Zebra Fish, Tumor Growth, and Algebraic Geometry

Andrew Sommese University of Notre Dame

www.nd.edu/~sommese

Thank you for permission to use slides:

- Slides 28-30: Charles Wampler
- Slides 34 - 40: Jonathan Hauenstein
- Slide 48: Wenrui Hao
- Slides 52 \& 65: Bei Hu

Numer. Alg. Geometry Collaborators

- Daniel Bates* (CSU)
 - Jonathan Hauenstein* (Fields)
 - Chris Peterson (CSU)
 - Charles Wampler* (GM R \& D)

*Bertini Team

Biological Modeling Collaborators

- Wenrui Hao

- Jonathan Hauenstein
- Bei Hu
- Yuan Liu
- Yong-Tao Zhang

General References

- Reference on the area up to 2005:
- A.J. Sommese and C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, (2005), World Scientific Press.
- Survey covering other topics
- T.Y. Li, Numerical solution of polynomial systems by homotopy continuation methods, in Handbook of Numerical Analysis, Volume XI, 209-304, North-Holland, 2003.

Overview

- Numerical Algebraic Geometry
- Solution Sets
- Homotopy Continuation
- Bertini
- Zebra Fish
- Tumor Growth
- Algebraic Geometry

Numerical Algebraic Geometry

- Goal: To numerically manipulate algebraic sets
- Technical Challenge: To combine high performance numerics with algebraic geometry

> Robotics/Mechanism Theory

- Applications:
- Robotics and Mechanism Theory
- Chemical Reactions including combustion
- Computation of algebraic-geometric invariants
- Solution of discretizations of nonlinear differential equations

$\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{O}$
$\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}$
$\mathrm{N}_{2} \rightleftharpoons 2 \mathrm{~N}$
$\mathrm{CO}_{2} \rightleftharpoons \mathrm{O}+\mathrm{CO}$
$\mathrm{OH} \rightleftharpoons \mathrm{O}+\mathrm{H}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{O}+2 \mathrm{H}$
$\mathrm{NO} \rightleftharpoons \mathrm{O}+\mathrm{N}$

$$
\begin{aligned}
& k_{1} X_{O_{2}}=X_{O}^{2} \\
& k_{2} X_{H_{2}}=X_{H}^{2} \\
& k_{3} X_{N_{2}}=X_{N}^{2} \\
& k_{4} X_{C O_{2}}=X_{O} X_{C O} \\
& k_{5} X_{O H}=X_{O} X_{H} \\
& k_{6} X_{H_{2} O}=X_{O} X_{H}^{2} \\
& k_{7} X_{N O}=X_{O} X_{N} .
\end{aligned}
$$

There are four conservation equations:
graphics on right from Sommese-Wampler Book

Fields Institute
Toronto, October 21, 2009

$$
\begin{aligned}
& T_{\mathrm{H}}=X_{\mathrm{H}}+2 X_{\mathrm{H}_{2}}+X_{\mathrm{OH}}+2 X_{\mathrm{H}_{2} \mathrm{O}} \\
& T_{C}=X_{\mathrm{CO}}+X_{C \mathrm{CO}_{2}} \\
& T_{\mathrm{O}}=X_{\mathrm{O}}+X_{\mathrm{CO}}+2 X_{\mathrm{O}_{2}}+2 X_{\mathrm{CO}_{2}}+X_{\mathrm{OH}}+X_{\mathrm{H}_{2} \mathrm{O}}+X_{\mathrm{NO}} \\
& T_{N}=X_{N}+2 X_{\mathrm{N}_{2}}+X_{N \mathrm{O}}
\end{aligned}
$$

The Core Computation - In the Past!

- Given a system $\mathrm{f}(\mathrm{x})=0$ of N polynomials in N unknowns, continuation computes a finite set S of solutions such that:
- any isolated root of $f(x)=0$ is contained in S;
- any isolated root "occurs" a number of times equal to its multiplicity as a solution of $f(x)=0$;
- S is often larger than the set of isolated solutions.

Computing Isolated Solutions

- Find all isolated solutions in C^{N} of a system on n polynomials:

$$
\left[\begin{array}{c}
\mathrm{f}_{1}\left(x_{1}, \ldots, x_{N}\right) \\
\vdots \\
\mathrm{f}_{\mathrm{n}}\left(x_{1}, \ldots, x_{N}\right)
\end{array}\right]=0
$$

Solving a system

- Homotopy continuation is our main tool:
- Start with known solutions of a known start system and then track those solutions as we deform the start system into the system that we wish to solve.

