,
- - Moreover, the relation \prec behaves well with respect to tensor products: $x_1 \prec y_1$ and $x_2 \prec y_2$ imply $x_1 \otimes x_2 \prec y_1 \otimes y_2$.
 - Converse is false !!! Two manifestations:
 - 1 Entanglement catalysis
 - Multiple-copy transformations.

Entanglement catalysis

• Jonathan and Plenio ['98]: entanglement can help LOCC transformations, without being consumed.

- Jonathan and Plenio ['98]: entanglement can help LOCC transformations, without being consumed.
- There are states φ , ψ such that φ can not be LOCC-transformed into ψ but, with the help of a catalyst state χ , the transformation $\varphi \otimes \chi \to \psi \otimes \chi$ becomes possible.

- Jonathan and Plenio ['98]: entanglement can help LOCC transformations, without being consumed.
- There are states φ , ψ such that φ can not be LOCC-transformed into ψ but, with the help of a catalyst state χ , the transformation $\varphi \otimes \chi \to \psi \otimes \chi$ becomes possible.
- Mathematically: there exist vectors x, y ∈ P_d and z ∈ P_k such that x ≺ y does not hold, but x ⊗ z ≺ y ⊗ z holds.

- Jonathan and Plenio ['98]: entanglement can help LOCC transformations, without being consumed.
- There are states φ , ψ such that φ can not be LOCC-transformed into ψ but, with the help of a catalyst state χ , the transformation $\varphi \otimes \chi \to \psi \otimes \chi$ becomes possible.
- Mathematically: there exist vectors x, y ∈ P_d and z ∈ P_k such that x ≺ y does not hold, but x ⊗ z ≺ y ⊗ z holds.
- Example: x = (0.4, 0.4, 0.1, 0.1), y = (0.5, 0.25, 0.25, 0) and z = (0.6, 0.4).

- Jonathan and Plenio ['98]: entanglement can help LOCC transformations, without being consumed.
- There are states φ , ψ such that φ can not be LOCC-transformed into ψ but, with the help of a catalyst state χ , the transformation $\varphi \otimes \chi \to \psi \otimes \chi$ becomes possible.
- Mathematically: there exist vectors x, y ∈ P_d and z ∈ P_k such that x ≺ y does not hold, but x ⊗ z ≺ y ⊗ z holds.
- Example: x = (0.4, 0.4, 0.1, 0.1), y = (0.5, 0.25, 0.25, 0) and z = (0.6, 0.4).

Definition

Let $x, y \in P_d$. We say that x is *ELOCC*-majorized (or trumped) by y ($x \prec_T y$) if there exists a probability vector $z \in P_k$ such that

$$x \otimes z \prec y \otimes z$$
.

• Bandyopadhyay, Roychowdhury and Sen ['02]: transforming multiple copies at the same time can benefit LOCC transformations.

- Bandyopadhyay, Roychowdhury and Sen ['02]: transforming multiple copies at the same time can benefit LOCC transformations.
- There are states φ , ψ such that φ can not be LOCC-transformed into $|\psi\rangle$ but, n copies of φ can be transformed into n copies of ψ : $\varphi^{\otimes n} \to \psi^{\otimes n}$.

- Bandyopadhyay, Roychowdhury and Sen ['02]: transforming multiple copies at the same time can benefit LOCC transformations.
- There are states φ , ψ such that φ can not be LOCC-transformed into $|\psi\rangle$ but, n copies of φ can be transformed into n copies of ψ : $\varphi^{\otimes n} \to \psi^{\otimes n}$.
- Mathematically: there exist vectors $x, y \in P_d$ such that $x \prec y$ does not hold, but $x^{\otimes n} \prec y^{\otimes n}$ holds for an integer $n \geqslant 2$.

