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— Complexity results for V.I.
— Complexity results for S.P. problems



SMOOTH CONVEX OPTIMIZATION

Definition: Let X C k™ be a convex set. A
differentiable convex function f : X — R has

L-Lipschitz continuous gradient if
I£'(y) — £'(x)[l« < Llly —x[|, vx,y € X.

where ||¢|. = max{¢p(x) : |[|x]| < 1}. We write
f ¢ Convy,(X).

Notation: For x € X, let l¢(-;x) denote the
first-order approximation of f at x:

le(y;x) = f(x) +f'(x)(y —x), VyeR"
Proposition: The following are equivalent:
a) f € Convy (X);
b) f<le(;x) + L - —x[|*/2;



PROJECTED GRADIENT METHOD

Given “simple” convex X C R" and f € Convy (X),
consider the problem

f* := min{f(x) : x € X}

and let X* # () denote its set of optimal sol’s.
Assume || - || denote an inner product norm.

Projected gradient method (with fixed stepsize)
0) Let x9 € X and a > 0 be given. Set k = 0.

1) Compute
. L 2
Xk41 = argmin § o lg(x;xKk) + 5 |Ix — xk||“ :x € X (%)

2) Set k< k+ 1 and go to step 1.

Iteration (*) can also be written as
o
Xk_|_1 = PX (Xk — Ef/(Xk))

where Px denotes the projection operator onto X.

Proposition: If a € (0,2), then

L|[xo — x*|
a(2—-—a)k

f(Xk) — £ S

for any x* € X*.



LOWER-COMPLEXITY BOUND

Theorem: For any 1 <k < (n—1)/2 and x¢ € R",
there exists quadratic function f € Convi (R")
with the following property: any first-order
method such that

Xk € Xo + lin{f'(xo), e f’(xk_l)}
for solving min{f(x) : x € ™}, satisfies

«  3L||xo0 —X*H2
- 32(k+1)2

f(Xk) —f

Bregman’s distance: Let h : X — R be a

differentiable o-strongly convex function, i.e.:
o 2
h() > In(3%) + 2]l x|, vx € X
Define the Bregman distance d, : X x X — R as
dn(X;x) = h(X) — ln(X;x), Vx,Xxe€ X

Obs: If h = || - |2/2, then dn(X;x) = ||% — x||?/2.



NESTEROV’S OPTIMAL METHOD

Let {ax} C Ry4+ be such that
k
ao € (0,1], aﬁﬁZai
i=0

and set 7, = ay/ Z?:o a;j. For example, oy, = (k+1)/2
and 7, = 2/(k + 2).

Nesterov’s algorithm:

0) Let xg9 € X be given and set ug = xg9 and k = 1.

1) Using ug,...,ux_1, compute
1 ' 1
up = al”g;fgé L ;) a;i lg(x;uz) + p dn(x;u0)
o1 1 )
Xk = argmin —le(Guk—1) + o flx —me-a||® (%)
ur = 7kup + (1 —7%)xKk

2) Set k< k+ 1 and go to step 1.

Tseng’s variant: Replace (%) by

Xk = (1 — Tk—1)Xk—1 + Tk—1U}



NESTEROV’S OPTIMAL METHOD (CONT.)

Proposition: For every k and x* € X*:
Ldy(x*;x0)

o Zi{:_ol Q;

In particular, if o = (k+ 1)/2 for all k, then

4L dy (x*;x0) —(’)< 1 )
ck(k+1) k2

f(Xk) — S

f(xy) —f* <

Lower bound: Assume X is bounded and let 0, and
vk be the optimal value and optimal solution of

L i S arleGoup i x e X
— L 1nin i 1 X5003) - X
>io i i=0 l l

Proposition: For any k > 0,
L dp(vk;xo)

o E?:_ol o

fxk) — £ < fi(xk) — 0k <

Observation: In practice, the number of iterations
is usually proportional to the theoretical bound.
Hence, if L is too large and/or xg is far from x*,

convergence can be quite slow.



