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‘ Thank you for permission to use slides:

= Slides 28 - 30: Charles Wampler

= Slides 34 — 40: Jonathan Hauenstein
= Slide 48: Wenrui Hao

= Slides 52 & 65: Bel Hu

UUUUUUUUUUUU

Fields Institute 2 @ NOTRE DAME
Toronto, October 21, 2009



‘ Numer. Alg. Geometry Collaborators

= Daniel Bates* (CSU)

= Jonathan Hauenstein™ (Fields)

= Chris Peterson (CSU)

= Charles Wampler* (GM R & D)

*Bertint Team
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‘ Biological Modeling Collaborators

s \Wenruil Hao

m Jonathan Hauenstein
m Bel Hu

m Yuan LIu

= Yong-Tao Zhang
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‘ General References

= Reference on the area up to 2005:

= A.J. Sommese and C.W. Wampler, Numerical
solution of systems of polynomials arising in
engineering and science, (2005), World
Scientific Press.

= Survey covering other topics

= 1.Y. LI, Numerical solution of polynomial
systems by homotopy continuation
methods, in Handbook of Numerical Analysis,
Volume XI, 209-304, North-Holland, 2003.
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‘ Overview

= Numerical Algebraic Geometry
= Solution Sets

= Homotopy Continuation

= Bertini

= Zebra Fish
= Tumor Growth
= Algebraic Geometry
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Numerical Algebraic Geometry

Robotics/Mechanism Theory

= Goal: To numerically manipulate algebraic sets

= Technical Challenge: To combine high performance
numerics with algebraic geometry

= Applications:
= Robotics and Mechanism Theory
= Chemical Reactions including combustion
= Computation of algebraic-geometric invariants

Combustion
= Solution of discretizations of nonlinear differential

equations 0y =20 kXo, = X3
Hy, =2H koXp, = X%
Ng = 2N kaXn, = X%
COy,=04+CO kaXco, = XoXco
OH=0+H keXon = XoXy
H>O=0+2H kXm0 = XoX5
NO=0O+N ke Xyvo = XoXy.

There are four conservation equations:

T =Xg+2Xg, + Xon +2Xp,0
Tc =Xco+ Xco,

graphics on right from Sommese-Wampler Book

To =Xo+ Xco +2Xo, + 2Xco, + Xow + Xu,0 + Xno
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‘ The Core Computation — In the Past!

= Glven a system f(x) = 0 of N polynomials in
N unknowns, continuation computes a finite
set S of solutions such that:
= any Isolated root of f(x) = 0 Is contained In S;

= any isolated root “occurs” a number of times
equal to i1ts multiplicity as a solution of f(x) = 0;

= S Is often larger than the set of isolated
solutions.
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‘ Computing Isolated Solutions

= Find all isolated solutions in C"of a system
on n polynomials:

£ (X0 Xy )
. 0
(X Xy)
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‘ Solving a system

= Homotopy continuation Is our main tool:

= Start with known solutions of a known start
system and then track those solutions as we
deform the start system into the system that we
wish to solve.
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‘ Path Tracking

This method takes a system g(x) = 0, whose solutions
we know, and makes use of a homotopy, e.g.,

H(x t)=(1-t)f(X) + tg(X).

Hopefully, H(x,t) defines “paths” x(t) as t runs
from 1 to 0. They start at known solutions of

g(x) = 0 and end at the solutions of f(x) att = 0.
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i—

= The paths satisfy the Davidenko equation

dH(x(t), t) ZN:(’?H dx. (’3H

0= _
dt ~ ox. dt T

= To compute the paths: use ODE methods to
predict and Newton’s method to correct.

????????????
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Solutions of
f(x)=0

*—

X4(t)

Known
solutions of

9(x)=0

H(x,t) = (1-1) f(x) + t g(x)
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prediction \ X*
Newton _/{ %
correction
Xi(t)
|
'O \ v 71
At
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‘ Uses of algebraic geometry

Simple but extremely useful consequence of
algebraicity

= Instead of the homotopy H(X,t) = (1-t)f(x) + tg(x)

use H(x,t) = (1-t)f(x) + vtg(x) Im?