Path Tracking

This method takes a system $\mathrm{g}(\mathrm{x})=0$, whose solutions we know, and makes use of a homotopy, e.g.,

$$
H(x, t)=(1-t) f(x)+\operatorname{tg}(x)
$$

Hopefully, $\mathrm{H}(\mathrm{x}, \mathrm{t})$ defines "paths" $\mathrm{x}(\mathrm{t})$ as t runs from 1 to 0 . They start at known solutions of $g(x)=0$ and end at the solutions of $f(x)$ at $t=0$.

- The paths satisfy the Davidenko equation

$$
0=\frac{\mathrm{dH}(\mathrm{x}(\mathrm{t}), \mathrm{t})}{\mathrm{dt}}=\sum_{i=1}^{\mathrm{N}} \frac{\partial \mathrm{H}}{\partial \mathrm{x}_{\mathrm{i}}} \frac{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}{\mathrm{dt}}+\frac{\partial \mathrm{H}}{\partial \mathrm{t}}
$$

- To compute the paths: use ODE methods to predict and Newton's method to correct.

Uses of algebraic geometry

Simple but extremely useful consequence of algebraicity

- Instead of the homotopy $H(x, t)=(1-t) f(x)+\operatorname{tg}(x)$
use $H(x, t)=(1-t) f(x)+\gamma \operatorname{tg}(x)$

Major Ingredients

- Adaptive Multiprecision
- Straightline evaluation
- Special Homotopies
- Genericity
- Endgames \& ODE Methods
- Intersections
- Deflation
- Multiplicity \& Local Dimension Testing
- Regeneration

Major Computational Events

- Parallelization
- No longer a niche tool requiring specialized hardware and nonstandard coding
- Multiprecision
- No longer an option of last resort, highly nontrivial to design and dependent on hardware

Hardware

- Continuation is computationally intensive. On average:
- in 1985: 3 minutes/path on largest mainframes.

Hardware

- Continuation is computationally intensive. On average:
- in 1985: 3 minutes/path on largest mainframes.
- in 1991: over 8 seconds/path, on an IBM 3081; 2.5 seconds/path on a top-of-the-line IBM 3090.

Hardware

- Continuation is computationally intensive.

On average:

- in 1985: 3 minutes/path on largest mainframes.
- in 1991: over 8 seconds/path, on an IBM 3081; 2.5 seconds/path on a top-of-the-line IBM 3090.
- 2007: over 20 paths a second on an single processor desktop CPU;1000's of paths/second on moderately sized clusters; millions of paths on top-of-the-line clusters.

Bertini

- Developed by Daniel Bates, Jonathan Hauenstein, Charles Wampler, and myself
- Binaries for Linux (including clusters and multiple core workstations), Macs, Windows are freely available at

www.nd.edu/~sommese/bertini

Bertini

- Bertini is designed to
- Be efficient and robust, e.g., straightline evaluation, numerics with careful error control
- With data structures reflecting the underlying geometry
- Take advantage of parallel hardware
- To dynamically adjust the precision to achieve a solution with a prespecified error.

Three Recent Articles

- D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Adaptive multiprecision path tracking, SIAM Journal on Numerical Analysis 46 (2008) 722--746.
- J.D. Hauenstein, C. Peterson, and A.J. Sommese, A numerical local dimension test for points on the solution set of a system of polynomial equations, to appear SIAM Journal on Numerical Analysis.
- J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for solving systems of polynomials.

Bertini and the need for adaptive precision

- Why use Multiprecision?
- to ensure that the region where an endgame works is not contained the region where the numerics break down;

Bertini and the need for adaptive precision

- Why use Multiprecision?
- to ensure that the region where an endgame works is not contained the region where the numerics break down;
- to ensure that a polynomial is zero at a point is the same as the polynomial numerically being approximately zero at the point;

Bertini and the need for adaptive precision

- Why use Multiprecision?
- to ensure that the region where an endgame works is not contained the region where the numerics break down;
- to ensure that a polynomial is zero at a point is the same as the polynomial numerically being approximately zero at the point;
- to prevent the linear algebra in continuation from falling apart.

Evaluation

$$
p(z)=z^{10}-28 z^{9}+1
$$

- To 15 digits of accuracy one of the roots of this polynomial is $a=27.9999999999999$. Evaluating $\mathrm{p}(\mathrm{a})$ to 15 digits, we find that $p(a)=-0.578$
- Even with 17 digit accuracy, the approximate root a is $a=27.999999999999905$ and we still only have $\mathrm{p}(\mathrm{a})=-0.005$.

