Zebra Fish, Tumor Growth, and Algebraic Geometry

Andrew Sommese University of Notre Dame

www.nd.edu/~sommese

Fields Institute Toronto, October 21, 2009

Thank you for permission to use slides:

Slides 28 - 30: Charles Wampler

- Slides 34 40: Jonathan Hauenstein
- Slide 48: Wenrui Hao
- Slides 52 & 65: Bei Hu

Numer. Alg. Geometry Collaborators

Daniel Bates* (CSU)
Jonathan Hauenstein* (Fields)
Chris Peterson (CSU)
Charles Wampler* (GM R & D)

*Bertini Team

Biological Modeling Collaborators

Wenrui Hao
Jonathan Hauenstein
Bei Hu
Yuan Liu
Yong-Tao Zhang

• Reference on the area up to 2005:

- A.J. Sommese and C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, (2005), World Scientific Press.
- Survey covering other topics
 - T.Y. Li, Numerical solution of polynomial systems by homotopy continuation methods, in *Handbook of Numerical Analysis*, Volume XI, 209-304, North-Holland, 2003.

Numerical Algebraic Geometry

- Solution Sets
- Homotopy Continuation
- Bertini
- Zebra Fish
- Tumor Growth
- Algebraic Geometry

Numerical Algebraic Geometry

Robotics/Mechanism Theory

- **Goal:** To numerically manipulate algebraic sets
- Technical Challenge: To combine high performance numerics with algebraic geometry
- Applications:
 - Robotics and Mechanism Theory
 - Chemical Reactions including combustion
 - Computation of algebraic-geometric invariants
 - Solution of discretizations of nonlinear differential equations

graphics on right from Sommese-Wampler Book

Combustion

$O_2 \rightleftharpoons 2O$	$k_1 X_{O_2} = X_O^2$
$H_2 \rightleftharpoons 2H$	$k_2 X_{H_2} = X_H^2$
$N_2 \rightleftharpoons 2N$	$k_3 X_{N_2} = X_N^2$
$CO_2 \rightleftharpoons O + CO$	$k_4 X_{CO_2} = X_O X_{CO}$
$OH \rightleftharpoons O + H$	$k_5 X_{OH} = X_O X_H$
$H_2 O \rightleftharpoons O + 2H$	$k_6 X_{H_2O} = X_O X_H^2$
$NO \rightleftharpoons O + N$	$k_7 X_{NO} = X_O X_N.$

There are four conservation equations:

$$T_{H} = X_{H} + 2X_{H_{2}} + X_{OH} + 2X_{H_{2}O}$$

$$T_{C} = X_{CO} + X_{CO_{2}}$$

$$T_{O} = X_{O} + X_{CO} + 2X_{O_{2}} + 2X_{CO_{2}} + X_{OH} + X_{H_{2}O} + X_{NO}$$

$$T_{N} = X_{N} + 2X_{N_{2}} + X_{NO}$$

Fields Institute Toronto, October 21, 2009

7

- Given a system f(x) = 0 of N polynomials in N unknowns, continuation computes a finite set S of solutions such that:
 - any isolated root of f(x) = 0 is contained in S;
 - any isolated root "occurs" a number of times equal to its multiplicity as a solution of f(x) = 0;
 - S is often larger than the set of isolated solutions.

Computing Isolated Solutions

Find all isolated solutions in C^N of a system on n polynomials:

$$\begin{bmatrix} f_1(x_1,\dots,x_N) \\ \vdots \\ f_n(x_1,\dots,x_N) \end{bmatrix} = 0$$

Solving a system

- Homotopy continuation is our main tool:
 - Start with known solutions of a known start system and then track those solutions as we deform the start system into the system that we wish to solve.

This method takes a system g(x) = 0, whose solutions we know, and makes use of a homotopy, e.g.,

$$H(x, t) = (1 - t)f(x) + tg(x).$$

Hopefully, H(x,t) defines "paths" x(t) as t runs from 1 to 0. They start at known solutions of g(x) = 0 and end at the solutions of f(x) at t = 0.

$$0 = \frac{dH(\mathbf{x}(t), t)}{dt} = \sum_{i=1}^{N} \frac{\partial H}{\partial \mathbf{x}_{i}} \frac{d\mathbf{x}_{i}}{dt} + \frac{\partial H}{\partial t}$$

• To compute the paths: use ODE methods to predict and Newton's method to correct.

