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Thank you for permission to use slides:

 Slides 28 - 30:  Charles Wampler

 Slides 34 – 40: Jonathan Hauenstein

 Slide 48: Wenrui Hao

 Slides 52 & 65: Bei Hu
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*Bertini Team
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 Wenrui Hao
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General References

 Reference on the area up to 2005:

 A.J. Sommese and C.W. Wampler, Numerical 
solution of systems of polynomials arising in 
engineering and science, (2005), World 
Scientific Press.

 Survey covering other topics 

 T.Y. Li, Numerical solution of polynomial 
systems by homotopy continuation          
methods, in Handbook of Numerical Analysis, 
Volume XI, 209-304,  North-Holland, 2003.
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Overview

 Numerical Algebraic Geometry
 Solution Sets

 Homotopy Continuation

 Bertini

 Zebra Fish

 Tumor Growth

 Algebraic Geometry
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Numerical Algebraic Geometry

 Goal:  To numerically manipulate algebraic sets

 Technical Challenge:  To combine high performance 
numerics with algebraic geometry

 Applications:

 Robotics and Mechanism Theory

 Chemical Reactions including combustion

 Computation of algebraic-geometric invariants

 Solution of discretizations of nonlinear differential 
equations

Robotics/Mechanism Theory

Combustion

graphics on right from Sommese-Wampler Book
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The Core Computation – In the Past!

 Given a system f(x) = 0 of N polynomials in 

N unknowns, continuation computes a finite 

set S of solutions such that:

 any isolated root of f(x) = 0 is contained in S; 

 any isolated root “occurs” a number of times 

equal to its multiplicity as a solution of f(x) = 0;

 S is often larger than the set of isolated 

solutions.
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Computing Isolated Solutions

 Find all isolated solutions in       of a system 

on n polynomials:
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Solving a system

 Homotopy continuation is our main tool: 

 Start with known solutions of a known start 

system and then track those solutions as we 

deform the start system into the system that we 

wish to solve.
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Path Tracking

This method takes a system g(x) = 0, whose solutions 

we know, and makes use of a homotopy, e.g., 

Hopefully, H(x,t) defines “paths” x(t) as t runs 

from 1 to 0.  They start at known solutions of 

g(x) = 0 and end at the solutions of f(x) at t = 0.

tg(x). t)f(x)-(1  t)H(x, 
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 The paths satisfy the Davidenko equation

 To compute the paths: use ODE methods to 

predict and Newton’s method to correct.
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Solutions of  

 f(x)=0

Known 
solutions of 
g(x)=0

t=0 t=1H(x,t) = (1-t) f(x) + t g(x)

x3(t)

x1(t)

x2(t)

x4(t)
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Newton 
correction

prediction

{

D t

xj(t)

x*

0
1
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Uses of algebraic geometry

Simple but extremely useful consequence of 

algebraicity

 Instead of the homotopy  H(x,t) = (1-t)f(x) + tg(x) 

use H(x,t) = (1-t)f(x) + gtg(x)
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Major Ingredients 

 Adaptive Multiprecision

 Straightline evaluation

 Special Homotopies

 Genericity

 Endgames & ODE Methods

 Intersections

 Deflation

 Multiplicity & Local Dimension Testing

 Regeneration



Fields Institute 

Toronto, October 21, 2009 17

Major Computational Events

 Parallelization

 No longer a niche tool requiring specialized 

hardware and nonstandard coding

 Multiprecision

 No longer an option of last resort, highly 

nontrivial to design and dependent on hardware
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.

 in 1991: over 8 seconds/path, on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090.
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.

 in 1991: over 8 seconds/path, on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090.

 2007: over 20 paths a second on an single 

processor desktop CPU;1000’s of paths/second 

on moderately sized clusters; millions of paths 

on top-of-the-line clusters.
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Bertini

 Developed by Daniel Bates, Jonathan 

Hauenstein, Charles Wampler, and myself

 Binaries for Linux (including clusters and 

multiple core workstations), Macs, 

Windows are freely available at

www.nd.edu/~sommese/bertini
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Bertini

 Bertini is designed to 

 Be efficient and robust, e.g., straightline

evaluation, numerics with careful error 

control

 With data structures reflecting the underlying 

geometry

 Take advantage of parallel hardware

 To dynamically adjust the precision to 

achieve a solution with a prespecified error.  
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Three Recent Articles

 D.J. Bates, J.D. Hauenstein, A.J. Sommese,  and C.W. 

Wampler, Adaptive multiprecision path tracking, SIAM 

Journal on Numerical Analysis 46 (2008) 722--746.

 J.D. Hauenstein, C. Peterson, and A.J. Sommese, A 

numerical local dimension test for points on the solution set 

of a system of polynomial equations, to appear SIAM 

Journal on Numerical Analysis.