Auslender-Teboule’s variant: Let ax = (k+ 2)/2

and 7« = 1/ax for all k.
0) Given xg € X, set ug = xo and k = 1.

1) Using uj_;,Xk-1,Ux_1, compute

a .1 1 a
we = argmin - ok-1 le(x; uk—1) + . dn(x;uR_q)
Xk = (1 —7Tk—1)Xk—1+ Tk—1Ug
Uk = Tkui + (]_ — Tk)Xk

2) Set k +— k+ 1 and go to step 1.

Proposition: For every k and x* € X™:

« _ 4Ldn(x";x0) 1
_ < — -
flxa) — 1 < ok(k + 2) © (k2>




APPLICATIONS TO CONE PROGR.

Consider
min{{(c,x) : Ax = b, x € K},
max{(b,y) : Ay +s=c¢c, s € K"}
where I is a closed convex cone and

K*={s:(s,x) >0, Vxe€ K}

Assuming that there is no duality, we can solve
the above pair of dual problems by means of the

following smooth reformulation

min  ({c,x) — (b,y))% + |[Ax — b||2 + ||[A*y +s — c|2
s.t.  (x,8) e KX K*

or alternatively,

min  [dx(x)]? + [dic=(s)]?
s.t. Ax=Db, A*y+s=c, (c,x)=(b,y) (*x*)

See Lan, Lu, M. (2009), Jarre and Rendl (2008).



SMOOTH+NONSMOOTH FUNCTIONS

Assume that f(x) = fs(x) + fn(x), where fs €
Convy,(X) and fx : X — R is a closed convex

function.

There exist extensions of Nesterov’s algorithm
and its variants, which instead of using the

linear approximation f(x) ~ l¢(x; ux), use
f(x) ~ lg, (x5 uk) + fn(x)
This leads to subproblems of the form

rrél)ré( c,x )+ fn(x) + 7dn(x; uo)

for some c € " and 7 > 0.

Exactly the same complexity bounds can be

derived for these extensions.

Example: If f(x) = 1||Ax — b||* 4+ 7||x||» and
h = | -||?/2, then the above subproblem has a

closed form solution (see Wright et al.)



ALGORITHMS FOR NONSMOOTH FUNCTIONS

Consider the problem
f* := min{f(x) : x € X}

where X C R" is closed convex and f : ®®* — R is
convex. Let X* # () denote its set of optimal sol’s.

Lower complexity bound: Assume X = R". Given
xo € R™ and positive constants R, M, consider the
class F(xo, M, R) of functions f such that:

a) dx* € X* such that ||[x* — xg|| < Rj
b) f is M-Lipschitz continuous on the closed ball
{x:||x —x0l|| < R}.

Proposition: For any k < n — 1, there exists
f € F(x0,M,R) with the property that any algorithm
which generates {x, } such that

Xk € X0 + 1in{g07 R 7gk—1}7

where g; € 0f(x;) for all i, satisfies

) MR
f(xk) — f 22(1+M)

Question: Is there an optimal method?
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SUBGRADIENT METHOD

Subgradient method:
0) Let xo € X be given and set k = 0.

1) Choose ak > 0 and gx € 0f(xx), and set

Xk+1 = PX (Xk — ak&)
x|l

2) Set k +— k+ 1 and go to step 1.

Proposition: Assume that f is M-Lipschitz

continuous on X. Then, for all k and x* € X"

— X2+ Y of
min_ [f(xi) — ] <M (XO X k+210“1>
l:O,...,k 2 21:0 ai

Corollary: Fix K > 0. If R > ||xo — x*|| is known

and we set ax = R/vVK + 1 for all k =0,..., K,
then

min_ [f(x;) — 7] < MR
i=o0,...K K+1
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SPECIALLY STRUCTURED CONVEX OPTIM.