Regeneration

- Basic step

$$
V_{0}\left(\left[\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{k-1}(x) \\
L_{k}(x) \\
L_{k+1}(x) \\
\vdots \\
L_{N}(x)
\end{array}\right]\right)
$$

$$
V_{0}\left(\left[\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{k-1}(x) \\
f_{k}(x) \\
L_{k+1}(x) \\
\vdots \\
L_{N}(x)
\end{array}\right]\right)
$$

Toronto, October 21, 2009

Regeneration: Step 1

Toronto, October 21, 2009

Regeneration: Step 2

Repeat for $\mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{~N}$

Toronto, October 21, 2009

A Bottleneck \& Local Dim. Testing

- Given a solution, i.e., a point p with $f(p)=0$, what is the dimension at p of the solution component through p .

The problem becomes worse as dimension increases

Idea

- The essential case: check if p is isolated
- Homotopy continuation yields a number which bounds the multiplicity if the point was isolated.
- If not isolated, the space of truncated Taylor series of functions on the solution space is strictly increasing in dimension
- The Macaulay matrix (as presented by Dayton-Zeng) computes this dimension

Implementation Considerations

- Computation of the rank of the Macaulay matrix requires
- Different levels of precision
- Reliable multiple precision endgame to compute point p to needed accuracy

Regenerative cascade

Adjacent minor system:

Determinants of 2×2 adjacent minors of a $3 x m$ matrix with variable entries
For example: $m=3\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9}\end{array}\right]$

Regenerative cascade

Adjacent minor system:

Determinants of 2×2 adjacent minors of a $3 x m$ matrix with variable entries
For example: $m=3\left[\begin{array}{cc|c}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9}\end{array}\right]$

$$
f_{1}=x_{1} x_{5}-x_{2} x_{4}
$$

Regenerative cascade

Adjacent minor system:

Determinants of $2 x 2$ adjacent minors of a $3 x m$ matrix with variable entries
For example: $m=3\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9}\end{array}\right]$

$$
\begin{aligned}
& f_{1}=x_{1} x_{5}-x_{2} x_{4} \\
& f_{2}=x_{2} x_{6}-x_{3} x_{5}
\end{aligned}
$$

Regenerative cascade

Adjacent minor system:

Determinants of 2×2 adjacent minors of a $3 x m$ matrix with

$$
\begin{aligned}
& \text { variable entries } \\
& \text { For example: } m=3\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9}
\end{array}\right] \\
& \qquad f_{1}=x_{1} x_{5}-x_{2} x_{4} \quad f_{3}=x_{4} x_{8}-x_{5} x_{7} \\
& f_{2}=x_{2} x_{6}-x_{3} x_{5}
\end{aligned}
$$

Regenerative cascade

Adjacent minor system:

Determinants of 2×2 adjacent minors of a $3 x m$ matrix with variable entries
For example: $m=3\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9}\end{array}\right]$

$$
\begin{array}{ll}
f_{1}=x_{1} x_{5}-x_{2} x_{4} & f_{3}=x_{4} x_{8}-x_{5} x_{7} \\
f_{2}=x_{2} x_{6}-x_{3} x_{5} & f_{4}=x_{5} x_{9}-x_{6} x_{8}
\end{array}
$$

Numerical irreducible decomposition

Adjacent minor:

n	Decomposition
3	0.04 s
4	0.18 s
5	0.83 s
6	2.67 s
7	13.5 s
8	31.8 s

Numerical irreducible decomposition

Adjacent minor system:

n	Decomposition
3	0.04 s
4	0.18 s
5	0.83 s
6	2.67 s
7	13.5 s
8	31.8 s

	Membership test			Local dimension test		
n	Regen cascade	Dim-by-dim	Cascade	Regen cascade	Dim-by-dim	Cascade
3	0.1 s	0.1 s	0.2 s	0.1 s	0.1 s	0.2 s
4	0.8 s	1.1 s	1.3 s	0.6 s	0.8 s	1.1 s
5	6.2 s	11.9 s	11.2 s	3.1 s	4.6 s	7.4 s
6	1 m 1 s	2 m 14 s	1 m 34 s	15.6 s	29.0 s	48.4 s
7	10 m 36 s	25 m 39 s	14 m 54 s	1 m 16 s	3 m 8 s	5 m 23 s
8	2 h 12 m 54 s	5 h 21 m 48 s	2 h 33 m 5 s	6 m 33 s	19 m 45 s	29 m 22 s

Solving Differential Equations

- E.L. Allgower, D.J. Bates, A.J. Sommese, and C.W. Wampler, Solution of Polynomial systems derived from differential equations, Computing, 76 (2006), 1-10.
- Direct solution and refinement.

