Mixed norms and entropy

Marius Junge
University of Illinois

Fields Institute Toronto, July

Motivation

Motivation

A A classical channel is map $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which is positivity preserving and state preserving.

Motivation

Q A classical channel is map $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which is positivity preserving and state preserving.

Q T is positivity preserving (short positive) if $f \geq 0$ implies $T(f) \geq 0$.

Motivation

A A classical channel is map $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which is positivity preserving and state preserving．
T is positivity preserving（short positive）if $f \geq 0$ implies $T(f) \geq 0$ ．
2 T is state preserving if $f \geq 0$ and $\sum_{k} f(k)=1$ implies $\sum_{j} T(f)(j)=1$.

Motivation

Q A classical channel is map $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which is positivity preserving and state preserving.
\& T is positivity preserving (short positive) if $f \geq 0$ implies $T(f) \geq 0$.
\& T is state preserving if $f \geq 0$ and $\sum_{k} f(k)=1$ implies
$\sum_{j} T(f)(j)=1$.
A channel is given by a matrix $T(f)(j)=\sum_{j k} a_{j k} f_{k}$ such that $a_{j k} \geq 0$ and $\sum_{j} a_{j k}=1$ for all j.

Minimal entropy

Minimal entropy

\Leftrightarrow If $f=\left(f_{k}\right)$ is a state. Then the entropy is given by

$$
S(f)=\sum_{k} f_{k}\left(-\ln f_{k}\right)
$$

Minimal entropy

\Leftrightarrow If $f=\left(f_{k}\right)$ is a state. Then the entropy is given by

$$
S(f)=\sum_{k} f_{k}\left(-\ln f_{k}\right)
$$

\Leftrightarrow Note: Let ℓ_{p}^{n} be \mathbb{C}^{n} equipped with the p-norm

$$
\|f\|_{p}=\left(\sum_{k}\left|f_{k}\right|^{p}\right)^{1 / p}
$$

Minimal entropy

\Leftrightarrow If $f=\left(f_{k}\right)$ is a state. Then the entropy is given by

$$
S(f)=\sum_{k} f_{k}\left(-\ln f_{k}\right)
$$

\Leftrightarrow Note: Let ℓ_{p}^{n} be \mathbb{C}^{n} equipped with the p-norm

$$
\|f\|_{p}=\left(\sum_{k}\left|f_{k}\right|^{p}\right)^{1 / p}
$$

Then $\sum_{k} f_{k}=1$ implies

$$
S(f)=-\left.\frac{d}{d p}\|f\|_{p}\right|_{p=1}
$$

\Leftrightarrow The minimal entropy of a channel is

$$
S_{\min }(T)=\min _{f \text { state }} S(T(f))
$$

\Leftrightarrow The minimal entropy of a channel is

$$
S_{\min }(T)=\min _{f s t a t e} S(T(f))
$$

\Leftrightarrow Key observation

$$
-S_{\min }(T)=\left.\max _{f} \frac{d}{d p}\|T(f)\|_{p}\right|_{p=1}=\left.\frac{d}{d p}\left\|T: \ell_{1} \rightarrow \ell_{p}\right\|\right|_{p=1}
$$

\Leftrightarrow The minimal entropy of a channel is

$$
S_{\min }(T)=\min _{f s t a t e} S(T(f))
$$

\Leftrightarrow Key observation

$$
-S_{\min }(T)=\left.\max _{f} \frac{d}{d p}\|T(f)\|_{p}\right|_{p=1}=\left.\frac{d}{d p}\left\|T: \ell_{1} \rightarrow \ell_{p}\right\|\right|_{p=1}
$$

Here the norm of a map $T: X \rightarrow Y$ is given by

$$
\|T\|=\sup _{\|x\| \leq 1}\left\|T_{x}\right\|_{Y}
$$

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q}
$$

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q}
$$

a) Let $p \leq q$.

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q}
$$

a) Let $p \leq q$. Then

$$
\ell_{p}\left(\ell_{q}\right) \subset \ell_{q}\left(\ell_{p}\right) \quad\left(a_{i j}\right) \mapsto\left(a_{j i}\right)
$$

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q} .
$$

a) Let $p \leq q$. Then

$$
\ell_{p}\left(\ell_{q}\right) \subset \ell_{q}\left(\ell_{p}\right) \quad\left(a_{i j}\right) \mapsto\left(a_{j i}\right)
$$

(That follows is the triangle inequality in $\ell_{p / q}$.)

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q}
$$

a) Let $p \leq q$. Then

$$
\ell_{p}\left(\ell_{q}\right) \subset \ell_{q}\left(\ell_{p}\right) \quad\left(a_{i j}\right) \mapsto\left(a_{j i}\right)
$$

(That follows is the triangle inequality in $\ell_{p / q}$.)
b) Let $T: \ell_{q_{1}} \rightarrow \ell_{q_{2}}$.