Uses of algebraic geometry

Simple but extremely useful consequence of algebraicity

• Instead of the homotopy H(x,t) = (1-t)f(x) + tg(x)use $H(x,t) = (1-t)f(x) + \gamma tg(x)$ Imt

Major Ingredients

- Adaptive Multiprecision
 - Straightline evaluation
 - Special Homotopies
 - Genericity
 - Endgames & ODE Methods
 - Intersections
 - Deflation
 - Multiplicity & Local Dimension Testing
 - Regeneration

Fields Institute Toronto, October 21, 2009

Major Computational Events

Parallelization

 No longer a niche tool requiring specialized hardware and nonstandard coding

Multiprecision

 No longer an option of last resort, highly nontrivial to design and dependent on hardware

Continuation is computationally intensive. On average:

• in 1985: 3 minutes/path on largest mainframes.

Hardware

Continuation is computationally intensive.
 On average:

- in 1985: 3 minutes/path on largest mainframes.
- in 1991: over 8 seconds/path, on an IBM 3081;
 2.5 seconds/path on a top-of-the-line IBM 3090.

Hardware

Continuation is computationally intensive.
 On average:

- in 1985: 3 minutes/path on largest mainframes.
- in 1991: over 8 seconds/path, on an IBM 3081;
 2.5 seconds/path on a top-of-the-line IBM 3090.
- 2007: over 20 paths a second on an single processor desktop CPU;1000's of paths/second on moderately sized clusters; millions of paths on top-of-the-line clusters.

Bertini

 Developed by Daniel Bates, Jonathan Hauenstein, Charles Wampler, and myself

 Binaries for Linux (including clusters and multiple core workstations), Macs, Windows are freely available at

www.nd.edu/~sommese/bertini

Bertini

Bertini is designed to

- Be efficient and robust, e.g., straightline evaluation, numerics with careful error control
- With data structures reflecting the underlying geometry
- Take advantage of parallel hardware
- To dynamically adjust the precision to achieve a solution with a prespecified error.

Three Recent Articles

- D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W.
 Wampler, Adaptive multiprecision path tracking, SIAM Journal on Numerical Analysis 46 (2008) 722--746.
- J.D. Hauenstein, C. Peterson, and A.J. Sommese, A numerical local dimension test for points on the solution set of a system of polynomial equations, to appear SIAM Journal on Numerical Analysis.
- J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for solving systems of polynomials.

Fields Institute Toronto, October 21, 2009

• Why use Multiprecision?

 to ensure that the region where an endgame works is not contained the region where the numerics break down;

• Why use Multiprecision?

- to ensure that the region where an endgame works is not contained the region where the numerics break down;
- to ensure that a polynomial is zero at a point is the same as the polynomial numerically being approximately zero at the point;

• Why use Multiprecision?

- to ensure that the region where an endgame works is not contained the region where the numerics break down;
- to ensure that a polynomial is zero at a point is the same as the polynomial numerically being approximately zero at the point;
- to prevent the linear algebra in continuation from falling apart.

$$p(z) = z^{10} - 28z^9 + 1$$

p(a) = -0.578

Even with 17 digit accuracy, the approximate root a is a = 27.99999999999999905 and we still only have p(a) = -0.005.

Regeneration: Step 1

Fields Institute Toronto, October 21, 2009

Fields Institute Toronto, October 21, 2009

Given a solution, i.e., a point p with f(p) = 0, what is the dimension at p of the solution component through p.

The problem becomes worse as dimension increases

- The essential case: check if p is isolated
- Homotopy continuation yields a number which bounds the multiplicity if the point was isolated.
- If not isolated, the space of truncated Taylor series of functions on the solution space is strictly increasing in dimension
- The Macaulay matrix (as presented by Dayton-Zeng) computes this dimension

- Computation of the rank of the Macaulay matrix requires
 - Different levels of precision
 - Reliable multiple precision endgame to compute point p to needed accuracy

Regenerative cascade

Adjacent minor system:

Determinants of 2×2 adjacent minors of a $3 \times m$ matrix with variable entries

For example:
$$m = 3 \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$$

Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a $3 \times m$ matrix with variable entries

For example:
$$m = 3 \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$$

$$f_{1} = x_{1}x_{5} - x_{2}x_{4}$$

Regenerative cascade

Adjacent minor system:

Determinants of 2×2 adjacent minors of a $3 \times m$ matrix with variable entries

For example:
$$m = 3$$
 $\begin{bmatrix} X_1 & X_2 & X_3 \\ X_4 & X_5 & X_6 \\ X_7 & X_8 & X_9 \end{bmatrix}$

$$f_{1} = x_{1}x_{5} - x_{2}x_{4}$$
$$f_{2} = x_{2}x_{6} - x_{3}x_{5}$$

Fields Institute Toronto, October 21, 2009 UNIVERSITY OF

Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a $3 \times m$ matrix with variable entries

