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A general scheme

Algorithm (A generic subdivision algorithm)

Input: An algebraic description of a semi-algebraic set.
Output: A topological description of the semi-algebraic set.

Create a subdivision tree T and set its root to B0.
Create a list of cells C and initialize it with [B0].

While C 6= ∅
c = pop C
If regular(c) T ← process(c) else C ← subdivide(c)

return assemble (T )
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+ The problem: Given a system of polynomial equations with
real (rational, integer) coefficients, isolate (approximate within a
given precision ε) the real roots of the system in a domain D ⊂ Rn.

+ Regularity: we will use

an exclusion test to remove cells with no root;

an inclusion test to check if the cell contains a unique root.

+ Analysis will be performed in terms of

d maximal degree of the equations;

τ maximal size of the coefficients.

intrinsic quantities of the system not necessarly computed by
the algorithm.
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How hard is the isolation problem?

Theorem (Separation bound)

∆ = sep(A) = min
i 6=j
|γi − γj | ∼ 2−O(d2+dτ)

Example: Consider the Wilkinson polynomial

A = (x − 1)(x − 2) · · · (x − 20)

Lower bound:
∆ ≥ 10−344

but actually

sep(A) = 1
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Not all can be bad!

Theorem (Separation bound)

∆ = sep(A) = min
i 6=j
|γi − γj | ∼ 2−O(d2+dτ)

∆j := min dist(ζj , ζk) k 6= j .

Theorem (DMM1)∏
∆j =

∏
j

|γj − γcj | ∼ 2−O(d2+dτ)

where γcj is the closest root to γj [Davenport; 1985].
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Not all can be bad, in dimension n

Theorem (Separation bound)

∆ = sep(A) = min
i 6=j
|γi − γj | ∼ 2−O(nd2n−1τ)

Theorem (DMMn [EMT’09])∏
∆j =

∏
j

|γj − γcj | ∼ 2−O(nd2n−1τ)

where γcj is the closest root to γj .
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Univariate polynomials
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Univariate Bernstein representation

For any f (x) ∈ Q[x ] of degree d , with

f (x) =
d∑

i=0

ci

(
d

i

)
(x − a)i (b− x)d−i (b− a)−d =

d∑
i=0

ci B i
d(x ; a, b),

The c = [ci ]i=0,...,d are the control coefficients of f on [a, b].

Properties:∑d
i=0 B i

d(x ; a, b) = 1;
∑d

i=0(a d−i
d + b i

d ) B i
d(x ; a, b) = x ;

f (a) = c0, f (b) = cd ;

d f ′(x) =
∑d−1

i=0 ∆(c)i B i
d−1(x ; a, b) where ∆(c)i = ci+1 − ci ;

(x , f (x))x∈[a,b] ∈ convex hull of the points (a d−i
d

+ b i
d
, ci )i=0..d

#{f (x) = 0; x ∈ [a, b]}=V (c)−2p, p ∈ N.
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De Casteljau subdivision algorithm:

{
c0
i = ci , i = 0, . . . , d ,

c r
i (t) = (1− t) c r−1

i (t) + t c r−1
i+1 (t), i = 0, . . . , d − r .

c−(t) = (c0
0 (t), c1

0 (t), . . . , cd
0 (t)) represents f on [a, (1− t) a + t b].

c+(t) = (cd
0 (t), cd−1

1 (t), . . . , c0
d (t)) represents f on

[(1− t) a + t b, b].

The geometric point of view. The algebraic point of view.
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Real root isolation for squarefree polynomials

r Regularity:

Count the number V (c; a, b) of coefficient sign changes.

V (c; a, b) = 0 ⇒ no root.

