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Motivation

. A classical channel is map T : Cn → Cn which is positivity preserving

and state preserving.

. T is positivity preserving (short positive) if f ≥ 0 implies T (f ) ≥ 0.

. T is state preserving if f ≥ 0 and
∑

k f (k) = 1 implies∑
j T (f )(j) = 1.

. A channel is given by a matrix T (f )(j) =
∑

jk ajk fk such that

ajk ≥ 0 and
∑

j ajk = 1 for all j .
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Minimal entropy

/ If f = (fk) is a state. Then the entropy is given by

S(f ) =
∑
k

fk(− ln fk) .

/ Note: Let `np be Cn equipped with the p-norm

‖f ‖p =

(∑
k

|fk |p
)1/p

Then
∑

k fk = 1 implies

S(f ) = − d

dp
‖f ‖p

∣∣∣∣
p=1

.
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/ The minimal entropy of a channel is

Smin(T ) = min
f state

S(T (f )) .

/ Key observation

−Smin(T ) = max
f

d

dp
‖T (f )‖p

∣∣∣∣
p=1

=
d

dp
‖T : `1 → `p‖

∣∣∣∣
p=1

.

Here the norm of a map T : X → Y is given by

‖T‖ = sup
‖x‖≤1

‖Tx‖Y .
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Abstract properties of `p(`q)

The norm in `p(`q) is given by

‖(aij)‖`p(`q) =

∑
i

(
∑

j

|aij |q)p/q

1/q

.

a) Let p ≤ q. Then

`p(`q) ⊂ `q(`p) (aij) 7→ (aji ) .

(That follows is the triangle inequality in `p/q.)

b) Let T : `q1 → `q2 . Then

‖id ⊗ T : `p(`q1)→ `p(`q2)‖ = ‖T‖ .

For T (f )(j) =
∑

k ajk fk we have

(id ⊗ T )((fik))i ,k = (
∑
k

ajk fik)ij .
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Flipping tensors

Theorem: Let p ≤ q and T : `np → `nq, S : `mp → `mq . Then

‖T ⊗ S : `nm
p → `nm

q ‖ = ‖T‖‖S‖ .

Proof: Let flip : Cn ⊗ Cm → Cm ⊗ Cn be the flip map

flip(x ⊗ y) = y ⊗ x . Then by Minkowski

‖ flip(id ⊗ S) : `nm
p → `mq (`np)‖ ≤ ‖S‖,

and

‖ flip(id ⊗ T ) : `mq (`np)→ `nm
q ‖ ≤ ‖T‖.

Hence T ⊗ S = flip(id ⊗ T ) flip(id ⊗ S) satisfies

‖T ⊗ S‖ ≤ ‖T‖‖S‖ .
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Application: Chain rule

Let S ,T be channels

− Smin(S ⊗ T )

d

dp
‖T ⊗ S : `nm

1 → `nm
p ‖
∣∣∣∣
p=1

=
d

dp
‖T : `n1 → `np‖

∣∣∣∣
p=1

‖S : `m1 → `mp ‖

= ‖T : `n1 → `n1‖
d

dp
‖S : `m1 → `mp ‖

∣∣∣∣
p=1

+
d

dp
‖T : `n1 → `np‖

∣∣∣∣
p=1

‖S : `m1 → `m1 ‖

= −Smin(T )− Smin(S) .
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What is needed?

Let Vp a family of spaces and ||| ||| a norm on linear maps such that

- Let Vp(Vq) ⊂ a family of spaces such that

Vp(Vq) ⊂ Vq(Vp)

- and ||| id ⊗ T : Vr (X )→ Vr (Y ) ||| = |||T |||.

Theorem: Under the assumptions above

Smin(T ) = − d

dp
|||T : V1 → Vp |||

is additive on the class of maps satisfying |||T : V1 → V1 ||| = 1.
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Quantum
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Quantum Channel

A channel is a completely positive map Φ : Mn → Mn such that

tr(Φ(f )) = tr(f )

holds for every state f .

The energy of f is given by

S(f ) = −tr(f ln(f )) = − d

dp
tr(f p)1/p

∣∣∣∣
p=1

.

The minimal energy of Φ is given by

Smin(Φ) = inf
tr(f )=1

S(Φ(f )) .
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One can not have it all

Theorem (Haydon) The p norm

‖Φ : L1(Mn, tr)→ Lp(Mn, tr)‖

is not multiplicative.

Theorem (Hastings) The minimal entropy is not additive.

Conclusion: There is no family of norms on Lp(Mn, tr)⊗ Lq(Mn, tr)

satisfying Minkowski’s inequality and

‖id ⊗ Φ : Lp(L1)→ Lp(Lq)‖ = ‖Φ‖ .
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Pisier’s norm

X Let p ≤ q and 1
p = 1

q + 1
s . Then

‖x‖Lp [Lq ] = inf
x=(a⊗1)y(b⊗1)

‖a‖2s‖y‖Lq(Mn⊗Mm)‖b‖2s .

For positive matrix x ∈ Mnm we may assume a = b∗.

X Let p ≥ q and 1
q = 1

q + 1
s . Then

‖x‖Lp [Lq ] = sup
‖a‖2s‖b‖2s≤1

‖(a⊗ 1)y(b ⊗ 1)‖Lq(Mn⊗Mm) .

For positive matrix x ∈ Mnm we may assume a = b∗.