For example:
$$m = 3 \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$$

 $f_1 = x_1 x_5 - x_2 x_4 \qquad f_3 = x_4 x_8 - x_5 x_7$
 $f_2 = x_2 x_6 - x_3 x_5$

Fields Institute Toronto, October 21, 2009 UNIVERSITY OF

Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a $3 \times m$ matrix with variable entries

For example:
$$m = 3 \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$$

 $f_1 = x_1 x_5 - x_2 x_4 \qquad f_3 = x_4 x_8 - x_5 x_7$
 $f_2 = x_2 x_6 - x_3 x_5 \qquad f_4 = x_5 x_9 - x_6 x_8$

Fields Institute Toronto, October 21, 2009 UNIVERSITY OF

Numerical irreducible decomposition

Adjacent minor:

n	Decomposition
3	0.04s
4	0.18s
5	0.83s
6	2.67s
7	13.5s
8	31.8s

Numerical irreducible decomposition

Adjacent minor system:

n	Decomposition
3	0.04s
4	0.18s
5	0.83s
6	2.67s
7	13.5s
8	31.8s

	Membership test			Local dimension test		
n	Regen cascade	Dim-by-dim	Cascade	Regen cascade	Dim-by-dim	Cascade
3	0.1s	0.1s	0.2s	0.1s	0.1s	0.2s
4	0.8s	$1.1\mathrm{s}$	$1.3\mathrm{s}$	0.6s	0.8s	1.1s
5	6.2s	11.9s	11.2s	$3.1\mathrm{s}$	4.6s	7.4s
6	1 m 1 s	2m14s	1 m 3 4 s	15.6s	29.0s	48.4s
7	10 m 36 s	25m39s	14m54s	1 m 1 6 s	3m8s	5m23s
8	2h12m54s	5h21m48s	2h33m5s	6m33s	19m45s	29m22s

Solving Differential Equations

- E.L. Allgower, D.J. Bates, A.J. Sommese, and C.W. Wampler, Solution of Polynomial systems derived from differential equations, Computing, 76 (2006), 1-10.
- Direct solution and refinement.

Predator-prey system (Hauenstein, Hu, & S.)

Let $n \in \mathbb{N}$. For $1 \leq i \leq n$ and $1 \leq j \leq 4$, define

$$\begin{aligned} f_{ij} &= \frac{1}{25} \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right) \\ &+ \frac{1}{(n+1)^2} \left(u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \right) + \frac{1}{25(n+1)^2} u_{i,j} \left(1 - v_{i,j} \right) \\ g_{ij} &= \frac{1}{25} \left(v_{i+1,j} - 2v_{i,j} + v_{i-1,j} \right) \\ &+ \frac{1}{(n+1)^2} \left(v_{i,j+1} - 2v_{i,j} + v_{i,j-1} \right) + \frac{1}{25(n+1)^2} v_{i,j} \left(u_{i,j} - 1 \right) \end{aligned}$$

with $u_{0,j} = v_{0,j} = u_{n+1,j} = v_{n+1,j} = u_{i,0} = v_{i,0} = u_{i,5} = v_{i,5} = 0.$

8n quadratics with 8n variable

- Total degree 2^{8n}
- Actually has 2^{4n} nonsingular isolated solutions

	total degree	2-homogeneous	polyhedral	regeneration	
n	paths	paths	paths	paths	slices moved
1	256	70	16	60	42
2	$65,\!536$	12,870	256	1020	762
3	16,777,216	2,704,156	4096	$16,\!380$	12,282
4	4,294,967,296	$601,\!080,\!390$	$65,\!536$	262,140	$196,\!602$
5	1,099,511,627,776	$137,\!846,\!528,\!820$	1,048,576	4,194,300	$3,\!145,\!722$

	PHC	HOM4PS-2.0	Bertini	
n	polyhedral	polyhedral	regeneration	parallel regeneration
1	0.6s	0.1s	0.3s	
2	4m57s	7.3s	15.6s	
3	18d10h18m56s	$9\mathrm{m}32\mathrm{s}$	9m43s	
4	-	3d8h28m30s	5h22m15s	7m32s
5	-	-	6d16h27m3s	3h41m24s

n = 5 (40 equations & 40 variables): < 80 min. with 200 cores (25 Xeon 5410)

Zebra Fish

- Why do the stripes on a zebra fish or the spots on a tiger form the patterns they do?
 - Alan Turing (1952), The chemical basis of morphogenesis: nonlinear diffusion equations.
- A good reference for this story is Mathematical Biology by J.D. Murray

