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– Remarks

• Algorithms for V.I. and Saddle Pt. Probl.’s

– V.I. and the saddle pt. problem

– Prox-mirror and Korpelevich’s methods

– Complexity results for V.I.

– Complexity results for S.P. problems
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Smooth convex optimization

Definition: Let X ⊆ ℜn be a convex set. A

differentiable convex function f : X → ℜ has

L-Lipschitz continuous gradient if

‖f ′(y) − f ′(x)‖∗ ≤ L‖y − x‖, ∀x,y ∈ X.

where ‖φ‖∗ = max{φ(x) : ‖x‖ ≤ 1}. We write

f ∈ Conv1

L(X).

Notation: For x ∈ X, let lf (·;x) denote the

first-order approximation of f at x:

lf (y;x) := f(x) + f ′(x)(y − x), ∀y ∈ ℜn

Proposition: The following are equivalent:

a) f ∈ Conv1

L
(X);

b) f ≤ lf (·;x) + L‖ · −x‖2/2;
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Projected gradient method

Given “simple” convex X ⊆ ℜn and f ∈ Conv1

L
(X),

consider the problem

f∗ := min{f(x) : x ∈ X}

and let X∗ 6= ∅ denote its set of optimal sol’s.

Assume ‖ · ‖ denote an inner product norm.

Projected gradient method (with fixed stepsize)

0) Let x0 ∈ X and α > 0 be given. Set k = 0.

1) Compute

xk+1 := argmin



α lf (x;xk) +
L

2
‖x− xk‖2 : x ∈ X

ff

(∗)

2) Set k← k + 1 and go to step 1.

Iteration (∗) can also be written as

xk+1 := PX

“

xk −
α

L
f ′(xk)

”

where PX denotes the projection operator onto X.

Proposition: If α ∈ (0,2), then

f(xk)− f∗ ≤ L‖x0 − x∗‖2
α(2− α)k

for any x∗ ∈ X∗.
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Lower-complexity bound

Theorem: For any 1 ≤ k ≤ (n−1)/2 and x0 ∈ ℜn,

there exists quadratic function f ∈ Conv1

L(ℜn)

with the following property: any first-order

method such that

xk ∈ x0 + lin{f ′(x0), . . . , f ′(xk−1)}

for solving min{f(x) : x ∈ ℜn}, satisfies

f(xk)− f∗ ≥ 3L‖x0 − x∗‖2
32(k + 1)2

Bregman’s distance: Let h : X → ℜ be a

differentiable σ-strongly convex function, i.e.:

h(·) ≥ lh(·;x) +
σ

2
‖ · −x‖2, ∀x ∈ X

Define the Bregman distance dh : X×X→ ℜ as

dh(x̃;x) = h(x̃)− lh(x̃;x), ∀x, x̃ ∈ X

Obs: If h = ‖ · ‖2/2, then dh(x̃;x) = ‖x̃− x‖2/2.
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Nesterov’s optimal method

Let {αk} ⊆ ℜ++ be such that

α0 ∈ (0,1], α2

k
≤

k
X

i=0

αi

and set τk = αk/
P

k

i=0
αi. For example, αk = (k+1)/2

and τk = 2/(k + 2).

Nesterov’s algorithm:

0) Let x0 ∈ X be given and set u0 = x0 and k = 1.

1) Using u0, . . . ,uk−1, compute

ua

k
:= arg min

x∈X

1

L

k−1
X

i=0

αi lf (x;ui) +
1

σ
dh(x;u0)

xk := arg min
x∈X

1

L
lf (x;uk−1) +

1

2
‖x− uk−1‖2 (∗)

uk := τkua

k
+ (1− τk)xk

2) Set k← k + 1 and go to step 1.

Tseng’s variant: Replace (∗) by

xk = (1− τk−1)xk−1 + τk−1u
a

k
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Nesterov’s optimal method (cont.)