V (c; a, b) = 1 ⇒ a single root.

r Subdivision:

If V (c) > 1, split the interval in the middle using de Casteljau
algorithm;
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Continued Fraction solver [AC’76, ..., TE’08]

+ Instead of changing the interval:

Fix it: ]0,+∞[

Change the fonction, by homography transformation:

H : ]0,+∞[ → ]
a

c
,

b

d
[

x 7→ a + b x

c + d x

Work with (f ◦ H,H)

r Regularity:

V (f ◦ H) = 0 ⇒ no root;

V (f ◦ H) = 1 ⇒ a single root;

where V (·) is the number of sign changes of the coefficients in the
monomial basis.
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r Subdivision:

Compute a lower bound b = L(f ) ∈ N of the roots of f in R+;

Compute f (x) := Tb(f ) = f (x + n) and repeat until L(f ) = 0;

Split: T1(p) = p(x + 1), R(p) = (x + 1)dp( 1
x+1).

B

1

0

0

0 0

x= 1/(x+1) x= x+1

x= x+B

CF(α) = bαc+ 1

CF
(

1
α−bαc

)
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+ Continued Fraction expansion of the roots:

α = b0 +
1

b1 + 1
b2+...

where bi is the total shift between the i th and (i + 1)th inversions.

Theorem ([Vincent;1836], [Uspensky;1948], [Alesina,Galuzzi;1998])

Let f ∈ Z[x ], and b0, b1, . . . , bn ∈ Z+, n > O(d τ). The map

x 7→ b0 +
1

b1 +
1

. . . bn +
1

x
transforms f (x) to f̃ (x) such that

1 V (f̃ ) = 0⇔ f has no positive real roots.

2 V (f̃ ) = 1⇔ f has one positive real root.

⇒ 2O(dτ) [Vincent; 1836], [Uspensky;1948] . . . ,
OB(d5τ3) [Akritas;1980] . . .
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Termination & Complexity

Proposition (Descartes’ rule)

For f := (c, [a, b]), #{f (x) = 0; x ∈ [a, b]}=V (c)−2p, p ∈ N.

Theorem

V (c−) + V (c+) ≤ V (c).

Theorem (Vincent)

If there is no complex root in the disc
D(ma,b,

|b−a|
2 ) ⊂ C, then V (c) = 0.

Theorem (Two circles)

If there is no complex root in the union of the discs
D(T +

a,b) ∪ D(T−a,b) ⊂ C except a simple real root,
then V (c) = 1.
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Theorem (Mahler-Davenport-Mignotte)

Let f ∈ Z[x ] (not necessarily square free),

k∏
i=1

∆k ≥M(f )−d+1d−
d
2 (

√
3

d
)k .

Proposition

Let f ∈ Z[x ] of degree d and coefficients of bit size ≤ τ , with
simple roots. Then, the number of subdivisions to isolate its real
roots is O(dτ + d log d).

Theorem ([ESY’06], [EMT’06])

Let f ∈ Z[x ] of degree d and coefficients of bit size ≤ τ . The
binary cost of the subdivision solver is ÕB(d4τ2).

Average complexity [Tsigaridas, Emiris; 2008]

The expected complexity of CF is ÕB(d3τ).
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Multivariate polynomials

B. Mourrain Isolation of realroots



Multivariate Tensor product Bernstein representation

f (x1, . . . , xn) =

d1∑
i1=0

· · ·
dn∑

in=0

ci1,...,inB i1
d1

(x1; a1, b1) · · ·B j
dn

(xn; an, bn)

associated with the box
∏

[ai , bi ].

Subdivision for each direction, similar to the univariate case.

Arithmetic complexity of a subdivision bounded by O(dn+1)
(d = max(d1, . . . , dn)), memory space O(dn).
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Reduction

mj(f ; xj) =

dj∑
ij=0

min
{0≤ik≤dk ,k 6=j}

bi1,...,in B
ij
dj

(xj ; aj , bj)

Mj(f ; xj) =

dj∑
ij=0

max
{0≤ik≤dk ,k 6=j}

bi1,...,in B
ij
dj

(xj ; aj , bj).
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Proposition (PS93)

The intersection of the convex hull of the control polygon with the
axis contains the projection of the zeroes of f(u) = 0.

Proposition

For any u = (u1, . . . , un) ∈ D, and any j = 1, . . . , n, we have

mj(f ; uj) ≤ f (u) ≤ Mj(f ; uj).

