Isolation of real roots of polynomial systems, complexity and condition number

B. Mourrain
GALAAD, INRIA Méditerranée, Sophia Antipolis
mourrain@sophia.inria.fr

October 24, 2009

A general scheme

Algorithm (A generic subdivision algorithm)

INPUT: An algebraic description of a semi-algebraic set.

Output: A topological description of the semi-algebraic set.

Create a subdivision tree \mathcal{T} and set its root to B_0 . Create a list of cells \mathcal{C} and initialize it with $[B_0]$.

While $\mathcal{C} \neq \emptyset$

- c = pop C
- If regular(c) $\mathcal{T} \leftarrow process(c)$ else $\mathcal{C} \leftarrow subdivide(c)$

return assemble (\mathcal{T})

™ The problem: Given a system of polynomial equations with real (rational, integer) coefficients, isolate (approximate within a given precision ε) the real roots of the system in a domain $D \subset \mathbb{R}^n$.

Regularity: we will use

- an exclusion test to remove cells with no root;
- an inclusion test to check if the cell contains a unique root.

Analysis will be performed in terms of

- d maximal degree of the equations;
- \bullet τ maximal size of the coefficients.
- intrinsic quantities of the system not necessarly computed by the algorithm.

How hard is the isolation problem?

Theorem (Separation bound)

$$\Delta = sep(A) = \min_{i \neq j} |\gamma_i - \gamma_j| \sim 2^{-\mathcal{O}(d^2 + d\tau)}$$

Example: Consider the Wilkinson polynomial

$$A = (x-1)(x-2)\cdots(x-20)$$

Lower bound:

$$\Delta \geq 10^{-344}$$

but actually

$$sep(A) = 1$$

Not all can be bad!

Theorem (Separation bound)

$$\Delta = sep(A) = \min_{i \neq j} |\gamma_i - \gamma_j| \sim 2^{-\mathcal{O}(d^2 + d\tau)}$$

 $\Delta_j := \min \operatorname{dist}(\zeta_j, \zeta_k) \ k \neq j.$

Theorem (DMM_1)

$$\prod \Delta_j = \prod_j |\gamma_j - \gamma_{c_j}| \sim 2^{-\mathcal{O}(d^2 + d\tau)}$$

where γ_{c_i} is the closest root to γ_j [Davenport; 1985].

Not all can be bad, in dimension *n*

Theorem (Separation bound)

$$\Delta = sep(A) = \min_{i \neq j} |\gamma_i - \gamma_j| \sim 2^{-\mathcal{O}(nd^{2n-1}\tau)}$$

Theorem $(DMM_n [EMT'09])$

$$\prod \Delta_j = \prod_j |\gamma_j - \gamma_{c_j}| \sim 2^{-\mathcal{O}(nd^{2n-1}\tau)}$$

where γ_{c_j} is the closest root to γ_j .

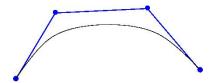
Univariate polynomials

Univariate Bernstein representation

For any $f(x) \in \mathbb{Q}[x]$ of degree d, with

$$f(x) = \sum_{i=0}^{d} c_i \binom{d}{i} (x-a)^i (b-x)^{d-i} (b-a)^{-d} = \sum_{i=0}^{d} c_i B_d^i(x; a, b),$$

The $\mathbf{c} = [c_i]_{i=0,\dots,d}$ are the *control coefficients* of f on [a,b].



Properties:

•
$$\sum_{i=0}^{d} B_d^i(x; a, b) = 1; \sum_{i=0}^{d} (a \frac{d-i}{d} + b \frac{i}{d}) B_d^i(x; a, b) = x;$$

•
$$f(a) = c_0, f(b) = c_d;$$

•
$$d f'(x) = \sum_{i=0}^{d-1} \Delta(\mathbf{c})_i B_{d-1}^i(x; a, b)$$
 where $\Delta(\mathbf{c})_i = c_{i+1} - c_i$;

•
$$(x, f(x))_{x \in [a,b]} \in \text{convex hull of the points } (a \frac{d-i}{d} + b \frac{i}{d}, c_i)_{i=0..d}$$

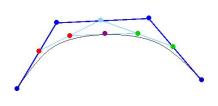
•
$$\#\{f(x) = 0; x \in [a, b]\} = V(\mathbf{c}) - 2p, p \in \mathbb{N}.$$

De Casteljau subdivision algorithm:

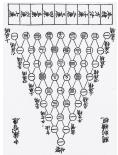
$$\begin{cases} c_i^0 = c_i, & i = 0, \dots, d, \\ c_i^r(t) = (1 - t) c_i^{r-1}(t) + t c_{i+1}^{r-1}(t), & i = 0, \dots, d - r. \end{cases}$$

- $\mathbf{c}^-(t) = (c_0^0(t), c_0^1(t), \dots, c_0^d(t))$ represents f on [a, (1-t)a + tb].
- $\mathbf{c}^+(t) = (c_0^d(t), c_1^{d-1}(t), \dots, c_d^0(t))$ represents f on [(1-t)a+tb, b].

