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» L, (0 < p < 1) Minimization and Applications

1/p

Ixlp={ > bl?

1<j<n

» Low-Rank Semidefinite Programming and Applications

(SDP) minimize Ape X
subject to Aje X = b; i=1,...,m,
X = 0.

» Universal Rigidity and Graph Realization
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Consider the problem:

Minimize p(x) = Z XJP

1<<n
Subject to Ax = b, (1)
x>0,
and
Minimize |x|[5 = Y |x?
1<j<n (2)
Subject to Ax = b;

where data A € R™*" b € R™, and parameter 0 < p < 1.
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Application and Motivation

The original goal is to minimize ||x||o, the size of the support set of

x, for
» Sparse image reconstruction

» Sparse signal recovering

» Compressed sensing
which is known to be an NP-Hard problem.
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Approximation of ||x||o

> ||x||1 has been used to approximate |x||o, and the relaxation
can be exact under certain strong conditions (Donoho 2004,
Candes and Tao 2005, etc). The relaxation model is actually
a linear program.

» Theoretical and empirical computational results indicate that
|||, approximation, say p = .5, have better performances
under weaker conditions, and it is solvable equally efficiently
in practice (Fan and Li 2001, Chartrand 2009, Chen et al.
2009, etc).
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Image Reconstruction Bounds |

ming  f(x) = [[Ax — b|3 + Allx]5,

Theorem
(Chen et al. 2009) Let [ be a positive constant such that for a

local minimizer x*: ||A" (Ax* — b)|| < 3, and let L = % )

Then, the local minimizer x* possesses the property

x'e(=LL) = x' =0, jeN.
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Image Reconstruction Bounds Il

Theorem

(Chen et al. 2009) Let L; = (

1

1— =
M) ’ ,j € N. Then for
2] |aj
any local minimizer x* the following statements hold.
» (1) xf € (-LyL) = x'=0, jeEN.
> (2) The columns of the sub-matrix Ag € R™*B| of A are
linearly independent, where B =support(x*).

> (3) Let ||aj|| =1 for all i € N and x* be any local minizer
satisfying f(x*) < f(0). Then, the number of nonzero entries
in x* is bounded by

o () ()

Yinyu Ye, Fields 2009 Workshop on Complexity of Numerical Computation



Image Reconstruction Bounds Il

These two theorems establish relations between model parameters
p, X and the desired degree of sparsity of the solution. In
particular, it gives a guidance on how to choose the combination of
A and p.

The L1 minimization does not have such a threshold control on the
final solution.

Then, is L, minimization easier to solve than Ly minimization?
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The Hardness |

Theorem
(Jiang and Y 2009) For a given real number v, it is NP-hard to
decide if the minimal objective value of problem (1):

Minimize p(x) = Z x7
1<j<n
Subject to Ax = b,
x>0,

is less than or equal to v.

Yinyu Ye, Fields 2009 Workshop on Complexity of Numerical Computation



An instance of the partition problem can be described as follows:
given a set S of integers or rational numbers {a1, as,...,a,}, is
there a way to partition S into two disjoint subsets S; and S, such
that the sum of the numbers in S; equals the sum of the numbers
in 52?

Let vector a = (a1, a2,...,a,) € R". Then, we consider the
following reduced minimization problem in form (1):

Minimize P(x,y) = Z (7 +yF)

1<j<n
Subject to a’(x—y)=0,
Xj+yp =1, VJ,
x,y > 0.
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Proof continued

From the strict concavity of the objective function,
X\ +y > xi+y =1, V),

and they are equal if and only if (x; = 1,y; = 0) or

(x; =0,y; =1). Thus, P(x,y) > n for any (continuous) feasible
solution; and if there is a feasible solution pair (x,y) such that
P(x,y) < n, it must be true x7 + y =1 = x; + y; for all j so that
(x,y) is a binary solution, (x; = 1,y; = 0) or (x; =0,y; = 1),
which generates an equitable partition of the entries of a.

On the other hand, if the entries of a has an equitable partition,
then the reduced problem must have a binary solution pair (x,y)
such that P(x,y) = n. Therefore, it is NP-hard to decide if there is
a feasible solution (x,y) such that its objective value P(x,y) < n.
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The Hardness |l

For the same partition problem, consider the following reduced
minimization problem in form (2):

Minimize Z (Ixi[P + |y;1P)

1<j<n
Subject to a’(x—y) =0,
xi+y=1,Vj.

Note that this problem has no non-negativity constraints on
variables (x,y). However, for any feasible solution (x,y) of the
problem, we still have

X P+ ylP = x +y; =1, V).