Proposition: For every k and x∗ ∈ X∗:

f(xk)− f∗ ≤ Ldh(x∗;x0)

σ
P

k−1

i=0
αi

In particular, if αk = (k + 1)/2 for all k, then

f(xk)− f∗ ≤ 4Ldh(x∗;x0)

σk(k + 1)
= O

„

1

k2

«

Lower bound: Assume X is bounded and let θk and

vk be the optimal value and optimal solution of

1
P

k−1

i=0
αi

min

(

k−1
X

i=0

αi lf (x;ui) : x ∈ X

)

Proposition: For any k ≥ 0,

f(xk)− f∗ ≤ f(xk)− θk ≤
Ldh(vk;x0)

σ
P

k−1

i=0
αi

Observation: In practice, the number of iterations

is usually proportional to the theoretical bound.

Hence, if L is too large and/or x0 is far from x∗,

convergence can be quite slow.
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Auslender-Teboule’s variant: Let αk = (k + 2)/2

and τk = 1/αk for all k.

0) Given x0 ∈ X, set ua

0 = x0 and k = 1.

1) Using ua

k−1,xk−1,uk−1, compute

ua

k := arg min
x∈X

1

L
αk−1 lf (x;uk−1) +

1

σ
dh(x;ua

k−1)

xk := (1− τk−1)xk−1 + τk−1u
a

k

uk := τku
a

k + (1− τk)xk

2) Set k← k + 1 and go to step 1.

Proposition: For every k and x∗ ∈ X∗:

f(xk)− f∗ ≤ 4Ldh(x∗;x0)

σk(k + 2)
= O

„

1

k2

«
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Applications to Cone Progr.

Consider

min{〈c,x〉 : Ax = b, x ∈ K},
max{〈b,y〉 : A∗y + s = c, s ∈ K∗}

where K is a closed convex cone and

K∗ = {s : 〈 s,x 〉 ≥ 0, ∀x ∈ K}

Assuming that there is no duality, we can solve

the above pair of dual problems by means of the

following smooth reformulation

min (〈c,x〉 − 〈b,y〉)2 + ‖Ax− b‖2 + ‖A∗y + s− c‖2

s.t. (x, s) ∈ K ×K∗

or alternatively,

min [dK(x)]2 + [dK∗(s)]2

s.t. Ax = b, A∗y + s = c, 〈c,x〉 = 〈b,y〉 (∗∗)

See Lan, Lu, M. (2009), Jarre and Rendl (2008).
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Smooth+Nonsmooth Functions

Assume that f(x) = fS(x) + fN(x), where fS ∈
Conv1

L(X) and fN : X → ℜ is a closed convex

function.

There exist extensions of Nesterov’s algorithm

and its variants, which instead of using the

linear approximation f(x) ≈ lf (x;uk), use

f(x) ≈ lfs(x;uk) + fN(x)

This leads to subproblems of the form

min
x∈X

〈 c,x 〉+ fN(x) + τdh(x;u0)

for some c ∈ ℜn and τ > 0.

Exactly the same complexity bounds can be

derived for these extensions.

Example: If f(x) = 1

2
‖Ax − b‖2 + τ‖x‖1 and

h = ‖ · ‖2/2, then the above subproblem has a

closed form solution (see Wright et al.)
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Algorithms for Nonsmooth Functions

Consider the problem

f∗ := min{f(x) : x ∈ X}

where X ⊆ ℜn is closed convex and f : ℜn → ℜ is

convex. Let X∗ 6= ∅ denote its set of optimal sol’s.

Lower complexity bound: Assume X = ℜn. Given

x0 ∈ ℜn and positive constants R,M, consider the

class F(x0,M,R) of functions f such that:

a) ∃x∗ ∈ X∗ such that ‖x∗ − x0‖ ≤ R;

b) f is M-Lipschitz continuous on the closed ball

{x : ‖x− x0‖ ≤ R}.

