Algorithms for large scale structured optimization problems

First-order methods for optimization, variational-inequality and saddle-point problems

(Second Lecture)

> Renato D.C. Monteiro (Georgia Tech)

Fields 09 - Toronto
October 20-24, 2009

OUTLINE FOR THE SECOND LECTURE

- Smooth convex optimization
- Functions with Lips. continuous gradient
- Projected gradient method
- Lower complexity bound
- Nesterov's optimal method and its variants
- Application to cone programming
- Extensions (smooth + nonsmooth funct's)
- Nonsmooth convex optimization
- Lower complexity bound
- Subgradient method
- Specially structured convex optimization
- Problem class
- Nesterov's smooth approximation scheme
- Remarks
- Algorithms for V.I. and Saddle Pt. Probl.'s
- V.I. and the saddle pt. problem
- Prox-mirror and Korpelevich's methods
- Complexity results for V.I.
- Complexity results for S.P. problems

$\underline{\text { Smooth CONVEX Optimization }}$

Definition: Let $\mathrm{X} \subseteq \Re^{\mathrm{n}}$ be a convex set. A differentiable convex function $\mathrm{f}: \mathrm{X} \rightarrow \Re$ has L-Lipschitz continuous gradient if

$$
\left\|\mathbf{f}^{\prime}(\mathbf{y})-\mathbf{f}^{\prime}(\mathbf{x})\right\|_{*} \leq \mathbf{L}\|\mathbf{y}-\mathbf{x}\|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{X} .
$$

where $\|\phi\|_{*}=\max \{\phi(\mathbf{x}):\|\mathbf{x}\| \leq \mathbf{1}\}$. We write $\mathbf{f} \in \operatorname{Conv}_{\mathbf{L}}^{1}(\mathbf{X})$.

Notation: For $\mathrm{x} \in \mathrm{X}$, let $\mathbf{l}_{\mathrm{f}}(\cdot ; \mathbf{x})$ denote the first-order approximation of f at x :

$$
\mathbf{l}_{\mathbf{f}}(\mathbf{y} ; \mathbf{x}):=\mathbf{f}(\mathbf{x})+\mathbf{f}^{\prime}(\mathbf{x})(\mathbf{y}-\mathbf{x}), \quad \forall \mathbf{y} \in \Re^{\mathbf{n}}
$$

Proposition: The following are equivalent:
a) $\mathrm{f} \in \operatorname{Conv}_{\mathbf{L}}^{1}(\mathbf{X})$;
b) $\mathrm{f} \leq \mathrm{l}_{\mathrm{f}}(\cdot ; \mathbf{x})+\mathbf{L}\|\cdot-\mathrm{x}\|^{\mathbf{2}} / \mathbf{2}$;

PROJECTED GRADIENT METHOD

Given "simple" convex $X \subseteq \Re^{n}$ and $\mathbf{f} \in \operatorname{Conv}_{\mathbf{L}}^{1}(\mathbf{X})$, consider the problem

$$
\mathbf{f}^{*}:=\min \{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}
$$

and let $X^{*} \neq \emptyset$ denote its set of optimal sol's. Assume $\|\cdot\|$ denote an inner product norm.

Projected gradient method (with fixed stepsize)
0) Let $\mathrm{x}_{0} \in \mathrm{X}$ and $\alpha>0$ be given. Set $k=0$.

1) Compute

$$
\mathbf{x}_{\mathbf{k}+\mathbf{1}}:=\operatorname{argmin}\left\{\alpha \mathbf{l}_{\mathbf{f}}\left(\mathbf{x} ; \mathbf{x}_{\mathbf{k}}\right)+\frac{\mathbf{L}}{\mathbf{2}}\left\|\mathbf{x}-\mathbf{x}_{\mathbf{k}}\right\|^{\mathbf{2}}: \mathbf{x} \in \mathbf{X}\right\} \quad(*)
$$

2) Set $\mathrm{k} \leftarrow \mathrm{k}+1$ and go to step 1 .

Iteration (*) can also be written as

$$
\mathbf{x}_{\mathbf{k}+\mathbf{1}}:=\mathbf{P}_{\mathbf{X}}\left(\mathbf{x}_{\mathbf{k}}-\frac{\alpha}{\mathbf{L}} \mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{k}}\right)\right)
$$

where P_{X} denotes the projection operator onto X.
Proposition: If $\alpha \in(\mathbf{0}, \mathbf{2})$, then

$$
\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \leq \frac{\mathbf{L}\left\|\mathbf{x}_{\mathbf{0}}-\mathbf{x}^{*}\right\|^{\mathbf{2}}}{\alpha(\mathbf{2}-\alpha) \mathbf{k}}
$$

for any $\mathrm{x}^{*} \in \mathbf{X}^{*}$.