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q} .
$$

a) Let $p \leq q$. Then

$$
\ell_{p}\left(\ell_{q}\right) \subset \ell_{q}\left(\ell_{p}\right) \quad\left(a_{i j}\right) \mapsto\left(a_{j i}\right)
$$

(That follows is the triangle inequality in $\ell_{p / q}$.)
b) Let $T: \ell_{q_{1}} \rightarrow \ell_{q_{2}}$. Then

$$
\left\|i d \otimes T: \ell_{p}\left(\ell_{q_{1}}\right) \rightarrow \ell_{p}\left(\ell_{q_{2}}\right)\right\|=\|T\| .
$$

Abstract properties of $\ell_{p}\left(\ell_{q}\right)$

The norm in $\ell_{p}\left(\ell_{q}\right)$ is given by

$$
\left\|\left(a_{i j}\right)\right\|_{\ell_{p}\left(\ell_{q}\right)}=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{q}\right)^{p / q}\right)^{1 / q} .
$$

a) Let $p \leq q$. Then

$$
\ell_{p}\left(\ell_{q}\right) \subset \ell_{q}\left(\ell_{p}\right) \quad\left(a_{i j}\right) \mapsto\left(a_{j i}\right)
$$

(That follows is the triangle inequality in $\ell_{p / q}$.)
b) Let $T: \ell_{q_{1}} \rightarrow \ell_{q_{2}}$. Then

$$
\left\|i d \otimes T: \ell_{p}\left(\ell_{q_{1}}\right) \rightarrow \ell_{p}\left(\ell_{q_{2}}\right)\right\|=\|T\| .
$$

For $T(f)(j)=\sum_{k} a_{j k} f_{k}$ we have

$$
(i d \otimes T)\left(\left(f_{i k}\right)\right)_{i, k}=\left(\sum_{k} a_{j k} f_{i k}\right)_{i j}
$$

Flipping tensors

Flipping tensors

Theorem: Let $p \leq q$ and $T: \ell_{p}^{n} \rightarrow \ell_{q}^{n}, S: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$.

Flipping tensors

Theorem: Let $p \leq q$ and $T: \ell_{p}^{n} \rightarrow \ell_{q}^{n}, S: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$. Then

$$
\left\|T \otimes S: \ell_{p}^{n m} \rightarrow \ell_{q}^{n m}\right\|=\|T\|\|S\|
$$

Proof: Let flip : $\mathbb{C}^{n} \otimes \mathbb{C}^{m} \rightarrow \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ be the flip map flip $(x \otimes y)=y \otimes x$.

Flipping tensors

Theorem: Let $p \leq q$ and $T: \ell_{p}^{n} \rightarrow \ell_{q}^{n}, S: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$. Then

$$
\left\|T \otimes S: \ell_{p}^{n m} \rightarrow \ell_{q}^{n m}\right\|=\|T\|\|S\|
$$

Proof: Let flip : $\mathbb{C}^{n} \otimes \mathbb{C}^{m} \rightarrow \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ be the flip map flip $(x \otimes y)=y \otimes x$. Then by Minkowski

$$
\| \text { flip }(i d \otimes S): \ell_{p}^{n m} \rightarrow \ell_{q}^{m}\left(\ell_{p}^{n}\right)\|\leq\| S \|
$$

and

$$
\left\|\operatorname{flip}(i d \otimes T): \ell_{q}^{m}\left(\ell_{p}^{n}\right) \rightarrow \ell_{q}^{n m}\right\| \leq\|T\|
$$

Flipping tensors

Theorem: Let $p \leq q$ and $T: \ell_{p}^{n} \rightarrow \ell_{q}^{n}, S: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$. Then

$$
\left\|T \otimes S: \ell_{p}^{n m} \rightarrow \ell_{q}^{n m}\right\|=\|T\|\|S\|
$$

Proof: Let flip : $\mathbb{C}^{n} \otimes \mathbb{C}^{m} \rightarrow \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ be the flip map $\operatorname{flip}(x \otimes y)=y \otimes x$. Then by Minkowski

$$
\| \text { flip }(i d \otimes S): \ell_{p}^{n m} \rightarrow \ell_{q}^{m}\left(\ell_{p}^{n}\right)\|\leq\| S \|
$$

and

$$
\left\|\operatorname{flip}(i d \otimes T): \ell_{q}^{m}\left(\ell_{p}^{n}\right) \rightarrow \ell_{q}^{n m}\right\| \leq\|T\|
$$

Hence $T \otimes S=$ flip $(i d \otimes T)$ flip $(i d \otimes S)$ satisfies

$$
\|T \otimes S\| \leq\|T\|\|S\|
$$

Application: Chain rule

Let S, T be channels

$$
\begin{aligned}
& -S_{\min }(S \otimes T) \\
& \left.\frac{d}{d p}\left\|T \otimes S: \ell_{1}^{n m} \rightarrow \ell_{p}^{n m}\right\|\right|_{p=1} \\
& =\left.\frac{d}{d p}\left\|T: \ell_{1}^{n} \rightarrow \ell_{p}^{n}\right\|\right|_{p=1}\left\|S: \ell_{1}^{m} \rightarrow \ell_{p}^{m}\right\| \\
& =\left.\left\|T: \ell_{1}^{n} \rightarrow \ell_{1}^{n}\right\| \frac{d}{d p}\left\|S: \ell_{1}^{m} \rightarrow \ell_{p}^{m}\right\|\right|_{p=1} \\
& +\left.\frac{d}{d p}\left\|T: \ell_{1}^{n} \rightarrow \ell_{p}^{n}\right\|\right|_{p=1}\left\|S: \ell_{1}^{m} \rightarrow \ell_{1}^{m}\right\| \\
& =-S_{\min }(T)-S_{\min }(S) .
\end{aligned}
$$

What is needed?