The geometric point of view.



The algebraic point of view.



Real root isolation for squarefree polynomials

■ Regularity:

- Count the number $V(\mathbf{c}; a, b)$ of coefficient sign changes.
- $V(\mathbf{c}; a, b) = 0 \Rightarrow \text{no root.}$
- $V(\mathbf{c}; a, b) = 1 \Rightarrow \text{a single root.}$

Subdivision:

If $V(\mathbf{c}) > 1$, split the interval in the middle using de Casteljau algorithm;

Continued Fraction solver [AC'76, ..., TE'08]

Instead of changing the interval:

- Fix it: $]0, +\infty[$
- Change the fonction, by homography transformation:

$$H:]0, +\infty[\rightarrow]\frac{a}{c}, \frac{b}{d}[$$

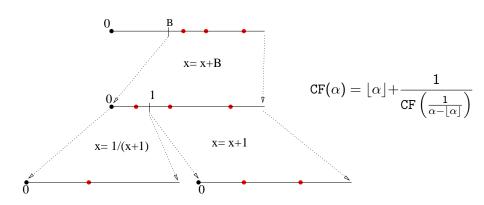
$$x \mapsto \frac{a+bx}{c+dx}$$

- Work with (f ∘ H, H)
- □ Regularity:
 - $V(f \circ H) = 0 \Rightarrow \text{no root};$
 - $V(f \circ H) = 1 \Rightarrow \text{ a single root};$

where $V(\cdot)$ is the number of sign changes of the coefficients in the monomial basis.

■ Subdivision:

- Compute a lower bound $b = L(f) \in \mathbb{N}$ of the roots of f in \mathbb{R}_+ ;
- Compute $f(x) := T_b(f) = f(x+n)$ and repeat until L(f) = 0;
- Split: $T_1(p) = p(x+1)$, $R(p) = (x+1)^d p(\frac{1}{x+1})$.



™ Continued Fraction expansion of the roots:

$$\alpha = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \dots}}$$

where b_i is the total shift between the $i^{\rm th}$ and $(i+1)^{\rm th}$ inversions.

Theorem ([Vincent;1836], [Uspensky;1948], [Alesina, Galuzzi;1998])

Let $f \in \mathbb{Z}[x]$, and $b_0, b_1, \ldots, b_n \in \mathbb{Z}_+$, $n > \mathcal{O}(d\tau)$. The map

$$x \mapsto b_0 + \frac{1}{b_1 + \frac{1}{\cdots b_n + \frac{1}{x}}}$$

transforms f(x) to $\tilde{f}(x)$ such that

- **1** $V(\tilde{f}) = 0 \Leftrightarrow f$ has no positive real roots.
- 2 $V(\tilde{f}) = 1 \Leftrightarrow f$ has one positive real root.

$$\Rightarrow$$
 2 ^{$O(d\tau)$} [Vincent; 1836], [Uspensky;1948] ..., $O_B(d^5\tau^3)$ [Akritas;1980] ...

Termination & Complexity

Proposition (Descartes' rule)

For $f := (\mathbf{c}, [a, b])$, $\#\{f(x) = 0; x \in [a, b]\} = V(\mathbf{c}) - 2p$, $p \in \mathbb{N}$.

Theorem

$$V(\mathbf{c}^-) + V(\mathbf{c}^+) \leq V(\mathbf{c}).$$

Theorem (Vincent)

If there is no complex root in the disc $D(m_{a,b},\frac{|b-a|}{2})\subset \mathbb{C}$, then $V(\mathbf{c})=0$.

Theorem (Two circles)

If there is no complex root in the union of the discs $D(T_{a,b}^+) \cup D(T_{a,b}^-) \subset \mathbb{C}$ except a simple real root, then $V(\mathbf{c}) = 1$.