LOWER-COMPLEXITY BOUND

Theorem: For any $1 \leq k \leq(n-1) / 2$ and $x_{0} \in \Re^{n}$, there exists quadratic function $\mathbf{f} \in \operatorname{Conv}_{\mathbf{L}}^{1}\left(\Re^{\mathbf{n}}\right)$ with the following property: any first-order method such that

$$
\mathbf{x}_{\mathbf{k}} \in \mathbf{x}_{\mathbf{0}}+\operatorname{lin}\left\{\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{0}}\right), \ldots, \mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}}\right)\right\}
$$

for solving $\min \left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \Re^{\mathrm{n}}\right\}$, satisfies

$$
f\left(\mathbf{x}_{\mathrm{k}}\right)-\mathbf{f}^{*} \geq \frac{3 \mathrm{~L}\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|^{2}}{32(\mathrm{k}+1)^{2}}
$$

Bregman's distance: Let $\mathrm{h}: \mathrm{X} \rightarrow \Re$ be a differentiable σ-strongly convex function, i.e.:

$$
\mathbf{h}(\cdot) \geq \mathbf{l}_{\mathbf{h}}(\cdot ; \mathbf{x})+\frac{\sigma}{\mathbf{2}}\|\cdot-\mathbf{x}\|^{2}, \quad \forall \mathbf{x} \in \mathbf{X}
$$

Define the Bregman distance $\mathrm{d}_{\mathrm{h}}: \mathbf{X} \times \mathbf{X} \rightarrow \Re$ as

$$
\mathbf{d}_{\mathbf{h}}(\tilde{\mathbf{x}} ; \mathbf{x})=\mathbf{h}(\tilde{\mathbf{x}})-\mathbf{l}_{\mathbf{h}}(\tilde{\mathbf{x}} ; \mathbf{x}), \quad \forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathbf{X}
$$

Obs: If $h=\|\cdot\|^{2} / 2$, then $d_{h}(\tilde{x} ; x)=\|\tilde{x}-x\|^{2} / 2$.

Nesterov's optimal method

Let $\left\{\alpha_{\mathbf{k}}\right\} \subseteq \Re_{++}$be such that

$$
\alpha_{\mathbf{0}} \in(\mathbf{0}, \mathbf{1}], \quad \alpha_{\mathbf{k}}^{\mathbf{2}} \leq \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}} \alpha_{\mathbf{i}}
$$

and set $\tau_{\mathbf{k}}=\alpha_{\mathbf{k}} / \sum_{\mathbf{i}=0}^{\mathbf{k}} \alpha_{\mathbf{i}}$. For example, $\alpha_{\mathbf{k}}=(\mathbf{k}+\mathbf{1}) / 2$ and $\tau_{\mathrm{k}}=2 /(\mathrm{k}+2)$.

Nesterov's algorithm:
$0)$ Let $\mathrm{x}_{0} \in \mathrm{X}$ be given and set $\mathrm{u}_{0}=\mathrm{x}_{0}$ and $\mathrm{k}=1$.

1) Using u_{0}, \ldots, u_{k-1}, compute

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{k}}^{\mathbf{a}}:=\arg \min _{\mathbf{x} \in \mathbf{X}} \frac{\mathbf{1}}{\mathbf{L}} \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}-\mathbf{1}} \alpha_{\mathbf{i}} \mathbf{l}_{\mathbf{f}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{i}}\right)+\frac{\mathbf{1}}{\sigma} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{0}}\right) \\
& \mathbf{x}_{\mathbf{k}}:=\arg \min _{\mathbf{x} \in \mathbf{X}} \frac{\mathbf{1}}{\mathbf{L}} \mathbf{l}_{\mathbf{f}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{k}-\mathbf{1}}\right)+\frac{\mathbf{1}}{\mathbf{2}}\left\|\mathbf{x}-\mathbf{u}_{\mathbf{k}-\mathbf{1}}\right\|^{\mathbf{2}} \\
& \mathbf{u}_{\mathbf{k}}:=\tau_{\mathbf{k}} \mathbf{u}_{\mathbf{k}}^{\mathrm{a}}+\left(\mathbf{1}-\tau_{\mathbf{k}}\right) \mathbf{x}_{\mathbf{k}}
\end{aligned}
$$

2) Set $\mathrm{k} \leftarrow \mathrm{k}+1$ and go to step 1 .