Let V_{p} a family of spaces and ||| ||| a norm on linear maps such that

What is needed?

Let V_{p} a family of spaces and ||| ||| a norm on linear maps such that Let $V_{p}\left(V_{q}\right) \subset$ a family of spaces such that

$$
V_{p}\left(V_{q}\right) \subset V_{q}\left(V_{p}\right)
$$

What is needed?

Let V_{p} a family of spaces and ||| ||| a norm on linear maps such that Let $V_{p}\left(V_{q}\right) \subset$ a family of spaces such that

$$
V_{p}\left(V_{q}\right) \subset V_{q}\left(V_{p}\right)
$$

* and $\left|\left|\left|i d \otimes T: V_{r}(X) \rightarrow V_{r}(Y)\right|\|=\|\right|\right|||\mid$.

Theorem: Under the assumptions above

$$
S_{\min }(T)=-\frac{d}{d p}\left\|\mid T: V_{1} \rightarrow V_{p}\right\| \|
$$

is additive on the class of maps satisfying $\left|\left|\left|T: V_{1} \rightarrow V_{1}\right|\right|\right|=1$.

Quantum

Quantum Channel

A channel is a completely positive map $\Phi: M_{n} \rightarrow M_{n}$ such that

$$
\operatorname{tr}(\Phi(f))=\operatorname{tr}(f)
$$

holds for every state f.

Quantum Channel

A channel is a completely positive map $\Phi: M_{n} \rightarrow M_{n}$ such that

$$
\operatorname{tr}(\Phi(f))=\operatorname{tr}(f)
$$

holds for every state f. The energy of f is given by

$$
S(f)=-\operatorname{tr}(f \ln (f))=-\left.\frac{d}{d p} \operatorname{tr}\left(f^{p}\right)^{1 / p}\right|_{p=1}
$$

Quantum Channel

A channel is a completely positive map $\Phi: M_{n} \rightarrow M_{n}$ such that

$$
\operatorname{tr}(\Phi(f))=\operatorname{tr}(f)
$$

holds for every state f. The energy of f is given by

$$
S(f)=-\operatorname{tr}(f \ln (f))=-\left.\frac{d}{d p} \operatorname{tr}\left(f^{p}\right)^{1 / p}\right|_{p=1}
$$

The minimal energy of Φ is given by

$$
S_{\min }(\Phi)=\inf _{\operatorname{tr}(f)=1} S(\Phi(f))
$$

One can not have it all

One can not have it all

Theorem (Haydon) The p norm

$$
\left\|\Phi: L_{1}\left(M_{n}, t r\right) \rightarrow L_{p}\left(M_{n}, t r\right)\right\|
$$

is not multiplicative.

One can not have it all

Theorem (Haydon) The p norm

$$
\left\|\Phi: L_{1}\left(M_{n}, t r\right) \rightarrow L_{p}\left(M_{n}, t r\right)\right\|
$$

is not multiplicative.

Theorem (Hastings) The minimal entropy is not additive.

One can not have it all

Theorem (Haydon) The p norm

$$
\left\|\Phi: L_{1}\left(M_{n}, \operatorname{tr}\right) \rightarrow L_{p}\left(M_{n}, t r\right)\right\|
$$

is not multiplicative.

Theorem (Hastings) The minimal entropy is not additive.

Conclusion: There is no family of norms on $L_{p}\left(M_{n}, t r\right) \otimes L_{q}\left(M_{n}, t r\right)$ satisfying Minkowski's inequality and

$$
\left\|i d \otimes \Phi: L_{p}\left(L_{1}\right) \rightarrow L_{p}\left(L_{q}\right)\right\|=\|\Phi\|
$$

Pisier's norm

Pisier's norm

* Let $p \leq q$ and $\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{\rho}\left[L_{q}\right]}=\inf _{x=(a \otimes 1) y(b \otimes 1)}\|a\|_{2 s}\|y\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}\|b\|_{2 s} .
$$

Pisier's norm

* Let $p \leq q$ and $\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\inf _{x=(a \otimes 1) y(b \otimes 1)}\|a\|_{2 s}\|y\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}\|b\|_{2 s} .
$$

For positive matrix $x \in M_{n m}$ we may assume $a=b^{*}$.

Pisier's norm

* Let $p \leq q$ and $\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\inf _{x=(a \otimes 1) y(b \otimes 1)}\|a\|_{2 s}\|y\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}\|b\|_{2 s} .
$$

For positive matrix $x \in M_{n m}$ we may assume $a=b^{*}$.