Consider f* := min{f(x) : x € X}, where

f(x) = ¢(x) + max (%, Cx) — (%),
xeX

¢ € Convi¢ (X), set X C R®% ijs compact convex,
C: R™ — R? is linear, and ¢ : X — R is convex

The dual problem is max{f(X) : X € X}, where
f: R0 — R is defined as

F(%) = —3(%) + mig (C"%,x) + $(x)

f is non-smooth but it can be approximated by the
smooth convex function

fu(x) = ¢(x) + max (X, Cx) — ¢(X) — ph(X) (%)
xeX

where 1 > 0 and h is a o-strongly convex function
such that min{h(X): % € X} = 0.
Proposition:

i) (*) has a unique optimal solution X,(x) and
f,(x) = C*xu(x).
ii) f/ is L,-Lips. cont. with L, := Ly + [|C||?/(u5).

~

iii) f£,(-) < f(-) < fu(-) + puD, where D = max,_g h(%).
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Nesterov’s approximation scheme: Set p = ¢/(2D)
and apply Nesterov’s smooth method to f,, with
stepsize ax = (k + 1)/2 until an iterate xj s.t.
f(xx) — f* < e is found.

Theorem (Nesterov): If D > dy(x*;x0) is known,
then the above scheme generates a sequence {xy}
satisfying

= C|I?\ 4dn(x*;

s ) ok(k+1)
215||C||2> 4D

(%)

€o ok?2

€
< —+4+|Lyg+
< g+ (m
where h : X — R is the o-strongly convex function

used by Nesterov’s smooth method. Hence, # of
iterations of Nesterov’s scheme is bounded by

1 ~

2D||C||2\ 2 /8D 2 4|c|| /DD

L¢ + — — = =
€0 oe € o0

Lower bound result: Assume X is bounded and

that now D > sup,.x dn(x*;x). Letting

~ E?:o ;X (Xk)

Xk 1= T
Zizo Qj

then f(Xy) < f* and f(xy) — f(Xy) is bounded by ().
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Remarks:

1) Unless f* is known or X is bounded, we do not
know when f(xy) — f* < ¢ occurs.

2) If ¢(%X) is already &-strongly convex, then there
is no need to add a perturbation term inside the
inner maximization.

In this case, f is already Lg¢-Lipschitz continuous
with L¢ = L, +||C||?/5, and we can apply Nesterov’s
optimal method directly to f. The resulting

-0 (%)

to find xy, such that f(x) — f* <e.

complexity is

2licl

Example: Consider

min f(x) := ||[Ax — b||? + ||x||1,

X

where A has full column rank. Can be reformulated
as

£(x) := [|Ax — b||? + max{(x, %) : %]l < 1}

or as the dual max{f(X) : [|X||cc < 1}, where
f(X) = min(x,%X)+ ||[Ax — b|?

= —max(x,—%)— ||[Ax — b||?
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ALGORITHMS FOR V.I. AND SADDLE POINT PROBLEMS

Variational Inequality: Assume
e X C R" is a non-empty closed convex set
e FF: X — R" is a continuous monotone map

The (monotone) variational inequality (VI) problem
VIP(F, X) consists of finding x* such that

x* € X, min (x — x*,F(x)) >0
xeX

or equivalently,

x* € X, min (x — x*,F(x*)) > 0
xeX

Assumptions:
e the set of solutions of VIP(F, X) is nonempty.

e F is L-Lipschitz continuous:

IF(x) - F(x)| <Lz —x[, vx, xeX.

Remark: min{f(x) : x € X} is clearly equivalent to
VI(f’,X) and the second assumption is equivalent

to f having L-Lipschitz continuous gradient.
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SADDLE POINT PROBLEM

Assume that ® : U x V — R is a function such that
o P(.,v) is convex for all v € V;

® ®$(u, ) is concave for all u € U.

Saddle point probl: Find (u*,v*) € U x V such that

P(u*,v) < P(u",v') < P(u,v'), V(u,v) eUXV (%)

which, for ® smooth, is equivalent to VI(F, X) with
F=(®, ,-®,), X=UxV

Optimiz. view: Consider the pair of dual probl’s

(P) fp:= min (fp(U) = max <I>(UI,V))

D) £ = mas (fo(v) = mig B(u,v))

Clearly,
fp(v) < ®(u,v) < fp(u), V(u,v) e UxV
and hence ff) < f}.

