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1 Introduction

This talk: report on Richard Leroy’s Ph D thesis in Rennes on the multivariate
case after my joint work with Fatima Boudaoud and Fabrizio Caruso in the
univariate case.

Certificates
If a polynomial is positive, a certificate of positivity is a way of writing

down the polynomial making cleair that it is positive.
In other words, an answer by yes or no is not satisfactory, a certificate is

needed.

Example of certificate: extended euclidean algorithme guarantees the gcd by
computing also cofactors.

Important in certified software.
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Various possibilities for certificates of positivity

P (X1,	 , Xk)∈Z[X1,	 , Xk]

Hilbert’s 17 th problem:
is a polynomials everywhere positive a sums of squares ?

- not of polynomials (explicit counter example by Motzkin)
- but of rational functions (Artin and Schreier)

- very unexplicit proof (based on Zorn’s lemma)
- valid in a general real closed field (not necessarily archimedean)
- gives no method to produce the certificate
- very hard problems, work in progress (Lombardi and Roy ...)
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Polya’s theorem:
certificate of positivity for a polynomial positive on an orthant

- after multiplying by 1 + X1 + 	 + Xk enough times all the coefficients
become positive

- gives a method
- valid only in the fiels of reals (archimedeanity needed)
- very high degrees

Bernstein basis approach (this talk)
- certificate of positivity on a simplex

- more flexible (can change simplex)
- all Bernstein coefficients “become positive” (explanation in the talk)
- global approach: equivalent to Polya
- new more efficient local approach (recent)
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Bernstein basis is used
- in approximation theory (classical)
- (univariate) in probability theory (classical)
- (multivariate) in computer aided design (modern)
- (univariate) in real root isolation (recent... Mourrain ...)
- (univariate) in certificates of positivity (recent Boudaoud,Caruso,Roy)
- (multivariate) in certificates of positivity (new Leroy)
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2 Multivariate Bernstein basis

Simplex V = [v0, 	 , vk] defined by k + 1 linear inequalities, X = (X1, 	 , Xk)
ℓj(X) > 0, j = 0,	 , k, normalized by

1 = ℓ0(X) +	 + ℓk(X)

The ℓi correspond to barycentric coordinates: a point inside V has positive
barycentric coordinates between 0 and 1.
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Multi-index i= (i0,	 , ik), of degree d, L i L = i0 +	 + ik = d,
(

d

i

)

=
d!

i0!
 ik!
multinomial coefficient

ℓi(X) =
∏

j=0

k

ℓj
ij(X)

Bernstein polynomial of multi-index i

Bernd,i(V )(X) =

(

d

i

)

ℓi(X) (1)

Think of

1 =
(

ℓ0(X)+	 + ℓk(X))d
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Example

a) k = 1, d = 2, ℓ0 = 1−X, ℓ1 = X

multi-indices (2,0), (1,1), (0,2)

develop ((1−X) + X)2 and collect the pieces

(1−X)2, 2 X (1−X), X2

b) k = 2, d= 2, ℓ0 = 1−X −Y , ℓ1 = X, ℓ2 = Y

multi-indices (2,0,0),(1,1,0),(1,0,1), (0,2,0), (0,1,1), (0,0,2),

develop ((1−X −Y ) + X + Y )2 and collect the pieces

(1−X −Y )2, 2 X (1−X −Y ), 2 Y (1−X −Y ), X2, 2XY , Y 2

c) k = 3, d= 2, ℓ0 = 1−X −Y −Z, ℓ1 = X, ℓ2 = Y , ℓ3 = Z

develop ((1−X −Y −Z)+ X + Y + Z)2 and collect the pieces
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Properties of the Bersntein basis

− takes positive values on V ,

− basis of the vector-space of polynomials of degree 6 d

− 1 has coefficients (1,	 , 1)

If deg(P ) 6 d and i a multiindex of degree d, denote by b(P , d, V )i (or simply
bi) the coefficient of Bernd,i(V ) in P and by b(P , d, V ) the vector of Bernstein
coefficients of P .

The values of P at the vertices of the simplex are given by b(P , d, V )dej
,

ej = (0,	 , 0, 1, 0,	 , 0), 1 at place j, j = 0,	 , k :
at a vertex all barycentric coordinates are equal to 0 but one of them.
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3 How to define the control polytope

Grid points in the simplex V in degree d:
to a multiindex i = (i0, 	 , ik) such that d = i0 + 	 + ik is associated a grid

point mi with barycentric coordinates (i0/d,	 , ik/d)

Control points of P : points Mi = (mi, bi) where bi = b(P , d, V )i
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In dimension one, the control points define the control line.