* Let $p \geq q$ and $\frac{1}{q}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\sup _{\|a\|_{2 s}\|b\|_{2 s} \leq 1}\|(a \otimes 1) y(b \otimes 1)\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}
$$

Pisier's norm

* Let $p \leq q$ and $\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\inf _{x=(a \otimes 1) y(b \otimes 1)}\|a\|_{2 s}\|y\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}\|b\|_{2 s} .
$$

For positive matrix $x \in M_{n m}$ we may assume $a=b^{*}$.

* Let $p \geq q$ and $\frac{1}{q}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\sup _{\|a\|_{2 s}\|b\|_{2 s} \leq 1}\|(a \otimes 1) y(b \otimes 1)\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}
$$

For positive matrix $x \in M_{n m}$ we may assume $a=b^{*}$.

Pisier's norm

* Let $p \leq q$ and $\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\inf _{x=(a \otimes 1) y(b \otimes 1)}\|a\|_{2 s}\|y\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}\|b\|_{2 s} .
$$

For positive matrix $x \in M_{n m}$ we may assume $a=b^{*}$.

* Let $p \geq q$ and $\frac{1}{q}=\frac{1}{q}+\frac{1}{s}$. Then

$$
\|x\|_{L_{p}\left[L_{q}\right]}=\sup _{\|a\|_{2 s}\|b\|_{2 s} \leq 1}\|(a \otimes 1) y(b \otimes 1)\|_{L_{q}\left(M_{n} \otimes M_{m}\right)}
$$

For positive matrix $x \in M_{n m}$ we may assume $a=b^{*}$.

* (Theorem) For $T: L_{p_{1}}\left(M_{n}\right) \rightarrow L_{p_{2}}\left(M_{n}\right)$ the expression

$$
\left\|\|T\|=\sup _{m}\right\| i d \otimes T: L_{q}\left(M_{m}\right)\left[L_{p_{1}}\left(M_{n}\right)\right] \rightarrow L_{q}\left(M_{m}\right)\left[L_{p_{2}}\left(M_{n}\right)\right] \|
$$

is independent of q.

Features of Pisier's norm

Features of Pisier's norm

* Minkowski inequality;

Features of Pisier's norm

* Minkowski inequality;
* Stability by cb-maps,

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left\|\left\|i d_{L_{q}} \otimes \Phi\right\|\right\|=\|||\Phi|$;

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left\|\left\|i d_{L_{q}} \otimes \Phi\right\|\right\|=\|||\Phi|$;
* Duality $L_{p}\left[L_{q}\right]^{*}=L_{p^{\prime}}\left[L_{q^{\prime}}\right]$

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left\|\left\|i d_{L_{q}} \otimes \Phi\right\|\right\|=\|||\Phi| \|$;
* Duality $L_{p}\left[L_{q}\right]^{*}=L_{p^{\prime}}\left[L_{q^{\prime}}\right]\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$;

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left|\left\|i d_{L_{q}} \otimes \Phi\right\|\|=\|\right||\Phi| \|$;
* Duality $L_{p}\left[L_{q}\right]^{*}=L_{p^{\prime}}\left[L_{q^{\prime}}\right]\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$;
* $\Phi: L_{p_{1}} \rightarrow L_{p_{2}}$ bounded and completely positive. Then

$$
\left\|\Phi: L_{p_{1}}\left[L_{q}\right] \rightarrow L_{p_{2}}\left[L_{q}\right]\right\|=\|\Phi\| .
$$

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left|\left\|i d_{L_{q}} \otimes \Phi\right\|\|=\|\right||\Phi| \|$;
* Duality $L_{p}\left[L_{q}\right]^{*}=L_{p^{\prime}}\left[L_{q^{\prime}}\right]\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$;
* $\Phi: L_{p_{1}} \rightarrow L_{p_{2}}$ bounded and completely positive. Then

$$
\left\|\Phi: L_{p_{1}}\left[L_{q}\right] \rightarrow L_{p_{2}}\left[L_{q}\right]\right\|=\|\Phi\| .
$$

* $p \geq q, \Phi, \tilde{\Phi}$ completely positive.

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left|\left\|i d_{L_{q}} \otimes \Phi\right\|\|=\|\right||\Phi| \|$;
* Duality $L_{p}\left[L_{q}\right]^{*}=L_{p^{\prime}}\left[L_{q^{\prime}}\right]\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$;
* $\Phi: L_{p_{1}} \rightarrow L_{p_{2}}$ bounded and completely positive. Then

$$
\left\|\Phi: L_{p_{1}}\left[L_{q}\right] \rightarrow L_{p_{2}}\left[L_{q}\right]\right\|=\|\Phi\| .
$$

* $p \geq q, \Phi, \tilde{\Phi}$ completely positive. Then

$$
\left\|\Phi \otimes \tilde{\Phi}: L_{p}\left(M_{n^{2}}\right) \rightarrow L_{q}\left(M_{n^{2}}\right)\right\|=\|\Phi\|\|\tilde{\Phi}\| ;
$$