Predator-prey system (Hauenstein, Hu, \& S.)

Let $n \in \mathbb{N}$. For $1 \leq i \leq n$ and $1 \leq j \leq 4$, define

$$
\begin{aligned}
f_{i j}= & \frac{1}{25}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right) \\
& \quad+\frac{1}{(n+1)^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)+\frac{1}{25(n+1)^{2}} u_{i, j}\left(1-v_{i, j}\right) \\
g_{i j}= & \frac{1}{25}\left(v_{i+1, j}-2 v_{i, j}+v_{i-1, j}\right) \\
& \quad+\frac{1}{(n+1)^{2}}\left(v_{i, j+1}-2 v_{i, j}+v_{i, j-1}\right)+\frac{1}{25(n+1)^{2}} v_{i, j}\left(u_{i, j}-1\right)
\end{aligned}
$$

with $u_{0, j}=v_{0, j}=u_{n+1, j}=v_{n+1, j}=u_{i, 0}=v_{i, 0}=u_{i, 5}=v_{i, 5}=0$.

- 8n quadratics with $8 n$ variable
- Total degree $2^{8 n}$
- Actually has $2^{4 n}$ nonsingular isolated solutions

	total degree	2-homogeneous	polyhedral	regeneration	
n	paths	paths	paths	paths	slices moved
1	256	70	16	60	42
2	65,536	12,870	256	1020	762
3	$16,777,216$	$2,704,156$	4096	16,380	12,282
4	$4,294,967,296$	$601,080,390$	65,536	262,140	196,602
5	$1,099,511,627,776$	$137,846,528,820$	$1,048,576$	$4,194,300$	$3,145,722$

	PHC	HOM4PS-2.0	Bertini	
n	polyhedral	polyhedral	regeneration	parallel regeneration
1	0.6 s	0.1 s	0.3 s	
2	4 m 57 s	7.3 s	15.6 s	
3	18 d 10 h 18 m 56 s	9 m 32 s	9 m 43 s	
4	-	3 d 8 h 28 m 30 s	5 h 22 m 15 s	7 m 32 s
5	-	-	6 d 16 h 27 m 3 s	3 h 41 m 24 s

$\mathrm{n}=5$ (40 equations \& 40 variables): < 80 min . with 200 cores (25 Xeon 5410)

Zebra Fish

- Why do the stripes on a zebra fish or the spots on a tiger form the patterns they do?
- Alan Turing (1952), The chemical basis of morphogenesis: nonlinear diffusion equations.
- A good reference for this story is Mathematical Biology by J.D. Murray
- Based on the model developed in
- Y.-T. Zhang, A. Lander, and Q. Nie, Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo, Journal of Theoretical Biology, 248(4) : 579 - 589, 2007.
- Our work
- Y. Liu, W. Hao, J. Hauenstein, B. Hu, A. Sommese, and Y.-T. Zhang, Multiple stable steady states of a reactiondiffusion model on zebrafish dorsal-ventral patterning

The differential equation system

$$
\begin{aligned}
& \frac{\partial[L]}{\partial t}=D_{L} \frac{\partial^{2}[L]}{\partial x^{2}}-k_{\text {on }}[L]\left(R_{0}-[L R]\right)+k_{\text {off } f}[L R]-j_{\text {on }}[L][C]+\left(j_{\text {off }}+\tau\right)[L C]+V_{L} ; \\
& \frac{\partial[L R]}{\partial t}=k_{\text {on }}[L]\left(R_{0}-[L R]\right)-\left(k_{\text {off }}+k_{\text {deg }}\right)[L R] ; \\
& \frac{\partial[L C]}{\partial t}=D_{L S} \frac{\partial^{2}[L C]}{\partial x^{2}}+j_{\text {on }}[L][C]-\left(j_{\text {off }}+\tau\right)[L C] ; \\
& \frac{\partial[C]}{\partial t}=D_{C} \frac{\partial^{2}[C]}{\partial x^{2}}-j_{\text {on }}[L L][C]+j_{\text {off }}[L C]+V_{C}, \\
& V_{C}=V_{\text {Cmin }}+\frac{V_{\text {Cmax }}-V_{\text {Cmin }}}{1+\gamma_{C}[L R]}+ \begin{cases}V_{\text {Corge }} e^{-a t}, & \text { if } x \geq \frac{7}{8} x_{\text {max }} ; \\
0, & \text { otherwise. } .\end{cases} \\
& V_{L}=V_{L \text { min }}+\frac{V_{L \text { max }}-V_{\text {Lmin }}}{1+\gamma_{L}[L R]^{-1}}+V_{L \text { Lmat }} e^{-b t .} .
\end{aligned}
$$