X (Theorem) For T : Lp1(Mn)→ Lp2(Mn) the expression

|||T ||| = sup
m
‖id ⊗ T : Lq(Mm)[Lp1(Mn)]→ Lq(Mm)[Lp2(Mn)]‖

is independent of q.
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Features of Pisier’s norm

Y Minkowski inequality;

Y Stability by cb-maps, i.e.
∣∣∣∣∣∣ idLq ⊗ Φ

∣∣∣∣∣∣ = |||Φ |||;

Y Duality Lp[Lq]∗ = Lp′ [Lq′ ] ( 1
p + 1

p′ = 1);

Y Φ : Lp1 → Lp2 bounded and completely positive. Then

‖Φ : Lp1 [Lq]→ Lp2 [Lq]‖ = ‖Φ‖ .

Y p ≥ q, Φ, Φ̃ completely positive. Then

‖Φ⊗ Φ̃ : Lp(Mn2)→ Lq(Mn2)‖ = ‖Φ‖‖Φ̃‖ ;

Y Interpolation, and connection with Haagerup tensor product.
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Cb-entropy

Theorem (D-J-K-R) Let Φ be a channel. The cb-entropy

Scb(Φ) = − d

dp
‖id ⊗ Φ : L1(Mn ⊗Mn)→ L1[Lp]‖

∣∣∣∣
p=1

is additive.

Proof: Pisier’s norm satisfies the Minkowski inequality

Lp[Lq] ⊂cb Lq[Lp] .

Warning: Scb(idMn) = − ln n.
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More on Pisier’s norm-What is x

Let Φ : Mn → Mn be a channel. Let (eij) be the matrix units. Then

x =
∑
ij

eij ⊗ Φ(eij)

is the Choi-matrix. eij = |i〉〈j |
For positive x we know from operator space theory that

1 |||Φ : L1 → Lp ||| = ‖Φ‖cb = sup‖a‖2p′=1 ‖(a∗⊗1)x(a⊗1)‖Lp(Mn⊗Mn);

2

|||Φ : L1 → Lp ||| =

sup∑
k ‖hk‖2=1

inf
‖a‖2p′=1

‖
∑
k

a−1ekja
−1 ⊗ Φ(|hk〉〈hj |)‖p
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Connection to capacity

The first expression becomes

ωp(Φ) = sup
ψ∈Cn⊗Cn

‖id ⊗ Φ(|ψ〉〈ψ|)‖p
‖|(id ⊗ tr)(ψ〉〈ψ|)‖p

.

For ψ and Φ fixed, let γ12 = id ⊗ Φ(|ψ〉〈ψ|), γ1 = (id ⊗ tr)(γ12) and

γ2 = (tr ⊗ id)(γ12). Then we should compare

−Scb(Φ) = sup
ψ

(S(γ1)− S(γ12))

with the capacity of a channel for transmission of classical information

with unlimited entanglement

CEA(Φ) = sup
ψ

(S(γ1) + S(γ2)− S(γ12))

and the coherent information

CQ(Φ) = sup
ψ

(S(γ2)− S(γ12))
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with unlimited entanglement

CEA(Φ) = sup
ψ

(S(γ1) + S(γ2)− S(γ12))

and the coherent information

CQ(Φ) = sup
ψ

(S(γ2)− S(γ12))
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Interesting examples

Let G be a finite group and λ(g)eh = egh the left regular representation on

`2(G ). Let

τ(
∑
g

agλ(g)) = a1

be the normalized trace. Let f : G → R be a positive definite function and

Φf (a) =
∑
g∈G

f (g)λ(g)−1xλ(g) .

Theorem

(with Neufang and Ruan) For λ(f ) =
∑

g f (g)λ(g) and positive definite f

with f (e) = 1 we have Scb(Φf ) = −τ(λ(f ) lnλ(f ))

a) Note that classical entropy is 0. b) The result also holds for finite

quantum groups and should give new channels with good error correction

properties.
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Carlen-Lieb norm

Theorem: (CL-2008) The expression

‖x‖L+
p (Lq)

= ‖(id ⊗ tr(xq))1/q‖p

is convex on positive matrices for 1 ≤ p ≤ q ≤ 2 or q = 2 and p arbitrary.

Remark: The Carlen-Lieb norm satisfies the Minkowski inequality.

However, I don’t know the modified ”cb-norm”

‖id ⊗ T : Lp(Lq1)→ Lp(Lq1)‖ .

Definition: For selfadjoint x King and Koldan define

‖x‖Lp(Lq) = inf
x=y−z

‖y‖L+
p (Lq)

+ ‖z‖L+
p (Lq)

.

Finally, ‖x‖Lp(Lq) = 1
2‖

(
0 x

x∗ 0

)
‖Lp(Lq) for arbitrary x .
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Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq]. The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s. Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq]. The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s. Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq].

The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s. Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq]. The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s. Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq]. The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s. Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq]. The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s.

Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations

X Lp(L1) = Lp[L1].

X (King-Koldan) Lp(Lq) ⊂ Lp[Lq]. The inclusion is strict (for infinite

dimensions and q = 2 (KK)).

X (with Xu) Let 1 < p < q < 2. Then we have an inclusion into an

asymmetric space

Lp(Lq) ⊂ L2s(Mn)Lq(Mn ⊗Mn)L2r (Mn) 1/p = 1/q + 1/2s + 1/2r

and r 6= s. Hence Lp(Lq) ⊂ Lp[Lq] is strict in that case.

Marius Junge (University of Illinois) Mixed norms and entropy Fields Institute Toronto, July 19 / 20



Relations II

X (with Xu) Let 1 ≤ p < q 6= 2. There is no norm [‖ ‖] on the

selfadjoint elements such that

1/C [‖x‖] ≤ ‖(id ⊗ tr(xq))1/q‖p ≤ C [‖x‖] .

Tricks: Tensor product. Central Limit theorem

‖Φ(xq)1/q‖p = lim
n

n−1/q‖(
n∑

k=1

πk(x)q)1/q‖

for suitable ∗-homomorphism constructed from the Krauss matrices

for Φ.
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