Ret
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‘ Major Ingredients
= Adaptive Multiprecision
= Straightline evaluation
= Special Homotopies
= Genericity
= Endgames & ODE Methods
= Intersections

= Deflation
= Multiplicity & Local Dimension Testing

- Regeneration
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‘ Major Computational Events

= Parallelization

= NO longer a niche tool requiring specialized
hardware and nonstandard coding

= Multiprecision

= NO longer an option of last resort, highly
nontrivial to design and dependent on hardware
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‘ Hardware

= Continuation is computationally intensive.
On average:

= 1N 1985: 3 minutes/path on largest mainframes.
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‘ Hardware

= Continuation is computationally intensive.
On average:
= 1N 1985: 3 minutes/path on largest mainframes.

= In 1991: over 8 seconds/path, on an IBM 3081,
2.5 seconds/path on a top-of-the-line IBM 3090.
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‘ Hardware

= Continuation is computationally intensive.
On average:
= 1N 1985: 3 minutes/path on largest mainframes.

= In 1991: over 8 seconds/path, on an IBM 3081,
2.5 seconds/path on a top-of-the-line IBM 3090.

= 2007: over 20 paths a second on an single
processor desktop CPU;1000’s of paths/second
on moderately sized clusters; millions of paths
on top-of-the-line clusters.
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Bertini

= Developed by Daniel Bates, Jonathan
Hauenstein, Charles Wampler, and myself

= Binaries for Linux (including clusters and
multiple core workstations), Macs,
Windows are freely available at

www.nd.edu/~sommese/bertini
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Bertini

= Bertini is designed to

Be efficient and robust, e.g., straightline
evaluation, numerics with careful error
control

With data structures reflecting the underlying
geometry

Take advantage of parallel hardware

To dynamically adjust the precision to
achieve a solution with a prespecified error.
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‘ Three Recent Articles

= D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W.
Wampler, Adaptive multiprecision path tracking, SIAM
Journal on Numerical Analysis 46 (2008) 722--746.

= J.D. Hauenstein, C. Peterson, and A.J. Sommese, A
numerical local dimension test for points on the solution set
of a system of polynomial equations, to appear SIAM
Journal on Numerical Analysis.

= J.D. Hauenstein, A.J. Sommese, and C.W. Wampler,
Regeneration homotopies for solving systems of
polynomials.
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‘ Bertini and the need for adaptive precision

= Why use Multiprecision?

= to ensure that the region where an endgame
works Is not contained the region where the
numerics break down;
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‘ Bertini and the need for adaptive precision

= Why use Multiprecision?

= to ensure that the region where an endgame
works Is not contained the region where the
numerics break down;

= to ensure that a polynomial is zero at a point is
the same as the polynomial numerically being
approximately zero at the point;
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‘ Bertini and the need for adaptive precision

= Why use Multiprecision?

= to ensure that the region where an endgame
works Is not contained the region where the
numerics break down;

= to ensure that a polynomial is zero at a point is
the same as the polynomial numerically being
approximately zero at the point;

= to prevent the linear algebra in continuation from
falling apart.
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‘ Evaluation
n(z)=2"-282" +1

= To 15 digits of accuracy one of the roots of this
polynomial is a = 27.9999999999999. Evaluating

p(a) to 15 digits, we find that
p(a) =-0.578

= Even with 17 digit accuracy, the approximate root a
ISa =27.999999999999905 and we still only have
p(a) = -0.005.
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‘ Regeneration

= Basic step

T £.(x) | T £(x) |
fk—l.(x) i (X)
Vo Lk (X) jl> Vo fk (X)
Lk+1 (X) Lk+1 (X)

(L (X) ], (L L (X))
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100 ]

fk—l.(X)
Vol| Li(X)

I—k+1 (X)

| Lx (X)

Fields Institute

fi_1(X)
Vol | Lea(X)

/ L1 (X)

! I—N.(X) 1)e

\

move
linear fcn
d, times
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‘ Regeneration: Step 1
RAGH

Union of

sets

- (%)

g

i I—N.(X) |

fi 1 (%)
Ly g, (X)
Lk+1(X)

29

f,(x)
fkl.(X)
L1 (%) Ly g, (X)
Lk+1(X)

LNkX)
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‘ Regeneration: Step 2

ACI I
| Linear
fk—l(x) homotopy
Ly 1 (X) -+ Ly 4, (X)
Lk+1(X)
LX) ],

> V,

()

fk—l.(x)
i (X)
Lk+1(X)

L (%)

Repeat for k+1,k+2,...,N

Fields Institute 30
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‘ A Bottleneck & Local Dim. Testing

= Glven a solution, I.e., a point p with f(p) =0,
what Is the dimension at p of the solution
component through p.