Use the roots of mj(f , uj) = 0, Mj(f , uj) = 0 to reduce the
domain of search.
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Multivariate Monomial Tensor Representation

Homography (or Möbius transformation)

Bijective projective transformation H = (H1, . . . ,Hn) over
P1 × · · · × P1,

xk 7→ Hk(xk) =
αkxk + βk

γkxk + δk
, αk , βk , γk , δk ∈ Z, αk δk−βk γk 6= 0

H(f ) :=
n∏

k=1

(γkxk + δk)dk · (f ◦ H)(x)

Base homographies:

translation by c ∈ Z: T c
k (f ) = f |xk=xk+c

contraction by c ∈ Z: C c
k (f ) = f |xk=cxk

reciprocal polynomial: Rk(f ) = xdk
k f |xk=1/xk

Lemma

The group of homographies is generated by Rk ,C
c
k ,T

c
k ,

k = 1, . . . , n.
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Reduction step

Bounding the graph of fi by cylinders in Rn+1:

Reducing the domain using univariate lower bounds:

µ2

µ1

1

1
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mk(f ; xk) =

dk∑
ik=0

min
i1,..,bik ,..,in ci1...in x ik

k , Mk(f ; xk) =

dk∑
ik=0

max
i1,..,bik ,..,in ci1...in x ik

k

Lemma

mk(f ; xk) ≤ f (x)∏
s 6=k

∑ds
is=0 x is

s

≤ Mk(f ; xk) , k = 1, . . . , n

Corollary (lower bounds on the coordinates of the zeros)

µk :=


min. pos. root of Mk(f , xk) if Mk(f ; 0) < 0
min. pos. root of mk(f , xk) if mk(f ; 0) > 0

0 otherwise

All positive roots of f lie in R>µ1 × · · · × R>µn .

+ Use the lowest root of mk(fj , xk) or Mk(fj , xk) to reduce
the domain.
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Subdivision

T1R1T2(f)

T1T2R2(f)

(0, 0)

T1T2(f)

T1R1T2R2(f)

β1
δ1

α1
γ1

β2
δ2

α2
γ2

(1, 1)

Keep in memory:

Transformed polynomials: H(f1), . . . ,H(fs) as coefficient
tensors.

4n integers: αk , βk , γk , δk , k = 1, . . . , n to keep track of the
domain.
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Exclusion criterion

No sign variation of the coefficients in the
Bernstein/monomial basis ⇒ no real root in the domain D.

or

|f(m)| > |K1(f)| |D| ⇒ no root in D,
where m is the center of D and K1(f) is a bound on the
Lipschitz constant of f on D.
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Inclusion criterion

Miranda Theorem

If for every pair of parallel faces there exists fi that attains opposite
signs on the faces, then f1, . . . , fn have at least one root inside the
box.

Lemma

If the Jacobian has a constant sign in the box, then there is at
most one root of f1, . . . , fn inside the box.
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+ or use α-theory [BCSS98]:

β := β(f; x) = ||Df(x)−1f(x)||
γ := γ(f; x) = supk≥2

(
1
k! ||Df(x)−1Dk f(x , y)||)1/(k−1)

α := α(f; x) = βγ.

Theorem

If α(f; x) < α0 then

x is an approximate zero of f;

Its associated zero ζ is in B(x; u0
γ(f;x));

For any point z ∈ B(x; u0
γ(f;x)), Newton interation converges

quadratically from z to ζ.

⇒ Same root for all the points in a connected components of
∪α(f;m)<α0

B(m; u0
γ(f;m)).
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Subdivision speed

∆i (ζ) : local separation bound of ζi ,
ki (ζ): # of steps that isolate ζi

Continued fraction expansion:

ζ1 = b
(1)
0 +

1

b
(1)
1 +

1

b
(1)
2 + · · ·

=
P

(1)
ki (ζ)

Q
(1)
ki (ζ) µ2

µ1

1

1

∣∣∣∣∣∣
P

(1)
ki (ζ)

Q
(1)
ki (ζ)

− ζj

∣∣∣∣∣∣ < φ−2ki (ζ)+1 ≤ ∆i (ζ),

Bernstein binary subdivision:∣∣mki (ζ) − ζi
∣∣ < √n 2−ki (ζ)|D0| ≤ ∆i (ζ),
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Complexity analysis

Vincent Theorem in several variables

Let f (x) =
∑d

ii=0 ci x
i with ci ∈ R, without (complex) solutions

s.t. <(zk) ≥ 0 for some k. Then all its coefficients ci are of the
same sign.