Proposition: For (u*,v*) € Ux V, (u*,v*) is a saddle
point (i.e., satisfies (%)) if and only if fp(v*) = fp(u*),
in which case fj = ®(u*,v*) = .

16



ALGORITHMS FOR VI

Let h: X — R be a o-strongly convex function and
dy : X X X — R be the associated Bregman distance:

dnh(X;x) = h(x) — lh(X;x), Vx,x€ X

Prox-mirror method:
0) Let xg9 € X be given and set k = 1.

1) Compute F(xx_ 1) and let

1 1
= ' F _ —d P X
Yk arg )I(Iél)ré \/§L< (Xk 1)7 X> + o h(xa Xk 1)

2) Compute F(yyk) and let

1
XK = arg }I{Iél)ré 3L

(F(yk),x) + % dp (x;xK—1)

3) Set k +— k+ 1 and go to step 1.

Remark: When h = || - ||?/2, the above method
reduces to Korpelevich’s algorithm, i.e.:

yk = Px(xk—1—AF(xk_1)),

xk = Px(xk-1—AF(yk)).

where )\ := (v2L)" 1.
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COMPLEXITY RESULTS FOR VI

Theorem (Nemirovski): If X is bounded, then

V2L Dy (x0)
in(F L) > —
gg;( (%), x —¥Kk) > .

for every k > 1, where

K
_ 1
Vi i= - ;B’i, Dp(x0) := f{nea)}((dh(x; X0)

Theorem (M. and Svaiter): If h = || - ||?/2, then
there exist computable (Ty,¢x) € R™ X R4 such that

2V2L||xo — x*||?
min(F(x) — Ty, X — yk ) > —€x > — V2L|lxo —x7|

xeX - ko
_ 2v/2L|Ixo — x*|
[Tkl < .
If F is affine, then
min (F(yx) — Tk, X — ¥k ) > —&

xeX

Remark: When X = K is a cone, then the latter

condition is equivalent to

F(yk) -tk € K", (yx, F(yx) —Tk) <&
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COMPLEXITY RESULTS FOR S.P. PROBLEMS

Let F = (®/,,—®!,) and X = U x V. The S.P. problem
is equivalent to VIP(F, X).

Let {yx} C U XV be the ergodic sequence generated
by the prox mirror method, and write y, = (TOy, Vi).

Theorem (Nemirovski): If U x V is bounded, then

V2 L Dy, (x0)

fp(tk) — fp(Vk) < oy

Theorem (M. and Svaiter): If h = || - ||?/2, then
there exist computable 1y = (r}!,r)) and & > 0 such
that the perturbed S.P. problem with

B (u,v) = ®(u,v) + (F,u) + (F, v)

satisfies

22 L ||xg — x*||2
ko

2v/2L||xo — x*||
k

s (i) — 5 (Vie) < @ <

Tk || <

where f11§ and fg are the associated primal and dual

functions.
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THANK YOU!
AND
THE END
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RELATIVE SCALE BOUNDS

Consider the problem f* = min{f(x) : Cx = d},
where C is m X n, 0 #d € ™ and f : R® — R is
convex, homogenous of degree 1 and 0 € int Of (0).

For some inner product norm || - ||, assume that
B(0; m) C 0f(0) C B(0; M)

for some 0 < m < M, or equivalently, m|x| < f(x) <

M||x|| for all x. Clearly, f* > 0.

Lemma: Let xg := argmin{||x|| : Cx = d}. Then,

f(xO f(xO0 M
Y T e
m m f m

R =

Proposition (Nesterov): The subgradient method
with stepsize o, = R/vVK +1, k=0,..., K, where R
is as above and
K:meq
52

satisfies
1

o (i 156 = 17) <

Remark: The norm should be chosen so that M /m
is as small as possible.
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