The problem becomes worse as dimension
Increases

UNIVERSITY OF
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‘ |dea

= The essential case: check if p is isolated

= Homotopy continuation yields a number
which bounds the multiplicity If the point
was Isolated.

= |f not isolated, the space of truncated Taylor
series of functions on the solution space Is
strictly increasing in dimension

= The Macaulay matrix (as presented by
Dayton-Zeng) computes this dimension

. . UNIVERSITY OF
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‘ Implementation Considerations

= Computation of the rank of the
Macaulay matrix requires

= Different levels of precision

= Reliable multiple precision endgame to
compute point p to needed accuracy
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Adjacent minor system:

‘ Regenerative cascade

Determinants of 2 x 2 adjacent minors of a 3 x m matrix with

variable entries —~

For example: m=3 | X

Fields Institute
Toronto, October 21, 2009

X

2

X

5

X

8

34

X

3

X

6

X

9

UNIVERSITY OF

N TRI UNIVERSITY OF
v NOTRE DAME



‘ Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a 3 x m matrix with

X

variable entries

For example: m=3

f =XX —XX,
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‘ Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a 3 x m matrix with

X

variable entries

For example: m=3

f =XX —XX,
f2 — X2X6 o X3X5
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‘ Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a 3 x m matrix with
variable entries - -

Xl X2 X3
For example: m=3 X, X| X
X, X X

f =xX—-xX  f =XX-—-XX
f2 — X2X6 o X3X5

UN[‘-’EESITE’UF
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‘ Regenerative cascade

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of a 3 x m matrix with
variable entries - -

Xl X2 X3
For example: m=3 X, |X. X
XX X

f =xX—-xX  f =XX-—-XX
f =xx —xX f =XX—-XX

UN[‘-’EESITE’UF
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‘ Numerical irreducible decomposition

Adjacent minor:

Fields Institute
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Decomposition

0.04s

W= 2

0.18s

0.83s

2.67s

=1 Syl W

13.5s

]

31.8s
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Adjacent minor system:

Numerical irreducible decomposition

Toronto, October 21, 2009

n | Decomposition
3 0.04s
4 0.18s
5 0.83s
§ 2.67s
7 13.5s
3 31.8s
Membership test Local dimension test
n | Regen cascade | Dim-by-dim | Cascade | Regen cascade | Dim-by-dim | Cascade
3 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s
4 0.8s 1.1s 1.3s 0.6s 0.3s 1.1s
5 6.2s 11.9s 11.2s 3.1s 4.6s 7.4s
§ 1mls 2ml4ds 1m34s 15.6s 29.0s 48.4s
7 10m36s 25m39s 14mb4s 1m16s 3m8s Hm23s
8 2h12mb4s 5h21m48s 2h33mbs 6ma33s 19m45s 29m22s
. . UN[‘-"EESITE’UF
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‘ Solving Differential Equations

= E.L. Allgower, D.J. Bates, A.J. Sommese,
and C.W. Wampler, Solution of Polynomial
systems derived from differential equations,

Computing, 76 (2006), 1-10.
s Direct solution and refinement.

UUUUUUUUUUUU
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‘ Predator-prey system (Hauenstein, Hu, & S.)

Let ne N, For1 <7 <nand 1< j <4, define

1
fij = 2% (wit1,j — 2ui 5 + wi—1,5)

['n + 1)2 1,7+1 (%) 1,7—1 25[?,1_ + 1)2

wij (1 —vi )

1
9ii = 5g (Vit1 = 20i5 + vi-1,5)

1 1
-+ T 1) (Vij+1 — 2vij +vij—1) + 5(n + 1)21.'?;._; (ui; — 1)

with wp j = vo; = Uny1; = Ung1,5 = Uip =Vip =Ui5 = V5 = 0.

-ld UNIVERSITY OF
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i—

= 8n quadratics with 8n variable
= Total degree 2°"
= Actually has 2*" nonsingular isolated solutions

total degree 2-homogeneous | polyhedral regeneration
a| paths paths paths paths slices moved
1 256 70 16 60 42
2 65,536 12.870 256 1020 762
3 16,777,216 2,704,156 4096 16.380 12,282
4 4.294.967.296 601.080,390 65.536 262.140 196,602
5 | 1,099.511.627.776 | 137.846.528.820 | 1,048,576 | 4,194.300 3,145,722

. . UNIYERSITY OF
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*—

PHC HOM4PS5-2.0 Bertini
1 polyvhedral polyvhedral regeneration | parallel regeneration
1 0.6s 0.1s 0.3s
2 4mbTs 7.3s 15.6s
3 | 18d10h18mb56s Om32s 9m4 3s
4 - 3d8h28m30s 5h22m15s Tma32s
5 - - 6d16h27m3s 3h41m?24s

n =5 (40 equations & 40 variables): < 80 min.
with 200 cores (25 Xeon 5410)

Fields Institute
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‘ Zebra Fish

= Why do the siripes on a zebra fish or the
spots on a tiger form the patterns they do?