Proposition: For any k ≤ n − 1, there exists

f ∈ F(x0,M,R) with the property that any algorithm

which generates {xk} such that

xk ∈ x0 + lin{g0, . . . ,gk−1},

where gi ∈ ∂f(xi) for all i, satisfies

f(xk)− f∗ ≥ MR

2(1 +
√

k + 1 )

Question: Is there an optimal method?
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Subgradient method

Subgradient method:

0) Let x0 ∈ X be given and set k = 0.

1) Choose αk > 0 and gk ∈ ∂f(xk), and set

xk+1 := PX

„

xk − αk

gk

‖gk‖

«

2) Set k← k + 1 and go to step 1.

Proposition: Assume that f is M-Lipschitz

continuous on X. Then, for all k and x∗ ∈ X∗

min
i=0,...,k

[f(xi)− f∗] ≤M

 

‖x0 − x∗‖2 +
P

k

i=0
α2

i

2
P

k

i=0
αi

!

Corollary: Fix K ≥ 0. If R ≥ ‖x0 − x∗‖ is known

and we set αk = R/
√

K + 1 for all k = 0, . . . ,K,

then

min
i=0,...,K

[f(xi)− f∗] ≤ MR√
K + 1
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Specially Structured Convex Optim.

Consider f∗ := min{f(x) : x ∈ X}, where

f(x) = φ(x) + max
x̃∈X̃

〈x̃,Cx〉 − φ̃(x̃),

φ ∈ Conv1

Lφ
(X), set X̃ ⊆ ℜñ is compact convex,

C : ℜn → ℜñ is linear, and φ̃ : X̃→ ℜ is convex

The dual problem is max{f̃(x̃) : x̃ ∈ X̃}, where

f̃ : ℜñ → ℜ is defined as

f̃(x̃) = −φ̃(x̃) + min
x∈X

〈C∗x̃,x〉+ φ(x).

f is non-smooth but it can be approximated by the

smooth convex function

fµ(x) = φ(x) + max
x̃∈X̃

〈x̃,Cx〉 − φ̃(x̃)− µ h̃(x̃) (∗)

where µ > 0 and h̃ is a σ̃-strongly convex function

such that min{h̃(x̃) : x̃ ∈ X̃} = 0.

Proposition:

i) (∗) has a unique optimal solution x̃µ(x) and

f ′µ(x) = C∗x̃µ(x).

ii) f ′µ is Lµ-Lips. cont. with Lµ := Lφ + ‖C‖2/(µσ̃).

iii) fµ(·) ≤ f(·) ≤ fµ(·) + µD̃, where D̃ = max
x̃∈X̃

h̃(x̃).
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Nesterov’s approximation scheme: Set µ = ǫ/(2D̃)

and apply Nesterov’s smooth method to fµ with

stepsize αk = (k + 1)/2 until an iterate xk s.t.

f(xk)− f∗ ≤ ǫ is found.

Theorem (Nesterov): If D ≥ dh(x∗;x0) is known,

then the above scheme generates a sequence {xk}
satisfying

f(xk)− f∗ ≤ µD̃ +

„

Lφ +
‖C‖2
µσ̃

«

4dh(x∗;x0)

σk(k + 1)

≤ ǫ

2
+

 

Lφ +
2D̃‖C‖2

ǫσ̃

!

4D

σk2
(∗)

where h : X → ℜ is the σ-strongly convex function

used by Nesterov’s smooth method. Hence, # of

iterations of Nesterov’s scheme is bounded by
2

6

6

6

 

Lφ +
2D̃‖C‖2

ǫσ̃

! 1

2
„

8D

σǫ

« 1

2

3

7

7

7

=

2

6

6

6

4‖C‖
ǫ

s

DD̃

σσ̃

3

7

7

7

Lower bound result: Assume X is bounded and

that now D ≥ supx∈X dh(x∗;x). Letting

x̃k :=

P

k

i=0
αix̃µ(xk)

P

k

i=0
αi

then f̃(x̃k) ≤ f∗ and f(xk)− f̃(x̃k) is bounded by (∗).
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Remarks:

1) Unless f∗ is known or X is bounded, we do not

know when f(xk)− f∗ ≤ ǫ occurs.