$\overline{\mathsf{Theorem}} \ \overline{\mathsf{(Mahler-Davenport-Mignotte)}}$

Let $f \in \mathbb{Z}[x]$ (not necessarily square free),

$$\prod_{i=1}^k \Delta_k \geq \mathcal{M}(f)^{-d+1} d^{-\frac{d}{2}} \left(\frac{\sqrt{3}}{d}\right)^k.$$

Proposition

Let $f \in \mathbb{Z}[x]$ of degree d and coefficients of bit size $\leq \tau$, with simple roots. Then, the number of subdivisions to isolate its real roots is $\mathcal{O}(d\tau + d \log d)$.

Theorem ([ESY'06], [EMT'06])

Let $f \in \mathbb{Z}[x]$ of degree d and coefficients of bit size $\leq \tau$. The binary cost of the subdivision solver is $\tilde{\mathcal{O}}_{B}(d^{4}\tau^{2})$.

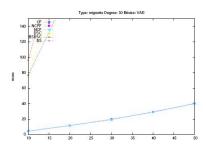
Average complexity [Tsigaridas, Emiris; 2008]

The expected complexity of **CF** is $\tilde{\mathcal{O}}_B(d^3\tau)$.

Mignotte polynomials

- Separation is not known a priori
- Difficult for subdivision solvers
- Approximate methods failed
- ▶ Only CF is efficient

Figure: Mignotte polynomials



Multivariate polynomials

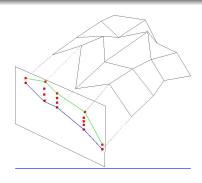
Multivariate Tensor product Bernstein representation

$$f(x_1,\ldots,x_n) = \sum_{i_1=0}^{d_1} \cdots \sum_{i_n=0}^{d_n} c_{i_1,\ldots,i_n} B_{d_1}^{i_1}(x_1;a_1,b_1) \cdots B_{d_n}^{j}(x_n;a_n,b_n)$$

associated with the box $\prod [a_i, b_i]$.

- Subdivision for each direction, similar to the univariate case.
- Arithmetic **complexity** of a subdivision bounded by $\mathcal{O}(d^{n+1})$ $(d = max(d_1, \ldots, d_n))$, memory space $\mathcal{O}(d^n)$.

Reduction



$$m_{j}(f;x_{j}) = \sum_{i_{j}=0}^{d_{j}} \min_{\{0 \leq i_{k} \leq d_{k}, k \neq j\}} b_{i_{1},...,i_{n}} B_{d_{j}}^{i_{j}}(x_{j}; a_{j}, b_{j})$$

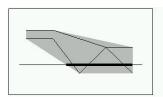
$$M_{j}(f;x_{j}) = \sum_{i_{j}=0}^{d_{j}} \max_{\{0 \leq i_{k} \leq d_{k}, k \neq j\}} b_{i_{1},...,i_{n}} B_{d_{j}}^{i_{j}}(x_{j}; a_{j}, b_{j}).$$

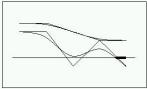
Proposition (PS93)

The intersection of the convex hull of the control polygon with the axis contains the projection of the zeroes of $\mathbf{f}(\mathbf{u}) = 0$.

Proposition

For any
$$\mathbf{u} = (u_1, \dots, u_n) \in \mathcal{D}$$
, and any $j = 1, \dots, n$, we have
$$m_i(f; u_i) \le f(\mathbf{u}) \le M_i(f; u_i).$$





Use the roots of $m_j(f, u_j) = 0$, $M_j(f, u_j) = 0$ to reduce the domain of search.

Multivariate Monomial Tensor Representation

Homography (or Möbius transformation)

Bijective projective transformation $\mathcal{H}=(\mathcal{H}_1,\ldots,\mathcal{H}_n)$ over $\mathbb{P}^1\times\cdots\times\mathbb{P}^1$,

$$x_k \mapsto \mathcal{H}_k(x_k) = \frac{\alpha_k x_k + \beta_k}{\gamma_k x_k + \delta_k}, \quad \alpha_k, \beta_k, \gamma_k, \delta_k \in \mathbb{Z}, \quad \alpha_k \, \delta_k - \beta_k \, \gamma_k \neq 0$$

$$H(f) := \prod_{k=1}^{n} (\gamma_k x_k + \delta_k)^{d_k} \cdot (f \circ \mathcal{H})(x)$$

Base homographies:

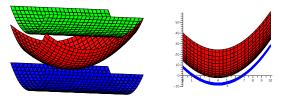
- translation by $c \in \mathbb{Z}$: $T_k^c(f) = f|_{x_k = x_k + c}$
- contraction by $c \in \mathbb{Z}$: $C_k^c(f) = f|_{x_k = cx_k}$
- reciprocal polynomial: $R_k(f) = x_k^{d_k} f|_{x_k=1/x_k}$

Lemma

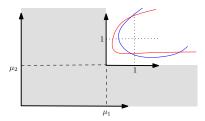
The group of homographies is generated by R_k , C_k^c , T_k^c , k = 1, ..., n.