Based on the model developed in

- Y.–T. Zhang, A. Lander, and Q. Nie, Computational analysis of BMP gradients in dorsal–ventral patterning of the zebrafish embryo, *Journal of Theoretical Biology*, 248(4): 579 – 589, 2007.
- Our work
 - Y. Liu, W. Hao, J. Hauenstein, B. Hu, A. Sommese, and Y.-T. Zhang, Multiple stable steady states of a reactiondiffusion model on zebrafish dorsal-ventral patterning

The differential equation system

$$\frac{\partial[L]}{\partial t} = D_L \frac{\partial^2[L]}{\partial x^2} - k_{on}[L](R_0 - [LR]) + k_{off}[LR] - j_{on}[L][C] + (j_{off} + \tau)[LC] + V_L;$$

$$\frac{\partial [LR]}{\partial t} = k_{on}[L](R_0 - [LR]) - (k_{off} + k_{deg})[LR];$$

$$\frac{\partial [LC]}{\partial t} = D_{LS} \frac{\partial^2 [LC]}{\partial x^2} + j_{on} [L] [C] - (j_{off} + \tau) [LC];$$

$$\frac{\partial[C]}{\partial t} = D_C \frac{\partial^2[C]}{\partial x^2} - j_{on}[L][C] + j_{off}[LC] + V_C,$$

$$V_C = V_{Cmin} + \frac{V_{Cmax} - V_{Cmin}}{1 + \gamma_C [LR]} + \begin{cases} V_{Corg} e^{-at}, & \text{if } x \ge \frac{7}{8} x_{max}; \\ 0, & \text{otherwise.} \end{cases}$$
$$V_L = V_{Lmin} + \frac{V_{Lmax} - V_{Lmin}}{1 + \gamma_L [LR]^{-1}} + V_{Lmat} e^{-bt}.$$

Solutions

• Total degree 16^{N-1} (which = 4,294,967,296 When N = 9).

Ν	lin. prod. bound	solutions over $\mathbb C$	solutions over $\mathbb R$	computing nodes	time
3	25	16	6	serial	2.7s
4	125	98	16	serial	14.4s
5	625	544	28	1	21.1s
6	3,125	2,882	184	5	51.6s
7	15,625	14,896	930	25	2m43s
8	78,125	$75,\!938$	3,720	25	35m2s
9	390,625	384,064	17,974	25	11h3m

Table 2.1: Summary of solving the discretized system for $3 \le N \le 9$

Assumptions

In vitro

 $\Omega(t)$ denotes the tumor region, σ denote the concentration of nutrients, p denote the pressure, $\tilde{\sigma}$ denote the concentration of nutrients needed for sustainability, and μ denote the aggressiveness of the tumor. Let κ denote the mean curvature, n denote the outward normal direction, and V_n denote the velocity of $\partial \Omega(t)$ in the outward normal direction n.

Governing equations:

• Diffusion of the nutrients:

$$\sigma_t - \Delta \sigma + \sigma = 0$$
 in $\Omega(t)$.

- Conservation of mass: div V = S, S = proliferation rate. Assuming linear dependence on σ: S = μ(σ - σ̃), (here σ̃ > 0 is the death rate)
- Porous medium in tumor region: Darcy's law: $\vec{V} = -\nabla p$. Thus

$$\Delta p = -\mu(\sigma - \tilde{\sigma})$$
 in $\Omega(t)$.

• Continuity:
$$V_n = -\frac{\partial p}{\partial n}$$
 on $\partial \Omega(t)$
where V_n = velocity in the normal *n* direction.

The steady-state tumor model is given by

$$\begin{array}{rcl} \Delta \sigma &=& \sigma \chi(x) & & \mbox{in } \Omega \\ -\Delta p &=& \mu(\sigma - \widetilde{\sigma}) \chi(x) & & \mbox{in } \Omega \end{array}$$
$$\begin{array}{rcl} \sigma &=& \sigma_0 & & \mbox{on } \partial D \\ \sigma &=& 1 & & \mbox{on } \partial \Omega \\ p &=& \kappa & & \mbox{on } \partial \Omega \\ \frac{\partial p}{\partial n} &=& 0 & & \mbox{on } \partial \Omega. \end{array}$$

Radial solution is quite cheap: < 1 sec. (one core)

3rd Order Stencil

Critical Points 3 minutes with 200 cores

Tangent Cone and Jumping off Crit Point

Toronto, Octo

Further work

Stability

- More realistic models
 - Three Dimensional Models
 - Necrotic Core Models (disconnected free boundaries)
 - Model presented in Friedman & Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39, 174-194.