 J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, 

Regeneration homotopies for solving systems of 

polynomials.
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Bertini and the need for adaptive precision

 Why use Multiprecision?

 to ensure that the region where an endgame 

works is not contained the region where the 

numerics break down; 
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Bertini and the need for adaptive precision

 Why use Multiprecision?

 to ensure that the region where an endgame 

works is not contained the region where the 

numerics break down; 

 to ensure that a polynomial is zero at a point is 

the same as the polynomial numerically being 

approximately zero at the point;
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Bertini and the need for adaptive precision

 Why use Multiprecision?

 to ensure that the region where an endgame 

works is not contained the region where the 

numerics break down; 

 to ensure that a polynomial is zero at a point is 

the same as the polynomial numerically being 

approximately zero at the point;

 to prevent the linear algebra in continuation from 

falling apart.
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Evaluation

 To 15 digits of accuracy one of the roots of this 

polynomial is a = 27.9999999999999. Evaluating 

p(a) to 15 digits, we find that 

p(a) = -0.578

 Even with 17 digit accuracy, the approximate root a 

is a = 27.999999999999905 and we still only have 

p(a) = -0.005.

128)( 910  zzzp
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Regeneration

 Basic step
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Regeneration: Step 1
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Regeneration: Step 2
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Repeat for k+1,k+2,…,N
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A Bottleneck & Local Dim. Testing 

 Given a solution, i.e., a point p with f(p) = 0, 

what is the dimension at p of the solution 

component through p.

The problem becomes worse as dimension 

increases
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Idea

 The essential case: check if p is isolated

 Homotopy continuation yields a number 

which bounds the multiplicity if the point 

was isolated.

 If not isolated, the space of truncated Taylor 

series of functions on the solution space is 

strictly increasing in dimension

 The Macaulay matrix (as presented by 

Dayton-Zeng) computes this dimension
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Implementation Considerations

 Computation of the rank of the 

Macaulay matrix requires

 Different levels of precision

 Reliable multiple precision endgame to 

compute point p to needed accuracy
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Regenerative cascade

Adjacent minor system:

• Determinants of 2 x 2 adjacent minors of a 3 x m matrix with 
variable entries

• For example:  m = 3
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Regenerative cascade

Adjacent minor system:

• Determinants of 2 x 2 adjacent minors of a 3 x m matrix with 
variable entries

• For example:  m = 3
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Regenerative cascade

42511
xxxxf 

53622
xxxxf 
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Adjacent minor system:

• Determinants of 2 x 2 adjacent minors of a 3 x m matrix with 
variable entries

• For example:  m = 3
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Regenerative cascade

42511
xxxxf 

53622
xxxxf 

75843
xxxxf 
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Adjacent minor system:

• Determinants of 2 x 2 adjacent minors of a 3 x m matrix with 
variable entries

• For example:  m = 3
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Regenerative cascade

42511
xxxxf 

53622
xxxxf 

75843
xxxxf 

86954
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Adjacent minor system:

• Determinants of 2 x 2 adjacent minors of a 3 x m matrix with 
variable entries

• For example:  m = 3
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Adjacent minor:

Numerical irreducible decomposition
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Adjacent minor system:

Numerical irreducible decomposition
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Solving Differential Equations

 E.L. Allgower, D.J. Bates, A.J. Sommese, 

and C.W. Wampler, Solution of Polynomial 

systems derived from differential equations, 

Computing, 76 (2006), 1-10.

 Direct solution and refinement.
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Predator-prey system (Hauenstein, Hu, & S.)
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 8n quadratics with 8n variable

 Total degree 

 Actually has        nonsingular isolated solutions 

n82
n42
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n = 5 (40 equations & 40 variables): < 80 min. 

with 200 cores (25 Xeon 5410)
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Zebra Fish

 Why do the stripes on a zebra fish or the 

spots on a tiger form the patterns they do?

 Alan Turing (1952), The chemical basis of 

morphogenesis: nonlinear diffusion equations.

 A good reference for this story is 

Mathematical Biology by J.D. Murray
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 Based on the model developed in

 Y.–T. Zhang, A. Lander, and Q. Nie, Computational 

analysis of BMP gradients in dorsal–ventral patterning of 

the zebrafish embryo, Journal of Theoretical Biology, 

248(4) : 579 – 589, 2007.

 Our work

 Y. Liu, W. Hao, J. Hauenstein, B. Hu, A. Sommese, and 

Y.-T. Zhang, Multiple stable steady states of a reaction-

diffusion model on zebrafish dorsal-ventral patterning
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The differential equation system
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Solutions
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Some timings

 Total degree           (which = 4,294,967,296

When N = 9).

116 N
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Tumor growth
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Assumptions

 In vitro
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Adding dead cells
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Radial solution is quite cheap: < 1 sec. (one core)
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Moving Grid
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3rd Order Stencil
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Critical Points  3 minutes with 200 cores
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Tangent Cone and Jumping off Crit Point
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Far Along the Branch
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Further work

 Stability

 More realistic models

 Three Dimensional Models

 Necrotic Core Models (disconnected free 

boundaries)

 Model presented in Friedman & Hu, Bifurcation 

for a free boundary problem modeling tumor 

growth by Stokes equation, SIAM J. Math. 

Anal., 39, 174-194.
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Stationary Problem
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 Two-dimensional tumor movie

 Three-dimensional tumor movie

 Thre-dimensional tumor movie with dead 

core
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Algebraic Geometry

 Infinite Dimensional Algebraic Sets  = 

Solutions of Differential Equations?

 Coupled Towers of Finite Dimensional 

Algebraic Sets?
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Summary

 Basic but difficult questions about Scientific 

Models lead to algebraic sets defined by highly 

structured, sparse systems of polynomials that 

are extremely large by classical standards.

 Numerical Algebraic Geometry can make 

contributions when coupled with moderate 

amounts of computer power and appropriate 

numerical software.