- Bandyopadhyay, Roychowdhury and Sen ['02]: transforming multiple copies at the same time can benefit LOCC transformations.
- There are states φ , ψ such that φ can not be LOCC-transformed into $|\psi\rangle$ but, n copies of φ can be transformed into n copies of ψ : $\varphi^{\otimes n} \to \psi^{\otimes n}$.
- Mathematically: there exist vectors $x, y \in P_d$ such that $x \prec y$ does not hold, but $x^{\otimes n} \prec y^{\otimes n}$ holds for an integer $n \geqslant 2$.
- Example: x = (0.4, 0.4, 0.1, 0.1), y = (0.5, 0.25, 0.25, 0) et n = 3.

- Bandyopadhyay, Roychowdhury and Sen ['02]: transforming multiple copies at the same time can benefit LOCC transformations.
- There are states φ , ψ such that φ can not be LOCC-transformed into $|\psi\rangle$ but, n copies of φ can be transformed into n copies of ψ : $\varphi^{\otimes n} \to \psi^{\otimes n}$.
- Mathematically: there exist vectors $x, y \in P_d$ such that $x \prec y$ does not hold, but $x^{\otimes n} \prec y^{\otimes n}$ holds for an integer $n \geqslant 2$.
- Example: x = (0.4, 0.4, 0.1, 0.1), y = (0.5, 0.25, 0.25, 0) et n = 3.

Definition

Let $x, y \in P_d$. We say that x is MLOCC-majorized by y $(x \prec_M y)$ if there exists an integer $n \geqslant 1$ such that

$$x^{\otimes n} \prec y^{\otimes n}$$
.

• For $y \in P_d$, we introduce the following sets:

$$T_d(y) = \{ x \in P_d \mid x \prec_T y \Leftrightarrow \exists z \in P_k \text{ s.t. } x \otimes z \prec y \otimes z \},$$

$$M_d(y) = \{ x \in P_d \mid x \prec_M y \Leftrightarrow \exists n \geqslant 1 \text{ s.t. } x^{\otimes n} \prec y^{\otimes n} \}.$$

• For $y \in P_d$, we introduce the following sets:

$$T_d(y) = \{ x \in P_d \mid x \prec_T y \Leftrightarrow \exists z \in P_k \text{ s.t. } x \otimes z \prec y \otimes z \},$$

$$M_d(y) = \{ x \in P_d \mid x \prec_M y \Leftrightarrow \exists n \geqslant 1 \text{ s.t. } x^{\otimes n} \prec y^{\otimes n} \}.$$

• For all y, $S_d(y) \subseteq M_d(y) \subseteq T_d(y)$. For the last inclusion, use catalyst

$$z=\frac{1}{n}(x^{\otimes n}\oplus x^{\otimes (n-1)}\otimes y\oplus\cdots\oplus y^{\otimes n}).$$

10 / 20

• For $y \in P_d$, we introduce the following sets:

$$T_d(y) = \{ x \in P_d \mid x \prec_T y \Leftrightarrow \exists z \in P_k \text{ s.t. } x \otimes z \prec y \otimes z \},$$

$$M_d(y) = \{ x \in P_d \mid x \prec_M y \Leftrightarrow \exists n \geqslant 1 \text{ s.t. } x^{\otimes n} \prec y^{\otimes n} \}.$$

• For all y, $S_d(y) \subseteq M_d(y) \subseteq T_d(y)$. For the last inclusion, use catalyst

$$z=\frac{1}{n}(x^{\otimes n}\oplus x^{\otimes (n-1)}\otimes y\oplus\cdots\oplus y^{\otimes n}).$$

• $T_d(y)$ is convex.

• For $y \in P_d$, we introduce the following sets:

$$T_d(y) = \{ x \in P_d \mid x \prec_T y \Leftrightarrow \exists z \in P_k \text{ s.t. } x \otimes z \prec y \otimes z \},$$

$$M_d(y) = \{ x \in P_d \mid x \prec_M y \Leftrightarrow \exists n \geqslant 1 \text{ s.t. } x^{\otimes n} \prec y^{\otimes n} \}.$$

• For all y, $S_d(y) \subseteq M_d(y) \subseteq T_d(y)$. For the last inclusion, use catalyst

$$z = \frac{1}{n} (x^{\otimes n} \oplus x^{\otimes (n-1)} \otimes y \oplus \cdots \oplus y^{\otimes n}).$$

- $T_d(y)$ is convex.
- One may need arbitrarily large z and n.