2) If φ̃(x̃) is already σ̃-strongly convex, then there

is no need to add a perturbation term inside the

inner maximization.

In this case, f is already Lf -Lipschitz continuous

with Lf = Lφ +‖C‖2/σ̃, and we can apply Nesterov’s

optimal method directly to f. The resulting

complexity is

2‖C‖
r

D

σσ̃ǫ
= O

„

1√
ǫ

«

to find xk such that f(xk)− f∗ ≤ ǫ.

Example: Consider

min
x

f(x) := ‖Ax− b‖2 + ‖x‖1,

where A has full column rank. Can be reformulated

as

f(x) := ‖Ax− b‖2 + max{〈x, x̃ 〉 : ‖x̃‖∞ ≤ 1}

or as the dual max{f̃(x̃) : ‖x̃‖∞ ≤ 1}, where

f̃(x̃) := min
x
〈x, x̃ 〉+ ‖Ax− b‖2

= −max
x
〈x,−x̃ 〉 − ‖Ax− b‖2
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Algorithms for V.I. and Saddle Point Problems

Variational Inequality: Assume

• X ⊆ ℜn is a non-empty closed convex set

• F : X→ ℜn is a continuous monotone map

The (monotone) variational inequality (VI) problem

VIP(F,X) consists of finding x∗ such that

x∗ ∈ X, min
x∈X

〈x− x∗,F(x)〉 ≥ 0

or equivalently,

x∗ ∈ X, min
x∈X

〈x− x∗,F(x∗)〉 ≥ 0

Assumptions:

• the set of solutions of VIP(F,X) is nonempty.

• F is L-Lipschitz continuous:

‖F(x̃)− F(x)‖ ≤ L‖x̃− x‖, ∀x, x̃ ∈ X.

Remark: min{f(x) : x ∈ X} is clearly equivalent to

VI(f ′,X) and the second assumption is equivalent

to f having L-Lipschitz continuous gradient.
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Saddle Point Problem

Assume that Φ : U×V→ ℜ is a function such that

• Φ(·,v) is convex for all v ∈ V;

• Φ(u, ·) is concave for all u ∈ U.

Saddle point probl: Find (u∗,v∗) ∈ U×V such that

Φ(u∗,v) ≤ Φ(u∗,v∗) ≤ Φ(u,v∗), ∀(u,v) ∈ U×V (∗)

which, for Φ smooth, is equivalent to VI(F,X) with

F = (Φ′
u,−Φ′

v), X = U×V

Optimiz. view: Consider the pair of dual probl’s

(P) f∗
P

:= min
u∈U

„

fP(u) := max
v∈V

Φ(u,v)

«

(D) f∗
D

:= max
v∈V

„

fD(v) := min
u∈U

Φ(u,v)

«

Clearly,

fD(v) ≤ Φ(u,v) ≤ fP(u), ∀(u,v) ∈ U×V

and hence f∗
D
≤ f∗

P
.

Proposition: For (u∗,v∗) ∈ U×V, (u∗,v∗) is a saddle

point (i.e., satisfies (∗)) if and only if fD(v∗) = fP(u∗),

in which case f∗
D

= Φ(u∗,v∗) = f∗
P
.
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Algorithms for VI

Let h : X → ℜ be a σ-strongly convex function and

dh : X×X→ ℜ be the associated Bregman distance:

dh(x̃;x) = h(x̃)− lh(x̃;x), ∀x, x̃ ∈ X

Prox-mirror method:

0) Let x0 ∈ X be given and set k = 1.