= Alan Turing (1952), The chemical basis of
morphogenesis: nonlinear diffusion equations.

= A good reference for this story Is
Mathematical Biology by J.D. Murray

UNIVERSITY OF
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= Based on the model developed in

= Y.—T.Zhang, A. Lander, and Q. Nie, Computational
analysis of BMP gradients in dorsal-ventral patterning of
the zebrafish embryo, Journal of Theoretical Biology,
248(4) : 579 — 589, 2007.

s Our work

= Y. Liu, W. Hao, J. Hauenstein, B. Hu, A. Sommese, and
Y.-T. Zhang, Multiple stable steady states of a reaction-
diffusion model on zebrafish dorsal-ventral patterning
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| The differential equation system
J[L] &2[L]

] D T L) (o — [LE) + ko [LR] — jonlZI[C] + Giogy + P)LC] + Vi
A KanlL)(Ro — [LR]) — (hogy + k) [LE]:

IILC] b O?[LCT

or — L5752 + Jon[LI[C] — (Joss + T)ILCY;

JI[C] D dz[c] GonL][C] + jof f[LC] + Ve,

s — C i -
ot Ox?
- I 7 Vi —at if r > 7., .
L,." ]l'f;" _|_ Lcmﬂl Lcmiﬂ GG?‘Q{ I . - 8.1-ma_lﬂ-._,
C — VCmin )
1+ vc[LR] 0, otherwise.
Lf:[xma:c - Lf:[xmi-n b
' T —ot
+ L Lmat€ -

L«L — L*Lmin + 1 i "}"L[L-R]_l

UNIVERSITY OF
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Solutions

0.0%

0.08 ooy 0.08

" , , , , , a . . . . . . . . )
0 0m 00z 003 004 005 006 007 008 0 00 00z 003 004 005 006 007 008 0 00 002 003 004
: - - : - : - : T T T T
5 ]
15 g
o
4
= |
r 1 1r B b
0s g
L B 05 1 o5t
, . . , . , . , 5 . . . . . . . L ) \ . . . \ \ . \
0 001 002 003 004 005 006 007 008 o 0ol 0Dz 003 004 005 006 007 0.0 o 001 002 003 004 005 008 007 008 ’

0.01

ooz 0os n.04 oos 0.08 0.07
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‘ Some timings

= Total degree 16" (which = 4,294,967,296
When N = 9).

N | Iin. prod. bound | solutions over C | solutions over R | computing nodes | time
3 25 16 6 serial 2.7s
4 125 98 16 serial 14.4s
5! 625 H44 28 1 21.1s
§ 3,125 2,882 184 5 51.6s
7 15,625 14,896 930 25 2m43s
8 78,125 75,938 3,720 25 35m?2s
9 390,625 384,064 17,974 25 11h3m

Table 2.1: Summary of solving the discretized system for 3 < N < 9

Fields Institute
Toronto, October 21, 2009
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‘ Tumor growth

o — Ao —0 in €2(t)
—Ap (o —o) in Q(t)

o = 1 on 0€)(t)
p = K on 0f)(t)
'I?(i)erlgr?t:)r,lsct)i;l:;zer 21, 2009 50 &) NOTRE DAME




‘ Assumptions

= In vitro

()(t) denotes the tumor region, ¢ denote the concentra-
tion of nutrients, p denote the pressure, ¢ denote the
concentration of nutrients needed for sustainability, and
1t denote the aggressiveness of the tumor. Let x denote
the mean curvature, n denote the outward normal direc-
tion, and V,, denote the velocity of 9€)(t) in the outward
normal direction n.

. . UNIVERSITY OF
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i Governing equations:

@ Diffusion of the nutrients:

or—Ac+oc=0 1inQ(l).

@ Conservation of mass: divV = S, S = proliferation rate.
Assuming linear dependence ono: S = (0 — ), (here 5 > 0 is
the death rate)

@ Porous medium in tumor region: Darcy’s law: V = —Vp. Thus

Ap = —pu(oc—a) InQ(t).