• For $y \in P_d$, we introduce the following sets:

$$T_d(y) = \{ x \in P_d \mid x \prec_T y \Leftrightarrow \exists z \in P_k \text{ s.t. } x \otimes z \prec y \otimes z \},$$

$$M_d(y) = \{ x \in P_d \mid x \prec_M y \Leftrightarrow \exists n \geqslant 1 \text{ s.t. } x^{\otimes n} \prec y^{\otimes n} \}.$$

• For all y, $S_d(y) \subseteq M_d(y) \subseteq T_d(y)$. For the last inclusion, use catalyst

$$z = \frac{1}{n} (x^{\otimes n} \oplus x^{\otimes (n-1)} \otimes y \oplus \cdots \oplus y^{\otimes n}).$$

- $T_d(y)$ is convex.
- One may need arbitrarily large z and n.
- $M_d(y)$ and $T_d(y)$ are typically not closed.

More complicated relations

• For $y \in P_d$, we introduce the following sets:

$$T_d(y) = \{ x \in P_d \mid x \prec_T y \Leftrightarrow \exists z \in P_k \text{ s.t. } x \otimes z \prec y \otimes z \},$$

$$M_d(y) = \{ x \in P_d \mid x \prec_M y \Leftrightarrow \exists n \geqslant 1 \text{ s.t. } x^{\otimes n} \prec y^{\otimes n} \}.$$

• For all y, $S_d(y) \subseteq M_d(y) \subseteq T_d(y)$. For the last inclusion, use catalyst

$$z = \frac{1}{n} (x^{\otimes n} \oplus x^{\otimes (n-1)} \otimes y \oplus \cdots \oplus y^{\otimes n}).$$

- $T_d(y)$ is convex.
- One may need arbitrarily large z and n.
- $M_d(y)$ and $T_d(y)$ are typically not closed.

Question

Provide "nice" descriptions of $\overline{M_d(y)}$ and $\overline{T_d(y)}$. Does $\overline{M_d(y)} = \overline{T_d(y)}$?

<u>10 / 20</u>

• $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.

- $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.
- For a probability vector $x \in P_d$ and a real parameter $p \in \mathbb{R}$, define the ℓ_p "norm" of x by

$$N_p(x) = \sum_{i=1}^d x_i^p.$$

- $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.
- For a probability vector $x \in P_d$ and a real parameter $p \in \mathbb{R}$, define the ℓ_p "norm" of x by

$$N_p(x) = \sum_{i=1}^d x_i^p.$$

$$H_p(x) = \frac{\log N_p(x)}{1-p}.$$

- $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.
- For a probability vector $x \in P_d$ and a real parameter $p \in \mathbb{R}$, define the ℓ_p "norm" of x by

$$N_p(x) = \sum_{i=1}^d x_i^p.$$

These quantities are Rényi entropies in disguise:

$$H_p(x) = \frac{\log N_p(x)}{1-p}.$$

• The function N_p is Schur convex for $p \ge 1$ and $p \le 0$, and Schur concave for $p \in [0, 1]$.

11 / 20

- $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.
- For a probability vector $x \in P_d$ and a real parameter $p \in \mathbb{R}$, define the ℓ_p "norm" of x by

$$N_p(x) = \sum_{i=1}^d x_i^p.$$

$$H_p(x) = \frac{\log N_p(x)}{1-p}.$$

- The function N_p is Schur convex for $p \ge 1$ and $p \le 0$, and Schur concave for $p \in [0, 1]$.
- N_p are multiplicative: $N_p(x \otimes y) = N_p(x)N_p(y)$.

- $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.
- For a probability vector $x \in P_d$ and a real parameter $p \in \mathbb{R}$, define the ℓ_p "norm" of x by

$$N_p(x) = \sum_{i=1}^d x_i^p.$$

$$H_p(x) = \frac{\log N_p(x)}{1-p}.$$

- The function N_p is Schur convex for $p \ge 1$ and $p \le 0$, and Schur concave for $p \in [0, 1]$.
- N_p are multiplicative: $N_p(x \otimes y) = N_p(x)N_p(y)$.
- Hence, $x \in M_d(y) \subseteq T_d(y)$ implies $N_p(x) \leqslant N_p(y)$ or $N_p(x) \geqslant N_p(y)$ (depending on the value of p).