Figure 1.
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In dimension more than one, the control points do not define a control poly-

tope above V . It is needed to define first a triangulation of V based on the grid
points mi.

Example in dimension 2: we need to choose how to triangulate the square.

Figure 2.
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1 Standard triangulation [GP]

Let V be a simplex with affinely independant vertices v0, 	 , vk, d the degree.
The definition of the standard triangulation Tk,d(V ) is not intrinsic and
depends on the order of the vertices of V .

For simplicity we describe the case of the unit simplex ∆, the general case
being an affine transformation of this special case.
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Kuhn’s triangulation of the unit cube
To a permutation σ of 1, 	 , k is associated a simplex Vσ = [vσ,0, 	 , vσ,k]

fined by

• vσ,0 = (0,	 , 0)

• vσ,i = eσ(1) +	 + eσ(i) for i= 1,	 , k

where ei is the canonical basis.

The collection of these simplices triangulate the unit cube.

Figure 3.
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Figure in dimension 3.

Figure 4.

Adjacency relations between two simplices are easy to describe :
Vσ and Vτ are adjacent if and only if there exists i such that σ(i) = τ(i + 1),

σ(i+ 1) = τ (i).
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Standard triangulation (unit simplex ∆)
Send the unit cube equipped with Kuhn’s triangulation to a distorted cube

inside the unit simplex by e1→ e1/d, e2→ (e2− e1)/d,	 , ek→ (ek − ek−1)/d
Translate these “cubes” in the direction of the axis and observe that the

restriction to the unit simplex ∆ of the Kuhn triangulations of these cubes is a
triangulation of ∆.

Figure 5.
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Figure in dimension 3.

Figure 6.
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Properties of the standard triangulation

− it has a nice combinatorial description in terms of mappings from {1, 	 ,

k} to {1,	 , d} (not explained here, see Richard’s thesis)

− adjacencies between simplices have a nice combinatorial description

− it depends on the order of the vertices but it is invariant under a cyclic
permutation of the vertices

− its vertices are grid points

− the restriction of Tk,d(∆) to the simplex V with vertices v0, 	 , vr is
Tr,d(V )

− if V is a simplex of Tk,d(∆), Tk,ℓ(V ) is the restriction to V of Tk,dℓ(∆)
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Control polytope

Once the standard triangulation Tk,d(V ) of V is defined, it makes sense to
define the control polytope of a polynomial P on V associated to the standard
triangulation: it is the piecewise linear continuous function defined over each

W = [v0,	 , vk ] of Tk,d(V ) by the corresponding control points.

The control polytope of P associated to the standard triangulation is a
kind of piecewise linear approximation of the graph of P .

The graph of P on V is contained in the convex hull of the control poly-
tope.
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Figure 7.
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Convexity
Adjacency relations between sub-simplexes of Tk,d(V ) are easy to describe

in a combinatorial mannner.

As a consequence, the control polytope of P on V is convex if and only if,
with ej = (0,	 , 0, 1, 0,	 , 0), and e−1 = ek

bi+ej+eℓ−1
+ bi+ej−1+eℓ

> bi+ej−1+eℓ−1
+ bi+ej+eℓ

for all 0 6 j < ℓ6 k and all multi-index i of degree d− 2.
To P is associated the vector δ2(b) whose i, j , ℓ ’s coordinate is

bi+ej+eℓ−1
+ bi+ej−1+eℓ

− bi+ej−1+eℓ−1
− bi+ej+eℓ

.