Solutions

Some timings

- Total degree $16^{N-1}($ which $=4,294,967,296$

When $\mathrm{N}=9$).

N	lin. prod. bound	solutions over \mathbb{C}	solutions over \mathbb{R}	computing nodes	time
3	25	16	6	serial	2.7 s
4	125	98	16	serial	14.4 s
5	625	544	28	1	21.1 s
6	3,125	2,882	184	5	51.6 s
7	15,625	14,896	930	25	2 m 43 s
8	78,125	75,938	3,720	25	35 m 2 s
9	390,625	384,064	17,974	25	11 h 3 m

Table 2.1: Summary of solving the discretized system for $3 \leq N \leq 9$

Tumor growth

$$
\begin{aligned}
\sigma_{t}-\Delta \sigma & =-\sigma & & \text { in } \Omega(t) \\
-\Delta p & =\mu(\sigma-\widetilde{\sigma}) & & \text { in } \Omega(t) \\
\sigma & =1 & & \\
p & =\kappa & & \text { on } \partial \Omega(t) \\
\frac{\partial p}{\partial n} & =-V_{n} & & \text { on } \partial \Omega(t) \\
& & & \text { on }(t)
\end{aligned}
$$

Assumptions

- In vitro
$\Omega(t)$ denotes the tumor region, σ denote the concentration of nutrients, p denote the pressure, $\widetilde{\sigma}$ denote the concentration of nutrients needed for sustainability, and μ denote the aggressiveness of the tumor. Let κ denote the mean curvature, n denote the outward normal direction, and V_{n} denote the velocity of $\partial \Omega(t)$ in the outward normal direction n.

Governing equations:

- Diffusion of the nutrients:

$$
\sigma_{t}-\Delta \sigma+\sigma=0 \quad \text { in } \Omega(t) .
$$

- Conservation of mass: $\operatorname{div} \vec{V}=S, S=$ proliferation rate. Assuming linear dependence on $\sigma: S=\mu(\sigma-\tilde{\sigma})$, (here $\tilde{\sigma}>0$ is the death rate)
- Porous medium in tumor region: Darcy's law: $\vec{V}=-\nabla p$. Thus

$$
\Delta p=-\mu(\sigma-\tilde{\sigma}) \quad \text { in } \Omega(t) .
$$

- Continuity: $V_{n}=-\frac{\partial p}{\partial n}$ on $\partial \Omega(t)$ where $V_{n}=$ velocity in the normal n direction.

Adding dead cells

The steady-state tumor model is given by

$$
\left\{\begin{array}{rlrl}
\Delta \sigma & =\sigma \chi(x) & & \text { in } \Omega \\
-\Delta p & =\mu(\sigma-\widetilde{\sigma}) \chi(x) & & \text { in } \Omega \\
\sigma & =\sigma_{0} & & \\
\sigma & =1 & & \text { on } \partial D \\
p & =\kappa & & \text { on } \partial \Omega \\
\frac{\partial p}{\partial n} & =0 & & \text { on } \partial \Omega \\
& & \text { on } \partial \Omega .
\end{array}\right.
$$

Radial solution is quite cheap: < 1 sec . (one core)

Moving Grid

Fields Insti1

Toronto, Or

$3^{\text {rd }}$ Order Stencil

Critical Points 3 minutes with 200 cores

Tangent Cone and Jumping off Crit Point

Far Along the Branch

Fields Institut
Toronto, Octol

Further work

- Stability
- More realistic models
- Three Dimensional Models
- Necrotic Core Models (disconnected free boundaries)
- Model presented in Friedman \& Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39, 174-194.