Reduction step

• Bounding the graph of f_i by cylinders in \mathbb{R}^{n+1} :



• Reducing the domain using univariate lower bounds:



$$m_k(f; x_k) = \sum_{i_k=0}^{d_k} \min_{i_1, \dots, \widehat{i_k}, \dots, i_n} c_{i_1 \dots i_n} x_k^{i_k} , \quad M_k(f; x_k) = \sum_{i_k=0}^{d_k} \max_{i_1, \dots, \widehat{i_k}, \dots, i_n} c_{i_1 \dots i_n} x_k^{i_k}$$

Lemma

$$m_k(f; x_k) \le \frac{f(x)}{\prod_{s \ne k} \sum_{i_s=0}^{d_s} x_s^{i_s}} \le M_k(f; x_k)$$
 , $k = 1, ..., n$

Corollary (lower bounds on the coordinates of the zeros)

$$\mu_k := \left\{ \begin{array}{ll} \text{min. pos. root of } M_k(f,x_k) & \text{if } M_k(f;0) < 0 \\ \text{min. pos. root of } m_k(f,x_k) & \text{if } m_k(f;0) > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

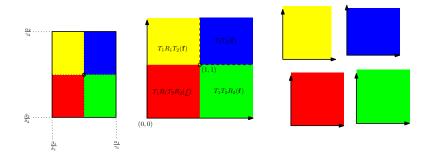
All positive roots of f lie in $\mathbb{R}_{>u_1} \times \cdots \times \mathbb{R}_{>u_n}$.

Use the lowest root of $m_k(f_j, x_k)$ or $M_k(f_j, x_k)$ to reduce the domain.

B. Mourrain

Isolation of realroots

Subdivision



Keep in memory:

- Transformed polynomials: $H(f_1), \ldots, H(f_s)$ as coefficient *tensors*.
- 4*n* integers: $\alpha_k, \beta_k, \gamma_k, \delta_k, k = 1, ..., n$ to keep track of the domain.

Exclusion criterion

• No sign variation of the coefficients in the Bernstein/monomial basis \Rightarrow no real root in the domain \mathcal{D} .

or

• $|\mathbf{f}(\mathbf{m})| > |\mathcal{K}_1(\mathbf{f})| |\mathcal{D}| \Rightarrow$ no root in \mathcal{D} , where \mathbf{m} is the center of \mathcal{D} and $\mathcal{K}_1(\mathbf{f})$ is a bound on the Lipschitz constant of \mathbf{f} on \mathcal{D} .

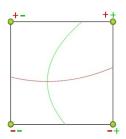
Inclusion criterion

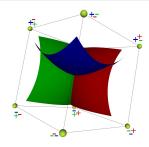
Miranda Theorem

If for every pair of parallel faces there exists f_i that attains opposite signs on the faces, then f_1, \ldots, f_n have at least one root inside the box.

Lemma

If the Jacobian has a constant sign in the box, then there is at most one root of f_1, \ldots, f_n inside the box.





 \square or use α -theory [BCSS98]:

- $\beta := \beta(f; x) = ||Df(x)^{-1}f(x)||$
- $\gamma := \gamma(\mathbf{f}; \mathbf{x}) = \sup_{k \ge 2} \left(\frac{1}{k!} || D\mathbf{f}(\mathbf{x})^{-1} D^k \mathbf{f}(x, y) || \right)^{1/(k-1)}$
- $\alpha := \alpha(\mathbf{f}; \mathbf{x}) = \beta \gamma$.