Tseng's variant: Replace (*) by

$$
\mathbf{x}_{\mathbf{k}}=\left(\mathbf{1}-\tau_{\mathbf{k}-\mathbf{1}}\right) \mathbf{x}_{\mathbf{k}-\mathbf{1}}+\tau_{\mathbf{k}-1} \mathbf{u}_{\mathbf{k}}^{\mathrm{a}}
$$

$\underline{\text { Nesterov's optimal method (CONT.) }}$

Proposition: For every \mathbf{k} and $\mathbf{x}^{*} \in \mathbf{X}^{*}$:

$$
\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \leq \frac{\mathbf{L} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x}^{*} ; \mathbf{x}_{\mathbf{0}}\right)}{\sigma \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}-\mathbf{1}} \alpha_{\mathbf{i}}}
$$

In particular, if $\alpha_{k}=(k+1) / 2$ for all k, then

$$
\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \leq \frac{\mathbf{4 L} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x}^{*} ; \mathbf{x}_{\mathbf{0}}\right)}{\sigma \mathbf{k}(\mathbf{k}+\mathbf{1})}=\mathcal{O}\left(\frac{\mathbf{1}}{\mathbf{k}^{2}}\right)
$$

Lower bound: Assume \mathbf{X} is bounded and let θ_{k} and v_{k} be the optimal value and optimal solution of

$$
\frac{1}{\sum_{\mathbf{i}=0}^{k-1} \alpha_{\mathbf{i}}} \min \left\{\sum_{\mathbf{i}=0}^{\mathrm{k}-\mathbf{1}} \alpha_{\mathbf{i}} \mathbf{l}_{\mathbf{f}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{i}}\right): \mathbf{x} \in \mathbf{X}\right\}
$$

Proposition: For any $\mathrm{k} \geq 0$,

$$
\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \leq \mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\theta_{\mathbf{k}} \leq \frac{\mathbf{L} \mathbf{d}_{\mathbf{h}}\left(\mathbf{v}_{\mathbf{k}} ; \mathbf{x}_{\mathbf{0}}\right)}{\sigma \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}-\mathbf{1}} \alpha_{\mathbf{i}}}
$$

Observation: In practice, the number of iterations is usually proportional to the theoretical bound. Hence, if L is too large and/or x_{0} is far from x^{*}, convergence can be quite slow.

Auslender-Teboule's variant: Let $\alpha_{k}=(\mathbf{k}+2) / 2$ and $\tau_{\mathrm{k}}=1 / \alpha_{\mathrm{k}}$ for all k .
0) Given $x_{0} \in X$, set $u_{0}^{a}=x_{0}$ and $k=1$.

1) Using $u_{k-1}^{a}, x_{k-1}, u_{k-1}$, compute

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{k}}^{\mathrm{a}}:=\arg \min _{\mathbf{x} \in \mathbf{X}} \frac{1}{\mathbf{L}} \alpha_{\mathbf{k}-\mathbf{1}} \mathbf{l}_{\mathbf{f}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{k}-\mathbf{1}}\right)+\frac{1}{\sigma} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{k}-1}^{\mathrm{a}}\right) \\
& \mathbf{x}_{\mathbf{k}}:=\left(\mathbf{1}-\tau_{\mathbf{k}-\mathbf{1}}\right) \mathbf{x}_{\mathbf{k}-\mathbf{1}}+\tau_{\mathbf{k}-1} \mathbf{u}_{\mathbf{k}}^{\mathrm{a}} \\
& \mathbf{u}_{\mathbf{k}}:=\tau_{\mathbf{k}} \mathbf{u}_{\mathbf{k}}^{\mathbf{a}}+\left(\mathbf{1}-\tau_{\mathbf{k}}\right) \mathbf{x}_{\mathbf{k}}
\end{aligned}
$$

2) Set $\mathrm{k} \leftarrow \mathrm{k}+1$ and go to step 1 .