Features of Pisier's norm

* Minkowski inequality;
* Stability by $c b$-maps, i.e. $\left|\left\|i d_{L_{q}} \otimes \Phi\right\|\|=\|\right| \Phi \mid \|$;
* Duality $L_{p}\left[L_{q}\right]^{*}=L_{p^{\prime}}\left[L_{q^{\prime}}\right]\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$;
* $\Phi: L_{p_{1}} \rightarrow L_{p_{2}}$ bounded and completely positive. Then

$$
\left\|\Phi: L_{p_{1}}\left[L_{q}\right] \rightarrow L_{p_{2}}\left[L_{q}\right]\right\|=\|\Phi\| .
$$

* $p \geq q, \Phi, \tilde{\Phi}$ completely positive. Then

$$
\left\|\Phi \otimes \tilde{\Phi}: L_{p}\left(M_{n^{2}}\right) \rightarrow L_{q}\left(M_{n^{2}}\right)\right\|=\|\Phi\|\|\tilde{\Phi}\| ;
$$

* Interpolation, and connection with Haagerup tensor product.

Cb-entropy

Cb-entropy

Theorem (D-J-K-R) Let Φ be a channel. The cb-entropy

$$
S_{c b}(\Phi)=-\left.\frac{d}{d p}\left\|i d \otimes \Phi: L_{1}\left(M_{n} \otimes M_{n}\right) \rightarrow L_{1}\left[L_{p}\right]\right\|\right|_{p=1}
$$

is additive.

Cb-entropy

Theorem (D-J-K-R) Let Φ be a channel. The cb-entropy

$$
S_{c b}(\Phi)=-\left.\frac{d}{d p}\left\|i d \otimes \Phi: L_{1}\left(M_{n} \otimes M_{n}\right) \rightarrow L_{1}\left[L_{p}\right]\right\|\right|_{p=1}
$$

is additive.
Proof: Pisier's norm satisfies the Minkowski inequality

$$
L_{p}\left[L_{q}\right] \subset_{c b} L_{q}\left[L_{p}\right]
$$

Cb-entropy

Theorem (D-J-K-R) Let Φ be a channel. The cb-entropy

$$
S_{c b}(\Phi)=-\left.\frac{d}{d p}\left\|i d \otimes \Phi: L_{1}\left(M_{n} \otimes M_{n}\right) \rightarrow L_{1}\left[L_{p}\right]\right\|\right|_{p=1}
$$

is additive.
Proof: Pisier's norm satisfies the Minkowski inequality

$$
L_{p}\left[L_{q}\right] \subset_{c b} L_{q}\left[L_{p}\right]
$$

Warning: $S_{c b}\left(i d_{M_{n}}\right)=-\ln n$.

More on Pisier's norm-What is x

More on Pisier's norm-What is x

Let $\Phi: M_{n} \rightarrow M_{n}$ be a channel.

More on Pisier's norm-What is x

Let $\Phi: M_{n} \rightarrow M_{n}$ be a channel. Let $\left(e_{i j}\right)$ be the matrix units.

More on Pisier's norm-What is x

Let $\Phi: M_{n} \rightarrow M_{n}$ be a channel. Let $\left(e_{i j}\right)$ be the matrix units. Then

$$
x=\sum_{i j} e_{i j} \otimes \Phi\left(e_{i j}\right)
$$

is the Choi-matrix.

More on Pisier's norm-What is x

Let $\Phi: M_{n} \rightarrow M_{n}$ be a channel. Let $\left(e_{i j}\right)$ be the matrix units. Then

$$
x=\sum_{i j} e_{i j} \otimes \Phi\left(e_{i j}\right)
$$

is the Choi-matrix. $e_{i j}=|i\rangle\langle j|$
For positive x we know from operator space theory that

More on Pisier's norm-What is x

Let $\Phi: M_{n} \rightarrow M_{n}$ be a channel. Let $\left(e_{i j}\right)$ be the matrix units. Then

$$
x=\sum_{i j} e_{i j} \otimes \Phi\left(e_{i j}\right)
$$

is the Choi-matrix. $e_{i j}=|i\rangle\langle j|$
For positive x we know from operator space theory that
(1) $\left\|\mid \Phi: L_{1} \rightarrow L_{p}\right\|\|=\| \Phi\left\|_{c b}=\sup _{\|a\|_{2 p^{\prime}}=1}\right\|\left(a^{*} \otimes 1\right) x(a \otimes 1) \|_{L_{p}\left(M_{n} \otimes M_{n}\right)}$;

More on Pisier's norm-What is x

Let $\Phi: M_{n} \rightarrow M_{n}$ be a channel. Let $\left(e_{i j}\right)$ be the matrix units. Then

$$
x=\sum_{i j} e_{i j} \otimes \Phi\left(e_{i j}\right)
$$

is the Choi-matrix. $e_{i j}=|i\rangle\langle j|$
For positive x we know from operator space theory that
(1) $\left\|\left|\Phi: L_{1} \rightarrow L_{p}\right|\right\|=\|\Phi\|_{c b}=\sup _{\|a\|_{2 p^{\prime}}=1}\left\|\left(a^{*} \otimes 1\right) x(a \otimes 1)\right\|_{L_{p}\left(M_{n} \otimes M_{n}\right)}$;
(2)

$$
\begin{aligned}
& \left\|\mid \Phi: L_{1} \rightarrow L_{p}\right\| \|= \\
& \sup _{\sum_{k}\left\|h_{k}\right\|^{2}=1\|a\|_{2 p^{\prime}}=1} \inf _{k}\left\|\sum_{k} a^{-1} e_{k j} a^{-1} \otimes \Phi\left(\left|h_{k}\right\rangle\left\langle h_{j}\right|\right)\right\|_{p}
\end{aligned}
$$