- $f: \mathbb{R}^d \to \mathbb{R}$ is sad to be Schur convex if $x \prec y \Rightarrow f(x) \leqslant f(y)$.
- For a probability vector $x \in P_d$ and a real parameter $p \in \mathbb{R}$, define the ℓ_p "norm" of x by

$$N_p(x) = \sum_{i=1}^d x_i^p.$$

$$H_p(x) = \frac{\log N_p(x)}{1-p}.$$

- The function N_p is Schur convex for $p \ge 1$ and $p \le 0$, and Schur concave for $p \in [0, 1]$.
- N_p are multiplicative: $N_p(x \otimes y) = N_p(x)N_p(y)$.
- Hence, $x \in M_d(y) \subseteq T_d(y)$ implies $N_p(x) \leqslant N_p(y)$ or $N_p(x) \geqslant N_p(y)$ (depending on the value of p).
- Are those conditions sufficient ?

- Let $y \in P_d$, $y_{\min} > 0$.
- Consider the following conditions:
 - (A) $N_p(x) \leqslant N_p(y)$, for $p \geqslant 1$;
 - (B) $N_p(x) \geqslant N_p(y)$, for $0 \leqslant p \leqslant 1$;
 - (C) $N_p(x) \leqslant N_p(y)$, for $p \leqslant 0$.

- Let $y \in P_d$, $y_{\min} > 0$.
- Consider the following conditions:
 - (A) $N_p(x) \leqslant N_p(y)$, for $p \geqslant 1$;
 - (B) $N_p(x) \geqslant N_p(y)$, for $0 \leqslant p \leqslant 1$;
 - (C) $N_p(x) \leqslant N_p(y)$, for $p \leqslant 0$.

Theorem (Aubrun + N. '07)

$$(A) \Leftrightarrow x \in \overline{\cup_{n \geqslant d} M_n(y)}^{\ell_1} = \overline{\cup_{n \geqslant d} T_n(y)}^{\ell_1}.$$

12 / 20

- Let $y \in P_d$, $y_{\min} > 0$.
- Consider the following conditions:
 - (A) $N_p(x) \leqslant N_p(y)$, for $p \geqslant 1$;
 - (B) $N_p(x) \geqslant N_p(y)$, for $0 \leqslant p \leqslant 1$;
 - (C) $N_p(x) \leqslant N_p(y)$, for $p \leqslant 0$.

Theorem (Aubrun + N. '07)

$$(A) \Leftrightarrow x \in \overline{\bigcup_{n \geqslant d} M_n(y)}^{\ell_1} = \overline{\bigcup_{n \geqslant d} T_n(y)}^{\ell_1}.$$

Theorem (Aubrun + N. '08)

$$(A)+(B) \Leftrightarrow x \in \overline{M_{d+1}(y)} = \overline{T_{d+1}(y)}.$$

12 / 20

- Let $y \in P_d$, $y_{\min} > 0$.
- Consider the following conditions:
 - (A) $N_p(x) \leqslant N_p(y)$, for $p \geqslant 1$;
 - (B) $N_p(x) \geqslant N_p(y)$, for $0 \leqslant p \leqslant 1$;
 - (C) $N_p(x) \leqslant N_p(y)$, for $p \leqslant 0$.