Stationary Problem

(1.9)
(1.10)
(1.11)
(1.12)
(1.13)
(1.14)
$-\Delta \sigma+\sigma=0 \quad$ in $\Omega, \quad \sigma=1 \quad$ on $\partial \Omega$,
$-\Delta \vec{v}+\nabla p=(\mu / 3) \nabla(\sigma-\widetilde{\sigma}) \quad$ in Ω,
$\operatorname{div} \vec{v}=\mu(\sigma-\tilde{\sigma}) \quad$ in $\Omega \quad(\tilde{\sigma}<1)$,
$T(\vec{v}, p) \vec{n}=\left(-\gamma \kappa+\frac{2 \nu}{3} \mu(1-\tilde{\sigma})\right) \vec{n} \quad$ on $\partial \Omega$,
$\vec{v} \cdot \vec{n}=0 \quad$ on $\partial \Omega$,
$\int_{\Omega} \vec{v} d x=0, \quad \int_{\Omega} \vec{v} \times \vec{x} d x=0$,
where $T(\vec{v}, p)=(\nabla \vec{v})^{T}+\nabla \vec{v}-p I, I=\left(\delta_{i j}\right)_{i, j=1}^{3}$.

Toronto, October 21, 2009

Governing equations:

- Diffusion of the nutrients: $\sigma_{t}-\Delta \sigma+\sigma=0$ in $\Omega(t)$.
- Conservation of mass: $\operatorname{div} \vec{V}=S, S=$ proliferation rate. Assume linear dependence on $\sigma: S=\mu(\sigma-\tilde{\sigma})$, (here $\tilde{\sigma}>0$ is the death rate)
- Instead of Darcy's law, Stoke's equation is used: $-\nu \Delta \vec{\nabla}+\nabla p-\frac{1}{3} \nu \nabla \operatorname{div} \vec{\nabla}=0 \quad$ in $\Omega(t)$.
- Introducing the stress tensor $Q=\nu\left(\nabla \vec{v}+(\nabla \vec{v})^{T}\right)-\left(p+\frac{2}{3} \nu \operatorname{div} \vec{v}\right) /$ with components $Q_{i j}=\nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)-\delta_{i j}\left(p+\frac{2 \nu}{3} \operatorname{div} \vec{v}\right)$, we then have

$$
Q \vec{n}=-\gamma \kappa \vec{n} \quad \text { on } \Gamma(t), \quad t>0,
$$

here the cell-to-cell adhesion equal to a constant γ, κ is the mean curvature.

- Continuity: $V_{n}=\vec{v} \cdot \vec{n}$ on $\partial \Omega(t)$ where $V_{n}=$ velocity in the normal n direction.

Since \vec{v} is determined up to $\vec{b} \times \vec{x}$, some additional constraints are needed.

$$
\begin{aligned}
& \sigma_{t}-\Delta \sigma+\sigma=0, \quad x \in \Omega(t), t>0, \\
& \sigma=1, \quad x \in \Omega(t), t>0, \\
& -\Delta \vec{v}+\nabla p=\frac{\mu}{3} \nabla(\sigma-\tilde{\sigma}), \quad x \in \Omega(t), t>0, \\
& \operatorname{div} \vec{v}=\mu(\sigma-\tilde{\sigma}), \quad x \in \Omega(t), t>0 \quad(\tilde{\sigma}<1), \\
& T(\vec{v}, p) \vec{n}=\left(-\gamma \kappa+\frac{2}{3} \mu(1-\tilde{\sigma})\right) \vec{n}, \quad x \in \Gamma(t), t>0, \\
& T(\vec{v}, p)=(\nabla \vec{v})^{T}+\nabla \vec{v}-p I, \quad I=\left(\delta_{i j}\right)_{i, j=1}^{3}, \\
& V_{n}=\vec{v} \cdot \vec{n} \quad \text { on } \Gamma(t),
\end{aligned}
$$

subject to the constraints

$$
\int_{\Omega(t)} \vec{v} d x=0, \quad \int_{\Omega(t)} \vec{v} \times \vec{x} d x=0
$$

$$
\begin{array}{r}
0 \\
0 \\
0 \\
0 \mid \\
0 \mid
\end{array}
$$

- Two-dimensional tumor movie
- Three-dimensional tumor movie
- Thre-dimensional tumor movie with dead core

Algebraic Geometry

- Infinite Dimensional Algebraic Sets = Solutions of Differential Equations?
- Coupled Towers of Finite Dimensional Algebraic Sets?

Summary

- Basic but difficult questions about Scientific Models lead to algebraic sets defined by highly structured, sparse systems of polynomials that are extremely large by classical standards.
- Numerical Algebraic Geometry can make contributions when coupled with moderate amounts of computer power and appropriate numerical software.