Stationary Problem

(1.9)	$-\Delta \sigma + \sigma = 0 \text{in } \Omega, \qquad \sigma = 1 \text{on } \partial \Omega,$
(1.10)	$-\Delta \vec{v} + \nabla p = (\mu/3)\nabla(\sigma - \tilde{\sigma}) \text{in } \Omega,$
(1.11)	$\operatorname{div} \vec{v} = \mu(\sigma - \widetilde{\sigma}) \text{ in } \Omega (\widetilde{\sigma} < 1),$
(1.12)	$T(\vec{v}, p)\vec{n} = \left(-\gamma\kappa + \frac{2\nu}{3}\mu(1-\widetilde{\sigma})\right)\vec{n} \text{on } \partial\Omega,$
(1.13)	$\vec{v} \cdot \vec{n} = 0$ on $\partial \Omega$,
(1.14)	$\int_{\Omega} \vec{v} dx = 0, \qquad \int_{\Omega} \vec{v} \times \vec{x} dx = 0,$

where $T(\vec{v}, p) = (\nabla \vec{v})^T + \nabla \vec{v} - p I, I = (\delta_{ij})_{i,j=1}^3$.

Governing equations:

- Diffusion of the nutrients: $\sigma_t \Delta \sigma + \sigma = 0$ in $\Omega(t)$.
- Conservation of mass: div $\vec{V} = S$, S = proliferation rate. Assume linear dependence on σ : $S = \mu(\sigma - \tilde{\sigma})$, (here $\tilde{\sigma} > 0$ is the death rate)

Instead of Darcy's law, Stoke's equation is used: $-\nu\Delta \vec{v} + \nabla p - \frac{1}{3}\nu\nabla div\vec{v} = 0$ in $\Omega(t)$.

Introducing the stress tensor $Q = \nu (\nabla \vec{v} + (\nabla \vec{v})^T) - (p + \frac{2}{3}\nu \operatorname{div} \vec{v})/$ with components $Q_{ij} = \nu \left(\frac{\partial v_i}{\partial x_i} + \frac{\partial v_j}{\partial x_i} \right) - \delta_{ij} \left(p + \frac{2\nu}{3} \operatorname{div} \vec{v} \right),$ we then have

$$Q\vec{n} = -\gamma \kappa \vec{n}$$
 on $\Gamma(t)$, $t > 0$,

here the cell-to-cell adhesion equal to a constant γ , κ is the mean curvature.

Continuity: $V_n = \vec{v} \cdot \vec{n}$ on $\partial \Omega(t)$ where V_n = velocity in the normal *n* direction.

Since \vec{v} is determined up to $\vec{b} \times \vec{x}$, some additional constraints are needed.

$$\begin{split} \sigma_t - \Delta \sigma + \sigma &= 0, \quad x \in \Omega(t), \ t > 0, \\ \sigma &= 1, \quad x \in \Omega(t), \ t > 0, \\ -\Delta \vec{v} + \nabla p &= \frac{\mu}{3} \nabla (\sigma - \tilde{\sigma}), \quad x \in \Omega(t), \ t > 0, \\ \operatorname{div} \vec{v} &= \mu (\sigma - \tilde{\sigma}), \quad x \in \Omega(t), \ t > 0 \quad (\tilde{\sigma} < 1), \\ T(\vec{v}, p) \vec{n} &= \left(-\gamma \kappa + \frac{2}{3} \mu (1 - \tilde{\sigma}) \right) \vec{n}, \quad x \in \Gamma(t), \ t > 0, \\ T(\vec{v}, p) &= (\nabla \vec{v})^T + \nabla \vec{v} - p \ l, \qquad l = (\delta_{ij})_{i,j=1}^3, \\ V_n &= \vec{v} \cdot \vec{n} \quad \text{on } \Gamma(t), \end{split}$$

subject to the constraints

$$\int_{\Omega(t)} \vec{v} \, dx = 0, \qquad \int_{\Omega(t)} \vec{v} \times \vec{x} \, dx = 0.$$

Two-dimensional tumor movie

- Three-dimensional tumor movie
- Thre-dimensional tumor movie with dead core

Infinite Dimensional Algebraic Sets = Solutions of Differential Equations?

Coupled Towers of Finite Dimensional Algebraic Sets?

- Basic but difficult questions about Scientific Models lead to algebraic sets defined by highly structured, sparse systems of polynomials that are extremely large by classical standards.
- Numerical Algebraic Geometry can make contributions when coupled with moderate amounts of computer power and appropriate numerical software.