Theorem (Aubrun + N. '07)

$$(A) \Leftrightarrow x \in \overline{\bigcup_{n \geqslant d} M_n(y)}^{\ell_1} = \overline{\bigcup_{n \geqslant d} T_n(y)}^{\ell_1}.$$

Theorem (Aubrun + N. '08)

$$(A)+(B) \Leftrightarrow x \in \overline{M_{d+1}(y)} = \overline{T_{d+1}(y)}.$$

Theorem (Turgut '08)

$$(A)+(B)+(C) \Leftrightarrow x \in \overline{T_d(y)}.$$

12 / 20 -

The proof

• The main idea of the proof (cf. G. Kuperberg): to a probability vector $x \in P_d$, associate a probability measure

$$\mu_{\mathsf{x}} = \sum_{i=1}^d \mathsf{x}_i \delta_{\mathsf{log}\,\mathsf{x}_i}.$$

• The main idea of the proof (cf. G. Kuperberg): to a probability vector $x \in P_d$, associate a probability measure

$$\mu_{\mathsf{x}} = \sum_{i=1}^d \mathsf{x}_i \delta_{\mathsf{log}\,\mathsf{x}_i}.$$

• Examples: $\mu_{(1,0,...,0)} = \delta_0$, $\mu_{(1/d,...,1/d)} = \delta_{-\log d}$.

• The main idea of the proof (cf. G. Kuperberg): to a probability vector $x \in P_d$, associate a probability measure

$$\mu_{\mathsf{x}} = \sum_{i=1}^{d} \mathsf{x}_{i} \delta_{\mathsf{log}\,\mathsf{x}_{i}}.$$

- Examples: $\mu_{(1,0,...,0)} = \delta_0$, $\mu_{(1/d,...,1/d)} = \delta_{-\log d}$.
- For $x \in P_d$, consider a random variable $V_x \sim \mu_x$.

• The main idea of the proof (cf. G. Kuperberg): to a probability vector $x \in P_d$, associate a probability measure

$$\mu_{\mathsf{x}} = \sum_{i=1}^{d} \mathsf{x}_{i} \delta_{\mathsf{log}\,\mathsf{x}_{i}}.$$

- Examples: $\mu_{(1,0,...,0)} = \delta_0$, $\mu_{(1/d,...,1/d)} = \delta_{-\log d}$.
- For $x \in P_d$, consider a random variable $V_x \sim \mu_x$.

Definition (Stochastic domination)

Let μ and ν be probability measures.

$$\mu \leqslant_{\mathsf{st}} \nu \Leftrightarrow \mu[t,\infty) \leqslant \nu[t,\infty) \quad \forall t \in \mathbb{R}.$$

Equivalently, $\mu \leqslant_{\rm st} \nu$ iff. there exist some realizations $X \sim \mu$, $Y \sim \nu$ such that $X \leqslant Y$ almost surely.

14 / 20

• Idea: replace vectors with probability measures and majorization with stochastic domination.

- Idea: replace vectors with probability measures and majorization with stochastic domination.
- Pros:
 - **①** The application $x \to \mu_x$ behaves well with respect to tensor products:

$$\mu_{\mathsf{x}\otimes\mathsf{y}}=\mu_{\mathsf{x}}*\mu_{\mathsf{y}},$$

where "*" is the convolution of probability measures.

- Idea: replace vectors with probability measures and majorization with stochastic domination.
- Pros:
 - **①** The application $x \to \mu_x$ behaves well with respect to tensor products:

$$\mu_{\mathsf{x}\otimes\mathsf{y}}=\mu_{\mathsf{x}}*\mu_{\mathsf{y}},$$

where "*" is the convolution of probability measures.

Stochastic domination implies majorization:

$$\mu_x \leqslant_{\mathsf{st}} \mu_y \Rightarrow x \prec y.$$

- Idea: replace vectors with probability measures and majorization with stochastic domination.
- Pros:
 - **1** The application $x \to \mu_x$ behaves well with respect to tensor products:

$$\mu_{\mathsf{x}\otimes\mathsf{y}}=\mu_{\mathsf{x}}*\mu_{\mathsf{y}},$$

where "*" is the convolution of probability measures.

② Stochastic domination implies majorization:

$$\mu_x \leqslant_{\mathsf{st}} \mu_y \Rightarrow x \prec y.$$

- Cons:
 - 1 The converse of the previous implication does not hold: the two relations are not equivalent.

- Idea: replace vectors with probability measures and majorization with stochastic domination.
- Pros:
 - **①** The application $x \to \mu_x$ behaves well with respect to tensor products:

$$\mu_{\mathsf{x}\otimes\mathsf{y}}=\mu_{\mathsf{x}}*\mu_{\mathsf{y}},$$

where "*" is the convolution of probability measures.