Connection to capacity

Connection to capacity

The first expression becomes

$$
\omega_{p}(\Phi)=\sup _{\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}} \frac{\|i d \otimes \Phi(|\psi\rangle\langle\psi|)\|_{p}}{\|\mid(i d \otimes t r)(\psi\rangle\langle\psi|) \|_{p}} .
$$

Connection to capacity

The first expression becomes

$$
\omega_{p}(\Phi)=\sup _{\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}} \frac{\|i d \otimes \Phi(|\psi\rangle\langle\psi|)\|_{p}}{\|\mid(i d \otimes t r)(\psi\rangle\langle\psi|) \|_{p}} .
$$

For ψ and Φ fixed, let $\gamma_{12}=i d \otimes \Phi(|\psi\rangle\langle\psi|)$,

Connection to capacity

The first expression becomes

$$
\omega_{p}(\Phi)=\sup _{\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}} \frac{\|i d \otimes \Phi(|\psi\rangle\langle\psi|)\|_{p}}{\|\mid(i d \otimes t r)(\psi\rangle\langle\psi|) \|_{p}}
$$

For ψ and Φ fixed, let $\gamma_{12}=i d \otimes \Phi(|\psi\rangle\langle\psi|), \gamma_{1}=(i d \otimes \operatorname{tr})\left(\gamma_{12}\right)$ and $\gamma_{2}=(t r \otimes i d)\left(\gamma_{12}\right)$.

Connection to capacity

The first expression becomes

$$
\omega_{p}(\Phi)=\sup _{\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}} \frac{\|i d \otimes \Phi(|\psi\rangle\langle\psi|)\|_{p}}{\|(i d \otimes t r)(\psi\rangle\langle\psi|) \|_{p}}
$$

For ψ and Φ fixed, let $\gamma_{12}=i d \otimes \Phi(|\psi\rangle\langle\psi|), \gamma_{1}=(i d \otimes \operatorname{tr})\left(\gamma_{12}\right)$ and $\gamma_{2}=(\operatorname{tr} \otimes i d)\left(\gamma_{12}\right)$. Then we should compare

$$
-S_{c b}(\Phi)=\sup _{\psi}\left(S\left(\gamma_{1}\right)-S\left(\gamma_{12}\right)\right)
$$

Connection to capacity

The first expression becomes

$$
\omega_{p}(\Phi)=\sup _{\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}} \frac{\|i d \otimes \Phi(|\psi\rangle\langle\psi|)\|_{p}}{\|\mid(i d \otimes t r)(\psi\rangle\langle\psi|) \|_{p}}
$$

For ψ and Φ fixed, let $\gamma_{12}=i d \otimes \Phi(|\psi\rangle\langle\psi|), \gamma_{1}=(i d \otimes \operatorname{tr})\left(\gamma_{12}\right)$ and $\gamma_{2}=(\operatorname{tr} \otimes i d)\left(\gamma_{12}\right)$. Then we should compare

$$
-S_{c b}(\Phi)=\sup _{\psi}\left(S\left(\gamma_{1}\right)-S\left(\gamma_{12}\right)\right)
$$

with the capacity of a channel for transmission of classical information with unlimited entanglement

$$
C_{E A}(\Phi)=\sup _{\psi}\left(S\left(\gamma_{1}\right)+S\left(\gamma_{2}\right)-S\left(\gamma_{12}\right)\right)
$$

Connection to capacity

The first expression becomes

$$
\omega_{p}(\Phi)=\sup _{\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}} \frac{\|i d \otimes \Phi(|\psi\rangle\langle\psi|)\|_{p}}{\|\mid(i d \otimes t r)(\psi\rangle\langle\psi|) \|_{p}}
$$

For ψ and Φ fixed, let $\gamma_{12}=i d \otimes \Phi(|\psi\rangle\langle\psi|), \gamma_{1}=(i d \otimes \operatorname{tr})\left(\gamma_{12}\right)$ and $\gamma_{2}=(\operatorname{tr} \otimes i d)\left(\gamma_{12}\right)$. Then we should compare

$$
-S_{c b}(\Phi)=\sup _{\psi}\left(S\left(\gamma_{1}\right)-S\left(\gamma_{12}\right)\right)
$$

with the capacity of a channel for transmission of classical information with unlimited entanglement

$$
C_{E A}(\Phi)=\sup _{\psi}\left(S\left(\gamma_{1}\right)+S\left(\gamma_{2}\right)-S\left(\gamma_{12}\right)\right)
$$

and the coherent information

$$
C_{Q}(\Phi)=\sup _{\psi}\left(S\left(\gamma_{2}\right)-S\left(\gamma_{12}\right)\right)
$$

Interesting examples

Interesting examples

Let G be a finite group and $\lambda(g) e_{h}=e_{g h}$ the left regular representation on $\ell_{2}(G)$.