Proposition: For every k and $x^{*} \in \mathbf{X}^{*}$:

$$
\mathbf{f}\left(\mathbf{x}_{\mathrm{k}}\right)-\mathbf{f}^{*} \leq \frac{4 \mathbf{L} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x}^{*} ; \mathbf{x}_{\mathbf{0}}\right)}{\sigma \mathbf{k}(\mathbf{k}+2)}=\mathcal{O}\left(\frac{1}{\mathbf{k}^{2}}\right)
$$

Applications to Cone Progr.

Consider

$$
\begin{aligned}
& \min \{\langle\mathbf{c}, \mathbf{x}\rangle: \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \in \mathcal{K}\} \\
& \max \left\{\langle\mathbf{b}, \mathbf{y}\rangle: \mathbf{A}^{*} \mathbf{y}+\mathbf{s}=\mathbf{c}, \mathbf{s} \in \mathcal{K}^{*}\right\}
\end{aligned}
$$

where \mathcal{K} is a closed convex cone and

$$
\mathcal{K}^{*}=\{\mathbf{s}:\langle\mathbf{s}, \mathbf{x}\rangle \geq \mathbf{0}, \quad \forall \mathbf{x} \in \mathcal{K}\}
$$

Assuming that there is no duality, we can solve the above pair of dual problems by means of the following smooth reformulation

$$
\begin{aligned}
& \min \quad(\langle\mathbf{c}, \mathbf{x}\rangle-\langle\mathbf{b}, \mathbf{y}\rangle)^{2}+\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\left\|\mathbf{A}^{*} \mathbf{y}+\mathbf{s}-\mathbf{c}\right\|^{2} \\
& \text { s.t. } \quad(\mathbf{x}, \mathbf{s}) \in \mathcal{K} \times \mathcal{K}^{*} \\
& \text { or alternatively, }
\end{aligned}
$$

$$
\min \left[\mathbf{d}_{\mathcal{K}}(\mathbf{x})\right]^{2}+\left[\mathbf{d}_{\mathcal{K} *}(\mathbf{s})\right]^{2}
$$

s.t. $\quad \mathbf{A x}=\mathbf{b}, \quad \mathbf{A}^{*} \mathbf{y}+\mathbf{s}=\mathbf{c}, \quad\langle\mathbf{c}, \mathbf{x}\rangle=\langle\mathbf{b}, \mathbf{y}\rangle \quad(* *)$

See Lan, Lu, M. (2009), Jarre and Rendl (2008).

$\underline{\text { Smooth+Nonsmooth Functions }}$

Assume that $\mathbf{f}(\mathbf{x})=\mathbf{f}_{\mathbf{S}}(\mathbf{x})+\mathbf{f}_{\mathrm{N}}(\mathbf{x})$, where $\mathbf{f}_{\mathrm{S}} \in$ $\operatorname{Conv}_{\mathrm{L}}^{1}(\mathbf{X})$ and $\mathrm{f}_{\mathrm{N}}: \mathbf{X} \rightarrow \Re$ is a closed convex function.

There exist extensions of Nesterov's algorithm and its variants, which instead of using the linear approximation $f(x) \approx \mathbf{l}_{\mathbf{f}}\left(\mathbf{x} ; \mathbf{u}_{\mathrm{k}}\right)$, use

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{l}_{\mathbf{f}_{\mathbf{s}}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{k}}\right)+\mathbf{f}_{\mathbf{N}}(\mathbf{x})
$$

This leads to subproblems of the form

$$
\min _{\mathbf{x} \in \mathbf{X}}\langle\mathbf{c}, \mathbf{x}\rangle+\mathbf{f}_{\mathbf{N}}(\mathbf{x})+\tau \mathbf{d}_{\mathbf{h}}\left(\mathbf{x} ; \mathbf{u}_{\mathbf{0}}\right)
$$

for some $c \in \Re^{\mathbf{n}}$ and $\tau>0$.
Exactly the same complexity bounds can be derived for these extensions.

Example: If $\mathbf{f}(\mathbf{x})=\frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|^{2}+\tau\|\mathbf{x}\|_{1}$ and $h=\|\cdot\|^{2} / 2$, then the above subproblem has a closed form solution (see Wright et al.)

