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n In Physics and information theory we commonly deal with restrictions on the 

physical processes/operations available. 
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for a group G 
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n Given some set of allowed operations on a physical system, which

transformations from one state of the system into another can be realized? 

When and how can a resource be converted from one form into another?

n It is an extremely challenging question in general!

Resource Theories



n Usual approach: Restricted set of operations          Resource

n This talk: Resource            Restricted set of operations: Any operation which 
cannot create the resource

WHY??!!

Leads in some cases to a much simpler theory, which at the same

time still gives relevant information about original setting
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Quantum Entanglement
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Cannot be created by local operations and classical communication (LOCC)
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LOCC asymptotic entanglement transformations
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Bipartite pure state entanglement transformations

• Transformations are reversible in    

the asymptotic limit

•
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Mixed state entanglement

• Entanglement cost:
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Mixed state entanglement

• Distillable entanglement:

2 (| 00 |11 ) / 2φ = > + > ρ
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Mixed state entanglement

Manipulation of mixed state entanglement under LOCC is irreversible

• In general:                                    

• Extreme case, bound entanglement:                                                  

• No unique measure for entanglement manipulation under LOCC

)()( ρρ DC EE >

0)(,0)( => ρρ DC EE

(Horodecki3 98,  Vidal&Cirac 01)



Entanglement beyond LOCC

• In many cases it’s helpful to consider the manipulation of entanglement 

under larger classes of quantum operations than LOCC, e.g. 

1. Separable Operations 

2. PPT Operations

3. LOCC + bound entanglement

Rains 97, 99, 00,   Bennett et al 98  Eggeling,Vollbrecht, Werner, Wolf 01

Audenaert, Plenio, Eisert 03,   Horodecki, Oppenheim, Horodecki 03

Ishizaka 04, Ishizaka&Plenio 04,05, Matthews&Winter 08

Is there a non-trivial class of operations for which we recover the
total order found in pure bipartite states for all entangled states?



What’s the largest class of operations which does not create entanglement?                                                 



Non-entangling operations

• Definition: A quantum operation (trace preserving completely positive map)

is non-entangling if              

is  separable for every separable state 
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More generally,  

What’s the largest class of operations which does not create a resource?                                                 

Let                                denote the non-resource states,
and with some abuse of notation, denote by M this family of sets

Any state not in M is a resource

We assume M is closed

)( n
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Resource non-Generating Operations

• Definition: A quantum operation (trace preserving completely positive map)

is resource non-generating if             is a non-resource

state for every non-resource state            

)()(: HDHD →Λ )(σΛ
σ



Two measures of resource

• The relative entropy of M-resource is given by 
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Vedral&Plenio 97



Two measures of resource

• The relative entropy of M-resource is given by 

•The robustness of M-resource is given by
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Asymptotically resource non-generating operations

• Definition: A quantum operation      is    -resource non-generating if  

for every non-resource state  

Λ
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• We say that a sequence of maps           is asymptotically resource  

non-generating if each          is      -resource non-generating and                         
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• Optimal rate of conversion under asymptotically resource non-generating 

operations: 

• denotes the class of    - resource non-generating operations 
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Asymptotically resource non-generating operations



The main result

Under a few assumptions on M,  for every quantum states               σρ ,
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The main idea

The main idea is to connect the convertibility of resource states to the 

distinguishability of resource states from non-resource ones 

ρ



The main idea

ρ σ
• Quantum Hypothesis Testing: given several i.i.d. copies of a quantum

state and the promise that you are given either       (null hypothesis) or     

(alternative hypothesis), decide which you have



The main idea

• Quantum Hypothesis Testing: given several i.i.d. copies of a quantum

state and the promise that you are given either       (null hypothesis) or              

(alternative hypothesis), decide which you have

• Quantum Stein’s Lemma: 

ρ σ

Hiai&Petz 91 and Ogawa&Nagaoka 99
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The main idea

• Resource Hypothesis Testing: given a sequence of quantum states 

acting on            , with the promise that either   is a sequence

of unknown non-resource states or                    , for some resource state ,

decide which is the case.  

Probabilities of Error:
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The main idea

• We say a resource theory defined by the non-resource states M has the         

exponential distinguishing (ED) property if for every resource state 
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Theorem I

• Theorem: If M  satisfies ED, then 

and for       such that 
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Theorem I

• Theorem: If M  satisfies ED, then 

and for every      such that
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The theorem is completely general. 

The trouble is of course how to prove that the set of non-resource
of interest satisfies ED... Difficult in general!



Theorem II

• Theorem: If M satisfies 

1.Closed and convex and contain the max. mixed state

2.If                 

3.If 

4.If    
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Theorem II
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Theorem II

• Theorem: If M satisfies 

1.Closed and convex and contain the max. mixed state

2.If                 

3.If 

4.If    

mnmn MMM +∈⊗⇒∈∈ πσπσ ,

nnn MtrM ∈⇒∈ ++ )(11 σσ
nnn SMPPM ∈∀∈⇒∈ πσσ ππ ,

Then ED holds true,                                ,  and by the Theorem I )()( ρρ ∞= MEE

)(/)()( ρσσρ ∞∞=→ MM EER

Proof: Original quantum Stein’s Lemma + exponential de Finetti theorem + 
Lagrange duality



Strictly non-resource generating maps

• Do we really need to allow the generation of a small amount of 
resource to obtain asymptotic reversible transformations?

• Equivalent to 
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The choice of RM

• Do we really need to use          to quantify how much resource we 
allow to be generated, or is the result robust to the choice of the  
measure? 

• For the case of entanglement, we can show that if we use the 
minimum trace distance to the set of separable states, or any 

asymptotically continuous entanglement measure, then the theory 
is trivial:  

• Whether the result holds true for more stringent measures than 
is an open question. Example: 

MR
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Application 1

We can show that for every entangled state                      , by 
constructing a distillation protocol under asymptotically non-entangling 
maps with a non-zero rate. 
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Application 1

We can show that for every entangled state                      , by 
constructing a distillation protocol under asymptotically non-entangling 
maps with a non-zero rate. Then,

0)(/)()()( >=→≥→ ∞∞ ρσσρσρ MMLOCC EERR

The mathematical definition of multipartite entanglement 
is equivalent to its operational definition

Bipartite case solved by Yang, Horodecki, Horodecki, Synak-Rydtke in 2005
Independent proof by Marco Piani (see arXiv:

0)(, >∞ ρρ RE



Application 2

Recently Beige and Shor found the following application of our main result:

Given a entanglement criterion which

• is necessary for separability, but not sufficient
• if       is not detected, then              is not detected either

(e.g. PPT test, realignment test, Doherty et al hierarchy of tests, etc)

Then for every           there is a state     not detected by the test such that   
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Application 2

Proof Sketch: Take any entangled state     not detected. We show

Consider the optimal sequence of asymptotically non-entangling maps
for distilling     :
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Open Problem:

)()()(
?

σρσρ ∞∞∞ +=⊗ RRR EEE



Open Problem:

)()()(
?

σρσρ ∞∞∞ +=⊗ RRR EEE
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Joint work with Michal Horodecki

Assuming a certain conjecture:

Would imply           is strongly super-additive

Would also imply  
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Define ρπππρ =−= )(:)()(inf)( 122212 trEECE RRR

Joint work with Michal Horodecki

Assuming a certain conjecture:

Would imply           is strongly super-additive

Would also imply

and error amplification for QMA(2)  

)()( ρρ CRER =∞

∞
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2)2()( ≥∀= kQMAkQMA

Yang, Horodeki 07

Aaronson et al 09



The conjecture

For every projector P acting on

For   
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Thank you!