This is because when x; + y; = 1, the minimal value of
Ixi|P + |yj|P is 1, and it equals 1 if and only if (x; = 1,y; = 0) or
(xi=0,y;=1).
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The Hardness Il

Thus, it remains NP-hard to decide if there is a feasible solution
(x,y) such that the objective value of the reduced problem is less
than or equal to n. This leads to:

Theorem
(Jiang and Y 2009) For a given real number v, it is NP-hard to
decide if the minimal objective value of problem (2):

Minimize ||x|[5 =Y |x?
1<j<n
Subject to Ax = b;

is less than or equal to v.
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We now turn our attention to local minimizers.

In general, finding a local minimizer, or checking if a solution is a
local minimizer, remains NP-hard.

Theorem

The set of all basic feasible solutions of (1) is exactly the set of its
all local minimizers. The set of all basic solutions of (2) is exactly
the set of its all local minimizers.
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Interior-Point Algorithms

Naturally, one would start from an interior-point feasible solution
such as the analytic center x° of the feasible polytope. Without of
loss of generality, let x° = e, the vector of all ones.

Consider the Karmarkar potential function
¢(x) = plog <ZJ"7:1 XJF - Z) - Zle log x;
= plog(p(x) — z) — p>_[_; log x;,

where z is a lower bound on the global minimal objective value of
(1) and parameter p > n. For simplicity, we set z = 0 in the rest of
discussion.
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Potential Function for L, Minimization

n n n
¢(x) = plog [ D xP| = logx; = plog(p(x)) — > _ log x;.
j=1 j=1 j=1
1/n
21 .
= P
.2\
j=1
so that
|
Iog Z log xj > noen

Thus, if ¢(x) < (p — n/p)log(e) + %, we must have p(x) <,
which implies that x must be an e-global minimizer.
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Complexity of the Potential Reduction Algorithm

Theorem

If we choose p > % then the potential redulction algorithm will
return an e-stationary point of (1) in no more than O(” log %)
iterations for any given € < p.
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Semidefinite Programming

Consider the Semidefinite Programming problem:

(SDP) minimize Age X
subject to A; e X = b; i=1,..
X=0

'7m’

where Ap, A1, ..

., Am are given n X n symmetric matrices and
by, ..

., bm are given scalars, and

Ae X = Z ajx; = trace(AT X).
i
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The Dual of SDP

The dual problem to (SDP) can be written as:

(SDD) maximize b’y
subject to > " yiAi +S = Ao, S =0,

where y = (y1;...;ym) € R™.
Let X* and S* be a solution pair with zero duality gap. Then
rank(X™) + rank(S*) < n.

Thus, if there is S* such that rank(S5*) > n — d, then the max
rank of X* is bounded above by d.
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Known Results

» The SDP interior-point algorithm finds an e-approximate
solution where solution time is linear in log(1/€) and
polynomial in m and n.

» Barvinok 95 (earlier results ?)showed that if the problem is
solvable, then there exists a solution X* whose rank r satisfies
r(r+1) <2m. (A constructive proof can be based on
Carathéodory's theorem.)

» And the rank bound is essentially tight.

» A such optimal solution can be found in polynomial time;
Pataki (1999), and Alfakih/Wolkowicz (1999).
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Fixed-Low-Rank SDP Solution?

» We are interested in finding a fixed low-rank (say d) solution
to the above system.

» However, there are some issues:

» Such a solution may not exist!
» Even if it does, one may not be able to find it efficiently.

» So we consider an approximation of the problem.
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Approximate Low-Rank SDP Solution

For simplicity, consider finding X satisfies
A,‘OX:b,' izl,...,m, XEO

where A1, ..., A, are positive semidefinite matrices and scalars
(b1,...,bm)>0.

We consider finding an X = 0 of rank at most d that satisfies
every SDP constraint approximately and uniformly:

B(m,n,d)- b <AieX<a(mnd)-b Vi=1,...m

Here, a(-) > 1 and 3(-) € (0, 1] are called the distortion factors.
Clearly, the closer are both to 1, the better the solution quality.
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Approximate Low-Rank Theorem (So, Y and Zhang 07)

Let r = max{rank(A;)}. Then, for any d > 1, there exists an
= 0 with rank(X) < d such that

1+ 12'”24”") for 1 < d < 12In(4mr)
a(m,n,d) = 121n(4
1+ 12In(4mr) for d > 121In(4mr)
! for1 < d <4l
W Orl_d_4n(2m)
d) =
) ma ! 4In(2m) for d > 4In(2m)
X — —_—
e(2m)?/d’ d

Moreover, there exists an efficient randomized algorithm for
finding such an X.
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» There is always a low-rank approximate SDP solution with
bounded distortion factors.

» As the allowable rank increases, the distortion become smaller
and smaller. In particular, when d = O(In(m)), the distortion
factors are both equal a constant close to 1.

» The lower distortion factor is independent of n and the rank
of Ajs.

» The factors are sharp; but they can be improved if we only
consider one—sided inequalities.