Algorithms for Nonsmooth Functions

Consider the problem

$$
\mathbf{f}^{*}:=\min \{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}
$$

where $\mathrm{X} \subseteq \Re^{\mathrm{n}}$ is closed convex and $\mathrm{f}: \Re^{\mathrm{n}} \rightarrow \Re$ is convex. Let $\mathrm{X}^{*} \neq \emptyset$ denote its set of optimal sol's. Lower complexity bound: Assume $\mathbf{X}=\Re^{n}$. Given $\mathrm{x}_{0} \in \Re^{\mathrm{n}}$ and positive constants R, M, consider the class $\mathcal{F}\left(\mathrm{x}_{\mathbf{0}}, \mathbf{M}, \mathbf{R}\right)$ of functions \mathbf{f} such that:
a) $\exists \mathrm{x}^{*} \in \mathbf{X}^{*}$ such that $\left\|\mathrm{x}^{*}-\mathrm{x}_{0}\right\| \leq \mathbf{R}$;
b) f is M -Lipschitz continuous on the closed ball $\left\{\mathrm{x}:\left\|\mathrm{x}-\mathrm{x}_{\mathbf{0}}\right\| \leq \mathbf{R}\right\}$.

Proposition: For any $\mathrm{k} \leq \mathrm{n}-1$, there exists $\mathrm{f} \in \mathcal{F}\left(\mathrm{x}_{0}, \mathrm{M}, \mathbf{R}\right)$ with the property that any algorithm which generates $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ such that

$$
\mathbf{x}_{\mathbf{k}} \in \mathbf{x}_{\mathbf{0}}+\operatorname{lin}\left\{\mathbf{g}_{\mathbf{0}}, \ldots, \mathbf{g}_{\mathbf{k}-\mathbf{1}}\right\}
$$

where $g_{i} \in \partial f\left(x_{i}\right)$ for all i, satisfies

$$
\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \geq \frac{\mathrm{MR}}{2(1+\sqrt{\mathrm{k}+\mathbf{1}})}
$$

Question: Is there an optimal method?

SUBGRADIENT METHOD

Subgradient method:
$0)$ Let $x_{0} \in X$ be given and set $k=0$.

1) Choose $\alpha_{k}>0$ and $g_{k} \in \partial f\left(x_{k}\right)$, and set

$$
\mathbf{x}_{\mathbf{k}+1}:=\mathbf{P}_{\mathbf{X}}\left(\mathbf{x}_{\mathbf{k}}-\alpha_{\mathbf{k}} \frac{\mathbf{g}_{\mathbf{k}}}{\left\|\mathbf{g}_{\mathbf{k}}\right\|}\right)
$$

2) Set $k \leftarrow k+1$ and go to step 1 .

Proposition: Assume that f is M-Lipschitz continuous on X. Then, for all k and $x^{*} \in X^{*}$

$$
\min _{\mathrm{i}=0, \ldots, k}\left[\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)-\mathbf{f}^{*}\right] \leq \mathbf{M}\left(\frac{\left\|\mathrm{x}_{\mathbf{0}}-\mathbf{x}^{*}\right\|^{2}+\sum_{\mathbf{i}=\mathbf{0}}^{\mathrm{k}} \alpha_{\mathbf{i}}^{2}}{2 \sum_{\mathbf{i}=0}^{\mathrm{k}} \alpha_{\mathrm{i}}}\right)
$$

Corollary: Fix $K \geq 0$. If $R \geq\left\|x_{0}-x^{*}\right\|$ is known and we set $\alpha_{k}=\mathbf{R} / \sqrt{K+1}$ for all $k=0, \ldots, K$, then

$$
\min _{\mathbf{i}=\mathbf{0}, \ldots, \mathbf{K}}\left[\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)-\mathbf{f}^{*}\right] \leq \frac{\mathbf{M R}}{\sqrt{\mathbf{K}+\mathbf{1}}}
$$

Specially Structured Convex Optim.

Consider $\mathbf{f}^{*}:=\min \{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}$, where

$$
\mathbf{f}(\mathbf{x})=\phi(\mathbf{x})+\max _{\tilde{\mathbf{x}} \in \tilde{\mathbf{X}}}\langle\tilde{\mathbf{x}}, \mathbf{C} \mathbf{x}\rangle-\tilde{\phi}(\tilde{\mathbf{x}}),
$$