Theorem

If $\alpha(\mathbf{f}; \mathbf{x}) < \alpha_0$ then

- x is an approximate zero of f;
- Its associated zero ζ is in $B(\mathbf{x}; \frac{u_0}{\gamma(\mathbf{f}; \mathbf{x})});$
- For any point $\mathbf{z} \in B(\mathbf{x}; \frac{u_0}{\gamma(\mathbf{f}; \mathbf{x})})$, Newton interation converges quadratically from \mathbf{z} to ζ .
- \Rightarrow Same root for all the points in a connected components of $\bigcup_{\alpha(\mathbf{f};\mathbf{m})<\alpha_0} B(\mathbf{m}; \frac{u_0}{\gamma(\mathbf{f};\mathbf{m})}).$

Subdivision speed

 $\Delta_i(\zeta)$: local separation bound of ζ_i , $k_i(\zeta)$: # of steps that isolate ζ_i

• Continued fraction expansion:

$$\zeta_1 = b_0^{(1)} + rac{1}{b_1^{(1)} + rac{1}{b_2^{(1)} + \cdots}} = rac{P_{k_i(\zeta)}^{(1)}}{Q_{k_i(\zeta)}^{(1)}} \Big|_{\mu_2}$$

$$\left| rac{P_{k_i(\zeta)}^{(1)}}{Q_{k_i(\zeta)}^{(1)}} - \zeta_j \right| < \phi^{-2k_i(\zeta) + 1} \le \Delta_i(\zeta),$$

• Bernstein binary subdivision:

$$\left|m_{k_i(\zeta)}-\zeta_i\right|<\sqrt{n}\,2^{-k_i(\zeta)}|\mathcal{D}_0|\leq \Delta_i(\zeta),$$

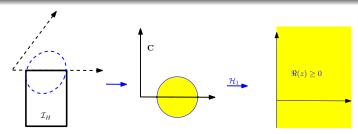
Complexity analysis

Vincent Theorem in several variables

Let $f(\mathbf{x}) = \sum_{\mathbf{i}i=0}^{\mathbf{d}} c_{\mathbf{i}} \mathbf{x}^{\mathbf{i}}$ with $c_{\mathbf{i}} \in \mathbb{R}$, without (complex) solutions s.t. $\Re(z_k) \geq 0$ for some k. Then all its coefficients $c_{\mathbf{i}}$ are of the same sign.

Corollary

If the complex multidisk associated to a domain \mathcal{I}_H does not intersect $\{z\in (\mathbb{P}^1)^n: f_i(z)=0\}$ then the coeffs. of $H(f_i)$ have no sign changes.



Definition (ε -tubular neighborhood & "entropy")

- $\tau_{\varepsilon}(f) = \{x \in \mathbb{R}^n : \exists z \in \mathbb{C}^n, f(z) = 0, \text{ s.t. } \|z x\|_{\infty} < \varepsilon\}.$
- $\tau_{\varepsilon}(\mathbf{f}) := \bigcap_{i=1}^{s} \tau_{\varepsilon}(f_i)$ for $\mathbf{f} = (f_1, \dots, f_s)$.
- $N_{\varepsilon}(\mathbf{f}) := \text{minimal number of boxes of size} < \varepsilon \text{ covering } \tau_{\varepsilon}(\mathbf{f})$ in a complete binary subdivision of D_0 .

Proposition

The number of boxes of size ε not excluded is less that $N_{\varepsilon}(\mathbf{f})$.

Remark:

- $N_{\varepsilon}(\mathbf{f}) \leq \varepsilon^{-n} \operatorname{Vol}(\tau_{2\varepsilon}(\mathbf{f})).$
- $N_{\varepsilon}(\mathbf{f})$ bounded for $\varepsilon > 0$: $N_{*}(\mathbf{f}) := \max_{\varepsilon > 0} N_{\varepsilon}(\mathbf{f})$.
- For a square system (s = n) with simple roots

$$\lim_{\varepsilon \to 0} \textit{N}_{\varepsilon}(\textbf{f}) \leq \lim_{\varepsilon \to 0} \varepsilon^{-n} \mathrm{Vol}(\tau_{2\varepsilon}(\textbf{f})) \leq \textit{c}(\textit{n}) \sum_{\zeta \in \mathcal{D}_0} \frac{\prod_{\textit{i}} ||\nabla \textit{f}_{\textit{i}}(\zeta)||}{|\textit{J}_{\textbf{f}}(\zeta)|}.$$

• By preconditionning $\mathbf{f}' := J_{\mathbf{f}}(\mathbf{m})^{-1}\mathbf{f}$, limit $= c(n) \sum_{\zeta \in \mathcal{D}} 1$.

For some $\rho > 0$, $\tau_{\rho}(\mathbf{f}) \subset \cup_{\zeta \in \mathcal{D}} B(\zeta, \frac{u_0}{\gamma(\mathbf{f}, \zeta)})$.