Interesting examples

Let G be a finite group and $\lambda(g) e_{h}=e_{g h}$ the left regular representation on $\ell_{2}(G)$. Let

$$
\tau\left(\sum_{g} a_{g} \lambda(g)\right)=a_{1}
$$

be the normalized trace.

Interesting examples

Let G be a finite group and $\lambda(g) e_{h}=e_{g h}$ the left regular representation on $\ell_{2}(G)$. Let

$$
\tau\left(\sum_{g} a_{g} \lambda(g)\right)=a_{1}
$$

be the normalized trace. Let $f: G \rightarrow \mathbb{R}$ be a positive definite function and

$$
\Phi_{f}(a)=\sum_{g \in G} f(g) \lambda(g)^{-1} x \lambda(g)
$$

Theorem

(with Neufang and Ruan) For $\lambda(f)=\sum_{g} f(g) \lambda(g)$ and positive definite f with $f(e)=1$ we have $S_{c b}\left(\Phi_{f}\right)=-\tau(\lambda(f) \ln \lambda(f))$

Interesting examples

Let G be a finite group and $\lambda(g) e_{h}=e_{g h}$ the left regular representation on $\ell_{2}(G)$. Let

$$
\tau\left(\sum_{g} a_{g} \lambda(g)\right)=a_{1}
$$

be the normalized trace. Let $f: G \rightarrow \mathbb{R}$ be a positive definite function and

$$
\Phi_{f}(a)=\sum_{g \in G} f(g) \lambda(g)^{-1} x \lambda(g)
$$

Theorem

(with Neufang and Ruan) For $\lambda(f)=\sum_{g} f(g) \lambda(g)$ and positive definite f with $f(e)=1$ we have $S_{c b}\left(\Phi_{f}\right)=-\tau(\lambda(f) \ln \lambda(f))$
a) Note that classical entropy is 0 .

Interesting examples

Let G be a finite group and $\lambda(g) e_{h}=e_{g h}$ the left regular representation on $\ell_{2}(G)$. Let

$$
\tau\left(\sum_{g} a_{g} \lambda(g)\right)=a_{1}
$$

be the normalized trace. Let $f: G \rightarrow \mathbb{R}$ be a positive definite function and

$$
\Phi_{f}(a)=\sum_{g \in G} f(g) \lambda(g)^{-1} \times \lambda(g)
$$

Theorem

(with Neufang and Ruan) For $\lambda(f)=\sum_{g} f(g) \lambda(g)$ and positive definite f with $f(e)=1$ we have $S_{c b}\left(\Phi_{f}\right)=-\tau(\lambda(f) \ln \lambda(f))$
a) Note that classical entropy is 0 . b) The result also holds for finite quantum groups and should give new channels with good error correction properties.

Carlen-Lieb norm

Carlen-Lieb norm

Theorem: (CL-2008) The expression

$$
\|x\|_{L_{p}^{+}\left(L_{q}\right)}=\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p}
$$

is convex on positive matrices for $1 \leq p \leq q \leq 2$ or $q=2$ and p arbitrary.

Carlen-Lieb norm

Theorem: (CL-2008) The expression

$$
\|x\|_{L_{p}^{+}\left(L_{q}\right)}=\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p}
$$

is convex on positive matrices for $1 \leq p \leq q \leq 2$ or $q=2$ and p arbitrary.

Remark: The Carlen-Lieb norm satisfies the Minkowski inequality.

Carlen-Lieb norm

Theorem: (CL-2008) The expression

$$
\|x\|_{L_{p}^{+}\left(L_{q}\right)}=\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p}
$$

is convex on positive matrices for $1 \leq p \leq q \leq 2$ or $q=2$ and p arbitrary.

Remark: The Carlen-Lieb norm satisfies the Minkowski inequality. However, I don't know the modified "cb-norm"

$$
\left\|i d \otimes T: L_{p}\left(L_{q_{1}}\right) \rightarrow L_{p}\left(L_{q_{1}}\right)\right\| .
$$

Carlen-Lieb norm

Theorem: (CL-2008) The expression

$$
\|x\|_{L_{p}^{+}\left(L_{q}\right)}=\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p}
$$

is convex on positive matrices for $1 \leq p \leq q \leq 2$ or $q=2$ and p arbitrary.

Remark: The Carlen-Lieb norm satisfies the Minkowski inequality. However, I don't know the modified "cb-norm"

$$
\left\|i d \otimes T: L_{p}\left(L_{q_{1}}\right) \rightarrow L_{p}\left(L_{q_{1}}\right)\right\|
$$

Definition: For selfadjoint x King and Koldan define

$$
\|x\|_{L_{p}\left(L_{q}\right)}=\inf _{x=y-z}\|y\|_{L_{p}^{+}\left(L_{q}\right)}+\|z\|_{L_{p}^{+}\left(L_{q}\right)}
$$

Carlen-Lieb norm

Theorem: (CL-2008) The expression

$$
\|x\|_{L_{p}^{+}\left(L_{q}\right)}=\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p}
$$

is convex on positive matrices for $1 \leq p \leq q \leq 2$ or $q=2$ and p arbitrary.