1) Compute F(xk−1) and let

yk = arg min
x∈X

1√
2L
〈F(xk−1),x〉+ 1

σ
dh(x;xk−1)

2) Compute F(yk) and let

xk = arg min
x∈X

1√
2L
〈F(yk),x〉+ 1

σ
dh(x;xk−1)

3) Set k← k + 1 and go to step 1.

Remark: When h = ‖ · ‖2/2, the above method

reduces to Korpelevich’s algorithm, i.e.:

yk = PX(xk−1 − λF(xk−1)),

xk = PX(xk−1 − λF(yk)).

where λ := (
√

2L)−1.
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Complexity results for VI

Theorem (Nemirovski): If X is bounded, then

min
x∈X

〈F(x),x− ȳk 〉 ≥ −
√

2LDh(x0)

kσ

for every k ≥ 1, where

ȳk :=
1

k

k
X

i=1

yi, Dh(x0) := max
x∈X

dh(x;x0)

Theorem (M. and Svaiter): If h = ‖ · ‖2/2, then

there exist computable (r̄k, ǭk) ∈ ℜn ×ℜ+ such that

min
x∈X

〈F(x)− r̄k,x− ȳk 〉 ≥ −ǭk ≥ −
2
√

2L ‖x0 − x∗‖2
kσ

‖r̄k‖ ≤
2
√

2L‖x0 − x∗‖
k

If F is affine, then

min
x∈X

〈F(ȳk)− r̄k,x− ȳk 〉 ≥ −ǭk

Remark: When X = K is a cone, then the latter

condition is equivalent to

F(ȳk)− r̄k ∈ K∗, 〈 ȳk,F(ȳk)− r̄k 〉 ≤ ǭk
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Complexity results for S.P. Problems

Let F = (Φ′
u,−Φ′

v) and X = U×V. The S.P. problem

is equivalent to VIP(F,X).

Let {ȳk} ⊆ U×V be the ergodic sequence generated

by the prox mirror method, and write ȳk = (ūk, v̄k).

Theorem (Nemirovski): If U×V is bounded, then

fP(ūk)− fD(v̄k) ≤
√

2LDh(x0)

kσ

Theorem (M. and Svaiter): If h = ‖ · ‖2/2, then

there exist computable r̄k = (r̄u
k
, r̄v

k
) and ǭk ≥ 0 such

that the perturbed S.P. problem with

Φk(u,v) = Φ(u,v) + 〈 r̄u
k
,u 〉+ 〈 r̄v

k
,v 〉

satisfies

fk
P

(ūk)− fk
D

(v̄k) ≤ ǭk ≤
2
√

2L ‖x0 − x∗‖2
kσ

‖r̄k‖ ≤
2
√

2L‖x0 − x∗‖
k

where fk
P

and fk
D

are the associated primal and dual

functions.
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THANK YOU!

AND

THE END
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Relative scale bounds

Consider the problem f∗ = min{f(x) : Cx = d},
where C is m × n, 0 6= d ∈ ℜm and f : ℜn → ℜ is

convex, homogenous of degree 1 and 0 ∈ int ∂f(0).

For some inner product norm ‖ · ‖, assume that

B(0;m) ⊆ ∂f(0) ⊆ B(0;M)

for some 0 < m ≤M, or equivalently, m‖x‖ ≤ f(x) ≤
M‖x‖ for all x. Clearly, f∗ > 0.

Lemma: Let x0 := argmin{‖x‖ : Cx = d}. Then,

R :=
f(x0)

m
≥ f∗

m
≥ ‖x0 − x∗‖, f(x0)

f∗
≤ M

m

Proposition (Nesterov): The subgradient method

with stepsize αk = R/
√

K + 1, k = 0, . . . ,K, where R

is as above and

K :=

—

(M/m)4

δ2

�

satisfies
1

f∗

„

min
i=0,...,K

[f(xi)− f∗]

«

≤ δ

Remark: The norm should be chosen so that M/m

is as small as possible.
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