It can be interpreted as Bernstein coefficients of second order derivatives in
specific directions (convexity is related to second order derivatives !).
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Example k = 2, d= 2 the vector δ2(b) has three components

b(2,0,0) + b(0,1,1)− b(1,1,0)− b(1,0,1)

b(0,2,0) + b(1,0,1)− b(1,1,0)− b(0,1,1)

b(0,0,2) + b(1,1,0)− b(1,0,1)− b(0,1,1)

See Figure 2.
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2 Worse possible distance between the graph and the control poly-
tope for the standard simplex

Theorem 1. The maximum distance between the graph of P and the control

polytope of P on he standard simplex ∆ is estimated by

d k (k + 2)

24
‖δ2(b)‖∞

When k = 1, one recovers the classical bound

d

8
‖δ2(b)‖∞

When k = 2, one recovers the bound from [Re]

d

3
‖δ2(b)‖∞
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Idea of the proof:

− use convexity and prove that, supposing without loss of generality
‖δ2(b)‖∞= 1, the maximum distance is obtained for a polynomial P such
that all components of δ2(P ) are 1

− construct explicitely a polynomial P ⋆ such that all components of
δ2(b

⋆) are 1 and compute the difference between the graph and the con-
trol polytope for P ⋆

It turns out that there is a polynomial P ⋆ of degree 2 such that δ2(b
⋆) = 1. It is

the quadratic form associated to the symmetric matrix

mi,j =
d (d− 1)

2
i (k − j + 1), i6 j

If k = 2 and d = 2, we obtain

2 X2 + 2 XY + 2 Y 2

which was known to reach the maximum.
For k > 2, the result is new.
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As a consequence we get a (new) result explaining how the values at the
grid points are approximated by the Bernstein coefficients (note that the con-
trol polytope does not appear anymore in the statement, it is used only in the
proof)

Corollary 2. The maximum distance between the values of P at the grid

points and the Bernstein coefficients of P on the standard simplex ∆ is esti-

mated by
d k (k + 2)

24
‖δ2(b)‖∞
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4 Certificates of positivity on a simplex

Suppose that P is positive on ∆. By a certificate of positivity we mean an
algebraic identity proving that P is positive on ∆. There are two kinds of cer-
tificates of positivity in the Bernstein basis:

Global certificates of positivity (classical)
Express P in the Bernstein basis for increasing degree D. If D is big

enough, all the coefficients are positive (proved by Bernstein).

Local certificates of positivity (new)
Keep the degree d and subdivide ∆ in subsimplices for which all the coeffi-

cients of P are positive.

We denote by m the minimum of P on ∆.
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Global certificates of positivity
Express P in the Bernstein basis for increasing degree D. If D is big

enough, all the coefficients are positive.

Theorem 3. If P is positive on ∆

D >
d (d− 1)k(k + 2)

24m
‖δ2(b)‖∞

ensures that all the elements of b(P ,D,∆) are positive.

Note: already existing result by [PR], better in some cases, worse in some
cases.
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Local certificates of positivity
Keep the degree d and subdivide ∆ in subsimplices for which all the coeffi-

cients of P are positive.

Theorem 4. If P is positive on ∆

2N >
d

√
k(k + 2) k (k + 1) (k + 3)

√

24 m
√ ‖δ2(b)‖∞

√

ensures that all the elements of b(P , D, Vi)are positive for Vi a simplex of the

standard triangulation T2N(∆).

Local certificates are better for two reasons

− the size of the certificates is smaller: m
√

rather than m at the denomi-
nator

− the process is adaptative, since some simplices do not need to be subdi-
vided.

Note that the behaviour with respect to k is worse.
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The only remaining question is: if P is not everywhere positive, how to be
sure that the algorithm stops ? This is done through estimating the minimum
of a multivariate polynomial [JP] (improving [BLR]).

Rough description of the Certificate of Positivity Algorithm

Initialize the list L of simplices to inspect with ∆

Remove a simplex V from L

If all the elements of b(P , d, V ) are positive, store them in a list C

If a value of P at a vertex of V is negative output it
Otherwise subdivide V using the standard triangulation of degree 2, and

put all the simplices of T2(V ) in L.

Stop when L is empty OR the diameter of each V on L is small enough to
ensure that P is not everywhere positive.
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Examples

Figure 8.
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5 Conclusions and future work

In the univariate case, the consideration of local certificates led to polyno-
mial size certificates of positivity (in the degree and bitsize of integer coeffi-
cients) [BCaR] while the global approach was exponential (explicit exponential
examples). Key tool: the number of variations in the list of Bernstein coeffi-
cients is subadditive: after a subdivision in two segments the sum does not
increase.

In the multivariate case we do not have any similar discrete quantity which
measures the number of sign variations before and after the subdivision ...

So, in the multivariate case, local certificates are better than global certifi-
cates, a goood practical behaviour can be observed but we do not know
whether the complexity is significantly improved.
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