Stochastic domination implies majorization:

$$\mu_x \leqslant_{\mathsf{st}} \mu_y \Rightarrow x \prec y.$$

- Cons:
 - 1 The converse of the previous implication does not hold: the two relations are not equivalent.
 - 2 In particular,

$$\mu_x \leqslant_{\mathsf{st}} \mu_y \Rightarrow \mathsf{size}(x) > \mathsf{size}(y).$$

ℓ_p norms, Laplace transform and large deviations

• By the definition of $V_x \sim \mu_x$, $N_{p+1}(x) = \mathbb{E} \exp(pV_x)$.

ℓ_p norms, Laplace transform and large deviations

- By the definition of $V_x \sim \mu_x$, $N_{p+1}(x) = \mathbb{E} \exp(pV_x)$.
- Hence, ℓ_p inequalities for vectors translate to inequalities on Laplace transforms $\mathbb{E}e^{\lambda}$ of the associated measures.

ℓ_p norms, Laplace transform and large deviations

- By the definition of $V_x \sim \mu_x$, $N_{p+1}(x) = \mathbb{E} \exp(pV_x)$.
- Hence, ℓ_p inequalities for vectors translate to inequalities on Laplace transforms $\mathbb{E}e^{\lambda}$ of the associated measures.

Theorem (Cramér's large deviations theorem)

Let X be a r.v. and assume $\Lambda(\lambda) := \log \mathbb{E}e^{\lambda X} < +\infty$. Introduce Λ^* , the Legendre transform of Λ :

$$\Lambda^*(t) = \sup_{\lambda \in \mathbb{R}} \lambda t - \Lambda(\lambda).$$

Then, for all $t \in (\min X, \max X)$, we have

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(X_1+\cdots X_n\geqslant nt)=\begin{cases}0 & \text{if }t\leqslant\mathbb{E}X,\\-\Lambda^*(t) & \text{if }t\geqslant\mathbb{E}X,\end{cases}$$

where X_1, X_2, \ldots denote i.i.d. copies of X.

Stochastic domination for sums of i.i.d. r.v.

Corollary

Consider two random variables X and Y such that

- $\mathbf{0} \ \forall \lambda > 0, \ \mathbb{E}e^{\lambda X} < \mathbb{E}e^{\lambda Y} < \infty;$
- **2** $\forall \lambda < 0$, $\mathbb{E}e^{\lambda Y} < \mathbb{E}e^{\lambda X} < \infty$;
- **3** $\mathbb{E}X < \mathbb{E}Y$;
- \bigcirc max $X < \max Y$;

Then, there exists an integer N such that for all $n \ge N$,

$$X_1 + \cdots + X_n \leqslant_{st} Y_1 + \cdots + Y_n$$

where X_1, X_2, \ldots and resp. Y_1, Y_2, \ldots are i.i.d. copies of X resp. Y.

Stochastic domination for sums of i.i.d. r.v.

Corollary

Consider two random variables X and Y such that

- $\mathbf{0} \ \forall \lambda > 0, \ \mathbb{E}e^{\lambda X} < \mathbb{E}e^{\lambda Y} < \infty;$
- **2** $\forall \lambda < 0$, $\mathbb{E}e^{\lambda Y} < \mathbb{E}e^{\lambda X} < \infty$;
- **3** $\mathbb{E}X < \mathbb{E}Y$;
- \bigcirc max $X < \max Y$;

Then, there exists an integer N such that for all $n \ge N$,

$$X_1 + \cdots + X_n \leqslant_{st} Y_1 + \cdots + Y_n$$

where X_1, X_2, \ldots and resp. Y_1, Y_2, \ldots are i.i.d. copies of X resp. Y.