@ Continuity: V, = —g—ﬁ on 99Q(t)

where V,= velocity in the normal n direction.

. . UNIVERSITY OF
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‘ Adding dead cells

The steady-state tumor model is given by

Ao = ox(x) in 2
—~Ap = plo—o)x(xz) in
o = oy on 0D
o = 1 on 0f)
P = K on 0f}
g_i — 0 on 0.
Fields Institute 53 F"’| UNIH{";EESIE]TN?E
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‘ Radial solution iIs quite cheap: < 1 sec. (one core)
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‘ Moving Grid

3

- - - 1 2 3
Fields Instif 3 2 1 0 Eﬁﬂ?ﬁﬁ
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‘ 3rd Order Stencil

od- -
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i Critical Points 3 minutes with 200 cores
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‘ Tangent Cone and Jumping off Crit Point

asl- <
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‘ Far Along the Branch

Fields Institut
Toronto, Octol

4

ITY OF

DAME



‘ Further work

= Stability

= More realistic models
= Three Dimensional Models
= Necrotic Core Models (disconnected free

boundaries)

= Model presented Iin
for a free boundary

—riedman & Hu, Bifurcation
problem modeling tumor

growth by Stokes equation, SIAM J. Math.

Anal., 39, 174-194.

Fields Institute
Toronto, October 21, 2009

UNIYVERSITY OF

60 @ NOTRE DAME



‘ Stationary Problem

(1.9) —Aoc+o=0 mf], g=1 on dfl,
(1.10) _ATLVp=(u/3)V(e —F) in 0,

(1.11) divi=p(c—7) inQ (7<1).

(1.12) T(#,p)ii = (_TH %#{1 _ 3})&* on 81,
(1.13) 7-i=0 on a0,

(1.14) ffd;::n._ fﬁxfdxzﬂ,
£ 1

where T'(7, p) = I:T‘LT}T + Vi —plI, I=(b;)]

i j=1"

UNIVERSITY OF
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—

Governing equations:

@ Diffusion of the nutrients: o; — Ao + o =0 in Q(1).

Conservation of mass: div/ = S, S = proliferation rate.
Assume linear dependence on o: S = u(oc — &), (here & > 0 is the death rate)

Q
@ Instead of Darcy’s law, Stoke’s equation is used: —vAV + Vp — %uvdivﬁ =0 inQ(f).
Q Introducing the stress tensor Q = v(VV + (V F]T} —(p+ %udiﬂf]f with components

_ avj ﬁvf 21 s T
Qj = ”(ij + Ea‘rT,-) — 5,}-(,04— lew) ., we then have

Qi = —ywfd onfl(t), t =0,

here the cell-to-cell adhesion equal to a constant ~, « is the mean curvature.

@ Continuity: V, =V -7A on 8Q(f)
where V= velocity in the normal n direction.

Since V is determined up to b x ¥, some additional constraints are needed.

Fields Institute

-FI UNIVERSITY OF
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J.l_—

or—Ac+o0=0, xeQ(i), t>0,
o=1, xeQi), t >0,
—M+v,o:%\?(g—a), x € Q(t), t >0,

divV = p(oc —5), xeQ(t), t>0 (5<1).
T(V.p)fi = (— Y+ ggm _ a))ﬁ. X eT(t), t >0,
T(V.p)= (VW) +VVi-pl  I=(5)].
Vo=Vv-n onTl(t).

subject to the constraints

[ v dx — 0. [ VX dx=0.
Ja(t) Ja(t)

-ld UNIVERSITY OF

%) NOTRE DAME

Fields Institute 63
Toronto, October 21, 2009




solution behavior
2 l 1 1 1

1.5F 3

2 2.5 3 3.5 4 4.5

o A &
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= [wo-dimensional tumor movie
= | hree-dimensional tumor movie

= | hre-dimensional tumor movie with dead
core
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‘ Algebraic Geometry

= Infinite Dimensional Algebraic Sets =
Solutions of Differential Equations?

= Coupled Towers of Finite Dimensional
Algebraic Sets?
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‘ Summary

= Basic but difficult questions about Scientific
Models lead to algebraic sets defined by highly
structured, sparse systems of polynomials that
are extremely large by classical standards.

= Numerical Algebraic Geometry can make
contributions when coupled with moderate
amounts of computer power and appropriate
numerical software.
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