$\phi \in \operatorname{Conv}_{\mathbf{L}_{\phi}}^{1}(\mathbf{X})$, set $\tilde{\mathbf{X}} \subseteq \Re^{\tilde{n}}$ is compact convex, $\mathrm{C}: \Re^{\mathrm{n}} \rightarrow \Re^{\tilde{n}}$ is linear, and $\tilde{\phi}: \tilde{\mathbf{X}} \rightarrow \Re$ is convex
The dual problem is $\max \{\tilde{\mathbf{f}}(\tilde{\mathbf{x}}): \tilde{\mathbf{x}} \in \tilde{\mathbf{X}}\}$, where $\tilde{\mathbf{f}}: \Re^{\tilde{n}} \rightarrow \Re$ is defined as

$$
\tilde{\mathbf{f}}(\tilde{\mathbf{x}})=-\tilde{\phi}(\tilde{\mathbf{x}})+\min _{\mathbf{x} \in \mathbf{X}}\left\langle\mathbf{C}^{*} \tilde{\mathbf{x}}, \mathbf{x}\right\rangle+\phi(\mathbf{x}) .
$$

f is non-smooth but it can be approximated by the smooth convex function

$$
\mathbf{f}_{\mu}(\mathbf{x})=\phi(\mathbf{x})+\max _{\tilde{\mathbf{x}} \in \tilde{\mathbf{X}}}\langle\tilde{\mathbf{x}}, \mathbf{C} \mathbf{x}\rangle-\tilde{\phi}(\tilde{\mathbf{x}})-\mu \tilde{\mathbf{h}}(\tilde{\mathbf{x}}) \quad(*)
$$

where $\mu>0$ and $\tilde{\mathrm{h}}$ is a $\tilde{\sigma}$-strongly convex function such that $\min \{\tilde{\mathbf{h}}(\tilde{\mathbf{x}}): \tilde{\mathbf{x}} \in \tilde{\mathbf{X}}\}=\mathbf{0}$.

Proposition:

i) (*) has a unique optimal solution $\tilde{\mathrm{x}}_{\mu}(\mathrm{x})$ and $\mathbf{f}_{\mu}^{\prime}(\mathbf{x})=\mathbf{C}^{*} \tilde{\mathbf{x}}_{\mu}(\mathbf{x})$.
ii) $\mathbf{f}_{\mu}^{\prime}$ is \mathbf{L}_{μ}-Lips. cont. with $\mathbf{L}_{\mu}:=\mathbf{L}_{\phi}+\|\mathbf{C}\|^{2} /(\mu \tilde{\sigma})$.
iii) $\mathbf{f}_{\mu}(\cdot) \leq \mathbf{f}(\cdot) \leq \mathbf{f}_{\mu}(\cdot)+\mu \tilde{\mathbf{D}}$, where $\tilde{\mathbf{D}}=\max _{\tilde{\mathbf{x}} \in \tilde{\mathbf{X}}} \tilde{\mathbf{h}}(\tilde{\mathbf{x}})$.

Nesterov's approximation scheme: Set $\mu=\epsilon /(2 \tilde{\mathbf{D}})$ and apply Nesterov's smooth method to f_{μ} with stepsize $\alpha_{k}=(\mathbf{k}+1) / 2$ until an iterate x_{k} s.t. $f\left(x_{k}\right)-f^{*} \leq \epsilon$ is found.

Theorem (Nesterov): If $\mathrm{D} \geq \mathrm{d}_{\mathrm{h}}\left(\mathrm{x}^{*} ; \mathrm{x}_{0}\right)$ is known, then the above scheme generates a sequence $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ satisfying

$$
\begin{aligned}
\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} & \leq \mu \tilde{\mathbf{D}}+\left(\mathbf{L}_{\phi}+\frac{\|\mathbf{C}\|^{2}}{\mu \tilde{\sigma}}\right) \frac{4 \mathbf{d}_{\mathbf{h}}\left(\mathbf{x}^{*} ; \mathbf{x}_{\mathbf{0}}\right)}{\sigma \mathbf{k}(\mathbf{k}+\mathbf{1})} \\
& \leq \frac{\epsilon}{2}+\left(\mathbf{L}_{\phi}+\frac{2 \tilde{\mathbf{D}}\|\mathbf{C}\|^{2}}{\epsilon \tilde{\sigma}}\right) \frac{4 \mathbf{D}}{\sigma \mathbf{k}^{2}}
\end{aligned}
$$

where $\mathrm{h}: \mathrm{X} \rightarrow \Re$ is the σ-strongly convex function used by Nesterov's smooth method. Hence, \# of iterations of Nesterov's scheme is bounded by

$$
\left\lceil\left(\mathbf{L}_{\phi}+\frac{2 \tilde{\mathbf{D}}\|\mathbf{C}\|^{2}}{\epsilon \tilde{\sigma}}\right)^{\frac{1}{2}}\left(\frac{\mathbf{8 D}}{\sigma \epsilon}\right)^{\frac{1}{2}}\right\rceil=\left\lceil\frac{4\|\mathbf{C}\|}{\epsilon} \sqrt{\frac{\mathbf{D} \tilde{\mathbf{D}}}{\sigma \tilde{\sigma}}}\right\rceil
$$