Corollary

If the complex multidisk associated to a domain IH does not
intersect {z ∈ (P1)n : fi (z) = 0} then the coeffs. of H(fi ) have no
sign changes.

H1

<(z) ≥ 0

C

IH

B. Mourrain Isolation of realroots



Definition (ε-tubular neighborhood & “entropy”)

τε(f ) = {x ∈ Rn : ∃z ∈ Cn, f (z) = 0, s.t. ‖z − x‖∞ < ε}.
τε(f) := ∩s

i=1τε(fi ) for f = (f1, . . . , fs).

Nε(f) := minimal number of boxes of size < ε covering τε(f)
in a complete binary subdivision of D0.

Proposition

The number of boxes of size ε not excluded is less that Nε(f).

Remark:

Nε(f) ≤ ε−nVol(τ2 ε(f)).

Nε(f) bounded for ε > 0: N∗(f) := maxε>0 Nε(f).

For a square system (s = n) with simple roots

lim
ε→0

Nε(f) ≤ lim
ε→0

ε−nVol(τ2ε(f)) ≤ c(n)
∑
ζ∈D0

∏
i ||∇fi (ζ)||
|Jf(ζ)| .

By preconditionning f ′ := Jf(m)−1f, limit = c(n)
∑

ζ∈D 1.
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For some ρ > 0, τρ(f) ⊂ ∪ζ∈DB(ζ, u0
γ(f,ζ)).

Definition (Lipshitz constant)

K1(f,D) := max(1, Lipschitz constant(f)
||f|| ).

Definition (CKMW)

κ(f, x) := ||f||
(||f||µf(x)−2+||f(x)||∞)1/2 where µf(x) = ||Jf(x)||.

κ(f) := maxζ∈D;f(ζ)=0 κ(f, ζ).

Proposition

For ε < cst(d)
K1(f,D)2κ(f)2

, a retained box of size ≤ ε satifies the

inclusion test.

Proposition

The arithmetic complexity is Õ(N∗(f) dn+1(log κ(f) + log K1(f))).
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Complexity analysis for exact input over Z

+ To simplify the complexity analysis, we assume that
exclude() and include() test always give a correct answer.

Generalization of DMM bound [EMT’09]:∏
ζ∈V

∆i (ζ) ≥ 2−2nτd2n−1−d2n/2 (ndn)−nd2n

Overall

#STEPS ≤ n
∑
ζ∈V

ki (ζ) ≤ n2 1

2
R − n2 1

2

∑
ζ∈V

lg ∆i (ζ)

≤ 2n2τd2n−1 + 2n2dn lg(nd2n)
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Lemma

The number of reduction/subdivision steps is Õ(n2τd2n−1).

Complexity of shifting (x = x + u) [Gathen,Gerhard;1997]:
ÕB(n2dnτ + dn+1n3σ), obtained as ndn−1 univariate shifts

σ is bounding the bit size of partial quotients in the CF
expansion of the roots: E [log bi ] = O(logK) = O(1).

Bound computation with cost C1,
Tests evaluation with cost C2.

Theorem

The total complexity is ÕB(2nn7d5n−1τ2σ + (C1 + C2)n2τdn−1).
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Best rational approximation of the (coords. of the) real roots.

Improvement by initial scaling: apply C
1/2`

k to the input.

The real roots are multiplied by 2` and their distance increases.
Total complexity improves by an order of d2nτ .

n = 1: matches average complexity of [TE’08].

mCF is implemented in Mathemagix, in the C++ module
realroot.

Uses GMP arithmetic to work with large integer coefficients.
Polynomials based on dense tensor (higher dimensional matrix)
representation.
Univariate solving by classic CF algorithm, special case of
mCF. DFS traversal of the subdivision tree returns only the
(floor of the) first positive root.
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