» This result contains as special cases several well-known results
in the literature.
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Low Rank SDP Applications

The low—rank SDP problem arises in many applications, e.g.:

» metric embedding/dimension reduction (e.g., Johnson and
Lindenstrauss 84, Matousek 90, Sun, Xiao and Boyd 06, etc.)

> approximating non-convex (real, complex) quadratic
optimization (e.g., Goemans and Williamson 95, Nesterov 98,
Y 98, Nemirovskii, Roos and Terlaky 99, Luo, Sidiropoulos,
Tseng and Zhang 06, So, Zhang and Y 07, etc.)

» distance matrix completion (e.g., Laurent 97, Alfakih,
Khandani and Wolkowicz 99, etc.)
> low-rank matrix completion (e.g., ISMP 2009 ...)

» graph realization/sensor network localization (e.g., Biswas and
Y 04, So and Y 04, Biswas, Toh, and Y 06, Jin and Saunders
07, Wang, Zheng, Boyd and Y 08, Kim, Kojima and Waki 08,
Pong and Tseng 08, Krislock and Wolkowicz 08, etc.)
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Graph Realization and Sensor Network Localization

Given a graph G = (V, E) and sets of non—negative weights, say
{djj : (i,j) € E}, the goal is to compute a realization of G in the
Euclidean space R for a given low dimension d, i.e.

> to place the vertices of G in RY such that

» the Euclidean distance between a pair of adjacent vertices
(i,J) equals to (or bounded by) the prescribed weight dj; € E.

In what follows, we assume that the Euclidean distance
measurements are drawn from a graph already in RY with general
positions.
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Unit-Disk Sensor Network: 50-node in 2-D

o
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SDP Formulation

Find a symmetric matrix Z € R"*" such that

(ei—ej)(ei—e) e Z=d}, VijeE, i<},
Z =0, rank(Z) =d.

SDP Relaxation:

minimize /e Z
s.t. (e,- —ej)(e,- —ej)ToZ = d,-JZ-, VijjekE, i</,
Z > 0.
We say that the graph is uniquely d-realizable if the SDP
relaxation returns a unique rank-d solution, and the graph is
strongly d-realizable if, in addition, its dual has a rank-d slack
matrix.
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Two sensor-Three anchors: Strongly Realizable

R
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Two sensor-Three anchors: Realizable but not Strongly

151

05

R
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Two sensor-Three anchors: Not Realizable
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Two sensor-Three anchors: Strongly Realizable
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Generically Unique Realizability

» The d-realizability depends on graph E combinatorics as well
as distance measurements dj;.

» |s there a sparse graph that is generically d-realizable, that is,
independent of distance measurements?

» The degree of freedom of rank-d symmetric and PSD matrix
is d - n, could we use only O(d - n) distance measurements to
realize a graph?
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Trilateration Graphs

A trilaterative ordering in dimension d for a graph G is an ordering
of the vertices 1,--- ., d +1,d+2,--- ,n such that Ky.1, the
complete graph of the first d + 1 vertices, is in G, and every vertex
j > d+1 has d + 1 edges connected to its preceding vertices on
the sequence.

Graphs for which a trilaterative ordering exists in dimension d are
called trilateration graphs in dimension d (or d-trilateration
graphs). A spanning d-trilateration graph is a d-trilateration and
contains every vertex of the graph.

Theorem

(Zhu, So and Y 2009) The spanning trilateration graph in
dimension d is generically d-realizable. Moreover, it is a near
optimal (with only (d + 1) - n edges) in terms of
information-theoretical complexity and generically d-realizable
graph.
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The Kissing Problem

» Given a unit center sphere, the maximum number of unit
spheres, in d dimensions, can touch or kiss the center sphere?

» General Solutions does not exist.

» Delsarte Method uses linear programming to provide an upper
bound on the number of spheres.

» K(1)=2, K(2)=6, K(3)= 12, K(8) = 240, K(24) = 196650.
» K(4) = 24: proved using Delsarte Method by Oleg Musin only
3 years ago.

» For other dimensions, lower bounds have been provided by
constructing a lattice structure. There also exists a bound
using the Riemann zeta function, but is non-constructive.
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The Kissing Problem as Realization

Given n unit-balls, find the lowest-rank solution matrix to

(e,— —ej)(e,- — ej)T o/ >1,Vi<j<n,
ee/ eZ =1,Vi,
Z =0.

From the Approximate Low-Rank Theorem,

Corollary

One can have n-balls kissed in dimension-O(log(n)) space where
the distance error is below a fixed e.
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Current Work: PSD Matrix Completion with other

Measurements

Find a symmetric matrix Z € R™" such that
e,-eJ-ToZ:a;j, Vi,jeE, i</,
Z >0, rank(Z) =d.

» Covariance matrix
» Motion structure reconstruction

» Recommendation system
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