Lower bound result: Assume \mathbf{X} is bounded and that now $\mathrm{D} \geq \sup _{\mathbf{x} \in \mathrm{X}} \mathrm{d}_{\mathbf{h}}\left(\mathrm{x}^{*} ; \mathbf{x}\right)$. Letting

$$
\tilde{\mathbf{x}}_{\mathbf{k}}:=\frac{\sum_{\mathbf{i}=\mathbf{0}}^{\mathrm{k}} \alpha_{\mathbf{i}} \tilde{\mathbf{x}}_{\mu}\left(\mathbf{x}_{\mathbf{k}}\right)}{\sum_{\mathbf{i}=\mathbf{0}}^{\mathrm{k}} \alpha_{\mathbf{i}}}
$$

then $\tilde{\mathbf{f}}\left(\tilde{\mathbf{x}}_{\mathbf{k}}\right) \leq \mathbf{f}^{*}$ and $\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\tilde{\mathbf{f}}\left(\tilde{\mathbf{x}}_{\mathbf{k}}\right)$ is bounded by $(*)$.

Remarks:

1) Unless f^{*} is known or X is bounded, we do not know when $f\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \leq \epsilon$ occurs.
2) If $\tilde{\phi}(\tilde{\mathbf{x}})$ is already $\tilde{\sigma}$-strongly convex, then there is no need to add a perturbation term inside the inner maximization.

In this case, f is already L_{f}-Lipschitz continuous with $\mathbf{L}_{\mathrm{f}}=\mathbf{L}_{\phi}+\|\mathbf{C}\|^{2} / \tilde{\sigma}$, and we can apply Nesterov's optimal method directly to f . The resulting complexity is

$$
\mathbf{2}\|\mathbf{C}\| \sqrt{\frac{\mathbf{D}}{\sigma \tilde{\sigma} \epsilon}}=\mathcal{O}\left(\frac{\mathbf{1}}{\sqrt{\epsilon}}\right)
$$

to find $\mathbf{x}_{\mathbf{k}}$ such that $\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)-\mathbf{f}^{*} \leq \epsilon$.
Example: Consider

$$
\min _{\mathrm{x}} \mathrm{f}(\mathrm{x}):=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\|\mathrm{x}\|_{1}
$$

where A has full column rank. Can be reformulated as

$$
\mathbf{f}(\mathbf{x}):=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\max \left\{\langle\mathbf{x}, \tilde{\mathbf{x}}\rangle:\|\tilde{\mathbf{x}}\|_{\infty} \leq \mathbf{1}\right\}
$$

or as the dual $\max \left\{\tilde{f}(\tilde{x}):\|\tilde{x}\|_{\infty} \leq 1\right\}$, where

$$
\begin{aligned}
\tilde{\mathbf{f}}(\tilde{\mathbf{x}}) & :=\min _{\mathbf{x}}\langle\mathbf{x}, \tilde{\mathbf{x}}\rangle+\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} \\
& =-\max _{\mathbf{x}}\langle\mathbf{x},-\tilde{\mathbf{x}}\rangle-\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
\end{aligned}
$$

Variational Inequality: Assume

- $\mathrm{X} \subseteq \Re^{\mathrm{n}}$ is a non-empty closed convex set
- $\mathrm{F}: \mathrm{X} \rightarrow \Re^{\mathrm{n}}$ is a continuous monotone map

The (monotone) variational inequality (VI) problem $\operatorname{VIP}(\mathbf{F}, \mathrm{X})$ consists of finding x^{*} such that

$$
\mathbf{x}^{*} \in \mathbf{X}, \quad \min _{\mathbf{x} \in \mathbf{X}}\left\langle\mathbf{x}-\mathbf{x}^{*}, \mathbf{F}(\mathbf{x})\right\rangle \geq \mathbf{0}
$$

or equivalently,

$$
\mathbf{x}^{*} \in \mathbf{X}, \quad \min _{\mathbf{x} \in \mathbf{X}}\left\langle\mathbf{x}-\mathbf{x}^{*}, \mathbf{F}\left(\mathbf{x}^{*}\right)\right\rangle \geq \mathbf{0}
$$