Definition (Lipshitz constant)

$$\mathcal{K}_1(\mathbf{f},\mathcal{D}) := \mathsf{max}(1, rac{\mathsf{Lipschitz\ constant}(\mathbf{f})}{||\mathbf{f}||}).$$

Definition (CKMW)

- $\kappa(\mathbf{f}, \mathbf{x}) := \frac{||\mathbf{f}||}{(||\mathbf{f}||\mu_{\mathbf{f}}(\mathbf{x})^{-2} + ||\mathbf{f}(\mathbf{x})||_{\infty})^{1/2}}$ where $\mu_{\mathbf{f}}(\mathbf{x}) = ||J_{\mathbf{f}}(\mathbf{x})||$.
- $\kappa(\mathbf{f}) := \max_{\zeta \in \mathcal{D}; \mathbf{f}(\zeta) = 0} \kappa(\mathbf{f}, \zeta).$

Proposition

For $\varepsilon < \frac{cst(d)}{K_1(\mathbf{f},\mathcal{D})^2\kappa(\mathbf{f})^2}$, a retained box of size $\leq \varepsilon$ satisfies the inclusion test.

Proposition

The arithmetic complexity is $\tilde{\mathcal{O}}(N_*(\mathbf{f}) d^{n+1}(\log \kappa(\mathbf{f}) + \log K_1(\mathbf{f})))$.

Complexity analysis for exact input over \mathbb{Z}

To simplify the complexity analysis, we assume that exclude() and include() test always give a correct answer.

Generalization of DMM bound [EMT'09]:

$$\prod_{\zeta \in V} \Delta_i(\zeta) \geq 2^{-2n\tau d^{2n-1} - d^{2n}/2} (nd^n)^{-nd^{2n}}$$

Overall

$$\#STEPS \leq n \sum_{\zeta \in V} k_i(\zeta) \leq n^2 \frac{1}{2} R - n^2 \frac{1}{2} \sum_{\zeta \in V} \lg \Delta_i(\zeta)$$

$$\leq 2n^2 \tau d^{2n-1} + 2n^2 d^n \lg(nd^{2n})$$

Lemma

The number of reduction/subdivision steps is $\tilde{\mathcal{O}}(n^2 \tau d^{2n-1})$.

- Complexity of shifting $(\mathbf{x} = \mathbf{x} + \mathbf{u})$ [Gathen, Gerhard; 1997]: $\tilde{\mathcal{O}}_B(n^2d^n\tau + d^{n+1}n^3\sigma)$, obtained as nd^{n-1} univariate shifts
- σ is bounding the bit size of partial quotients in the CF expansion of the roots: $E[\log b_i] = \mathcal{O}(\log \mathcal{K}) = \mathcal{O}(1)$.
- Bound computation with cost C₁,
 Tests evaluation with cost C₂.

$\mathsf{Theorem}$

The total complexity is $\tilde{\mathcal{O}}_B(2^n n^7 d^{5n-1} \tau^2 \sigma + (\mathcal{C}_1 + \mathcal{C}_2) n^2 \tau d^{n-1})$.

- Best rational approximation of the (coords. of the) real roots.
- \bullet Improvement by initial scaling: apply $C_k^{1/2^\ell}$ to the input.
 - The real roots are multiplied by 2^{ℓ} and their distance increases.
 - Total complexity improves by an order of $d^{2n}\tau$.
- n = 1: matches average complexity of [TE'08].
- mCF is implemented in MATHEMAGIX, in the C++ module realroot.
 - Uses GMP arithmetic to work with large integer coefficients.
 - Polynomials based on dense tensor (higher dimensional matrix) representation.
 - Univariate solving by classic CF algorithm, special case of mCF. DFS traversal of the subdivision tree returns only the (floor of the) first positive root.

- MP Mourrain Bernard, Pavone Jean-Pascal: Subdivision methods for solving polynomial equations Journal of Symbolic Computation 44,3(2009) p. 292-306; (Preprint version 2005).
- CKMW Felipe Cucker, Teresa Krick, Gregorio Malajovich, Mario Wschebor:

 A numerical algorithm for zero counting, I: Complexity and accuracy. J. Complexity 24(5-6): 582-605 (2008).
 - MMT Mantzaflaris Angelos, Mourrain Bernard, Tsigaridas Elias P. Continued Fraction Expansion of Real Roots of Polynomial Systems, In proc. of the conference on Symbolic-Numeric Computation (2009) 85-94.