Remark: The Carlen-Lieb norm satisfies the Minkowski inequality. However, I don't know the modified "cb-norm"

$$
\left\|i d \otimes T: L_{p}\left(L_{q_{1}}\right) \rightarrow L_{p}\left(L_{q_{1}}\right)\right\|
$$

Definition: For selfadjoint x King and Koldan define

$$
\|x\|_{L_{p}\left(L_{q}\right)}=\inf _{x=y-z}\|y\|_{L_{p}^{+}\left(L_{q}\right)}+\|z\|_{L_{p}^{+}\left(L_{q}\right)} .
$$

Finally, $\|x\|_{L_{p}\left(L_{q}\right)}=\frac{1}{2}\left\|\left(\begin{array}{cc}0 & x \\ x^{*} & 0\end{array}\right)\right\|_{L_{p}\left(L_{q}\right)}$ for arbitrary x.

Relations

Relations

* $L_{p}\left(L_{1}\right)=L_{p}\left[L_{1}\right]$.

Relations

* $L_{p}\left(L_{1}\right)=L_{p}\left[L_{1}\right]$.
* (King-Koldan) $L_{p}\left(L_{q}\right) \subset L_{p}\left[L_{q}\right]$.

Relations

* $L_{p}\left(L_{1}\right)=L_{p}\left[L_{1}\right]$.
* (King-Koldan) $L_{p}\left(L_{q}\right) \subset L_{p}\left[L_{q}\right]$. The inclusion is strict (for infinite dimensions and $q=2(K K)$).

Relations

* $L_{p}\left(L_{1}\right)=L_{p}\left[L_{1}\right]$.
* (King-Koldan) $L_{p}\left(L_{q}\right) \subset L_{p}\left[L_{q}\right]$. The inclusion is strict (for infinite dimensions and $q=2(K K))$.
* (with Xu) Let $1<p<q<2$. Then we have an inclusion into an asymmetric space

$$
L_{p}\left(L_{q}\right) \subset L_{2 s}\left(M_{n}\right) L_{q}\left(M_{n} \otimes M_{n}\right) L_{2 r}\left(M_{n}\right) \quad 1 / p=1 / q+1 / 2 s+1 / 2 r
$$

Relations

* $L_{p}\left(L_{1}\right)=L_{p}\left[L_{1}\right]$.
* (King-Koldan) $L_{p}\left(L_{q}\right) \subset L_{p}\left[L_{q}\right]$. The inclusion is strict (for infinite dimensions and $q=2(K K))$.
* (with Xu) Let $1<p<q<2$. Then we have an inclusion into an asymmetric space

$$
\begin{aligned}
& L_{p}\left(L_{q}\right) \subset L_{2 s}\left(M_{n}\right) L_{q}\left(M_{n} \otimes M_{n}\right) L_{2 r}\left(M_{n}\right) \quad 1 / p=1 / q+1 / 2 s+1 / 2 r \\
& \text { and } r \neq s .
\end{aligned}
$$

Relations

* $L_{p}\left(L_{1}\right)=L_{p}\left[L_{1}\right]$.
* (King-Koldan) $L_{p}\left(L_{q}\right) \subset L_{p}\left[L_{q}\right]$. The inclusion is strict (for infinite dimensions and $q=2(\mathrm{KK})$).
* (with Xu) Let $1<p<q<2$. Then we have an inclusion into an asymmetric space

$$
L_{p}\left(L_{q}\right) \subset L_{2 s}\left(M_{n}\right) L_{q}\left(M_{n} \otimes M_{n}\right) L_{2 r}\left(M_{n}\right) \quad 1 / p=1 / q+1 / 2 s+1 / 2 r
$$ and $r \neq s$. Hence $L_{p}\left(L_{q}\right) \subset L_{p}\left[L_{q}\right]$ is strict in that case.

Relations II

Relations II

* (with Xu) Let $1 \leq p<q \neq 2$. There is no norm [|| \|] on the selfadjoint elements such that

$$
1 / C[\|x\|] \leq\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p} \leq C[\|x\|]
$$

Relations II

* (with Xu) Let $1 \leq p<q \neq 2$. There is no norm [|| \|] on the selfadjoint elements such that

$$
1 / C[\|x\|] \leq\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p} \leq C[\|x\|]
$$

Tricks: Tensor product.

Relations II

* (with Xu) Let $1 \leq p<q \neq 2$. There is no norm [\| \|] on the selfadjoint elements such that

$$
1 / C[\|x\|] \leq\left\|\left(i d \otimes \operatorname{tr}\left(x^{q}\right)\right)^{1 / q}\right\|_{p} \leq C[\|x\|] .
$$

Tricks: Tensor product. Central Limit theorem

$$
\left\|\Phi\left(x^{q}\right)^{1 / q}\right\|_{p}=\lim _{n} n^{-1 / q}\left\|\left(\sum_{k=1}^{n} \pi_{k}(x)^{q}\right)^{1 / q}\right\|
$$

for suitable *-homomorphism constructed from the Krauss matrices for Φ.