Note that the result fails if we replace strict inequalities by large ones.

$$f_n(t) := \mathbb{P}(X_1 + \cdots + X_n \geqslant nt),$$

 $g_n(t) := \mathbb{P}(Y_1 + \cdots + Y_n \geqslant nt).$

Define

$$f_n(t) := \mathbb{P}(X_1 + \cdots + X_n \geqslant nt),$$

 $g_n(t) := \mathbb{P}(Y_1 + \cdots + Y_n \geqslant nt).$

• Asymptotic stochastic domination: show that $f_n \leqslant g_n$ for n large enough.

$$f_n(t) := \mathbb{P}(X_1 + \cdots + X_n \geqslant nt),$$

 $g_n(t) := \mathbb{P}(Y_1 + \cdots + Y_n \geqslant nt).$

- Asymptotic stochastic domination: show that $f_n \leqslant g_n$ for n large enough.
- Cramér's theorem gives limits for $\frac{1}{n}\log f_n$ on $[\mathbb{E}X, \max X]$ and for $\frac{1}{n}\log(1-f_n)$ on $[\min X, \mathbb{E}X]$. Idem for g_n and Y.

$$f_n(t) := \mathbb{P}(X_1 + \cdots + X_n \geqslant nt),$$

 $g_n(t) := \mathbb{P}(Y_1 + \cdots + Y_n \geqslant nt).$

- Asymptotic stochastic domination: show that $f_n \leqslant g_n$ for n large enough.
- Cramér's theorem gives limits for $\frac{1}{n}\log f_n$ on $[\mathbb{E}X, \max X]$ and for $\frac{1}{n}\log(1-f_n)$ on $[\min X, \mathbb{E}X]$. Idem for g_n and Y.
- Strict Legendre transform inequalities ⇒ strict inequalities for the limit functions.

$$f_n(t) := \mathbb{P}(X_1 + \cdots + X_n \geqslant nt),$$

 $g_n(t) := \mathbb{P}(Y_1 + \cdots + Y_n \geqslant nt).$

- Asymptotic stochastic domination: show that $f_n \leqslant g_n$ for n large enough.
- Cramér's theorem gives limits for $\frac{1}{n}\log f_n$ on $[\mathbb{E}X, \max X]$ and for $\frac{1}{n}\log(1-f_n)$ on $[\min X, \mathbb{E}X]$. Idem for g_n and Y.
- Strict Legendre transform inequalities ⇒ strict inequalities for the limit functions.
- Since limits are continuous and monotone on a compact set, the inequality $f_n \leqslant g_n$ should hold uniformly for some finite n.

In terms of majorization

Corollary

Consider two probability vectors $x \in P_{d_x}$ and $y \in P_{d_y}$ such that

- **1** \forall 1 N_p(x) < $N_p(y)$;
- **2** $\forall -\infty N_p(y);$
- **3** H(x) > H(y); (note that $\mathbb{E}V_x = -H(x)$)

Then, there exists an integer N such that for all $n \ge N$, $x^{\otimes n} \prec y^{\otimes n}$. In other words, $x \in M_{d_x}(y)$.

In terms of majorization

Corollary

Consider two probability vectors $x \in P_{d_x}$ and $y \in P_{d_y}$ such that

- **1** \forall 1 N_p(x) < $N_p(y)$;
- **2** $\forall -\infty N_p(y);$
- **3** H(x) > H(y); (note that $\mathbb{E}V_x = -H(x)$)
- $\mathbf{5} x_{\min} < y_{\min}$

Then, there exists an integer N such that for all $n \ge N$, $x^{\otimes n} \prec y^{\otimes n}$. In other words, $x \in M_{d_x}(y)$.

 From this corollary, one can deduce our two theorems by replacing approximating x by

$$\left(x_1-\frac{\varepsilon}{d},\dots,x_d-\frac{\varepsilon}{d},\frac{\varepsilon}{k},\dots,\frac{\varepsilon}{k}\right) \text{ or } \left(x_1-\frac{\varepsilon}{d},\dots,x_d-\frac{\varepsilon}{d},\varepsilon\right),$$

for small enough ε (and large enough k).

Thank you!

http://arxiv.org/abs/quant-ph/0702153 Comm. Math. Phys. 278 (2008), no. 1, 133-144 and

http://arxiv.org/abs/0707.0211 to appear in Ann. Inst. H. Poincaré Probab. Statist.