Assumptions:

- the set of solutions of $\operatorname{VIP}(F, X)$ is nonempty.
- F is L-Lipschitz continuous:

$$
\|\mathbf{F}(\tilde{\mathbf{x}})-\mathbf{F}(\mathbf{x})\| \leq \mathbf{L}\|\tilde{\mathbf{x}}-\mathbf{x}\|, \quad \forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathbf{X}
$$

Remark: $\min \{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}$ is clearly equivalent to $\mathrm{VI}\left(\mathbf{f}^{\prime}, \mathbf{X}\right)$ and the second assumption is equivalent to f having L-Lipschitz continuous gradient.

Saddle Point Problem

Assume that $\Phi: \mathrm{U} \times \mathrm{V} \rightarrow \Re$ is a function such that

- $\Phi(\cdot, \mathbf{v})$ is convex for all $\mathbf{v} \in \mathbf{V}$;
- $\Phi(u, \cdot)$ is concave for all $u \in U$.

Saddle point probl: Find $\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right) \in \mathbf{U} \times \mathbf{V}$ such that $\boldsymbol{\Phi}\left(\mathbf{u}^{*}, \mathbf{v}\right) \leq \boldsymbol{\Phi}\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right) \leq \boldsymbol{\Phi}\left(\mathbf{u}, \mathbf{v}^{*}\right), \quad \forall(\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V} \quad(*)$ which, for Φ smooth, is equivalent to $\operatorname{VI}(F, X)$ with

$$
\mathbf{F}=\left(\boldsymbol{\Phi}_{\mathbf{u}}^{\prime},-\boldsymbol{\Phi}_{\mathbf{v}}^{\prime}\right), \quad \mathbf{X}=\mathbf{U} \times \mathbf{V}
$$

Optimiz. view: Consider the pair of dual probl's

$$
\begin{aligned}
& \text { (P) } f_{\mathbf{P}}^{*}:=\min _{\mathbf{u} \in \mathbf{U}}\left(\mathbf{f}_{\mathbf{P}}(\mathbf{u}):=\max _{\mathbf{v} \in \mathbf{V}} \Phi(\mathbf{u}, \mathbf{v})\right) \\
& \text { (D) } f_{\mathrm{D}}^{*}:=\max _{\mathbf{v} \in \mathbf{V}}\left(\mathbf{f}_{\mathbf{D}}(\mathbf{v}):=\min _{\mathbf{u} \in \mathbf{U}} \Phi(\mathbf{u}, \mathbf{v})\right)
\end{aligned}
$$

Clearly,

$$
\mathbf{f}_{\mathbf{D}}(\mathbf{v}) \leq \boldsymbol{\Phi}(\mathbf{u}, \mathbf{v}) \leq \mathbf{f}_{\mathbf{P}}(\mathbf{u}), \quad \forall(\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V}
$$

and hence $\mathrm{f}_{\mathrm{D}}^{*} \leq \mathrm{f}_{\mathrm{P}}^{*}$.
Proposition: For $\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right) \in \mathbf{U} \times \mathbf{V},\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right)$ is a saddle point (i.e., satisfies (*)) if and only if $f_{D}\left(v^{*}\right)=f_{P}\left(u^{*}\right)$, in which case $\mathrm{f}_{\mathrm{D}}^{*}=\Phi\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right)=\mathrm{f}_{\mathrm{P}}^{*}$.

$\underline{\text { ALGORITHMS FOR VI }}$

Let $\mathrm{h}: \mathrm{X} \rightarrow \Re$ be a σ-strongly convex function and $\mathrm{d}_{\mathrm{h}}: \mathrm{X} \times \mathrm{X} \rightarrow \Re$ be the associated Bregman distance:

$$
\mathbf{d}_{\mathbf{h}}(\tilde{\mathbf{x}} ; \mathbf{x})=\mathbf{h}(\tilde{\mathbf{x}})-\mathbf{l}_{\mathbf{h}}(\tilde{\mathbf{x}} ; \mathbf{x}), \quad \forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathbf{X}
$$

Prox-mirror method:
$0)$ Let $\mathrm{x}_{0} \in \mathrm{X}$ be given and set $\mathrm{k}=1$.

1) Compute $F\left(x_{k-1}\right)$ and let

$$
\mathbf{y}_{\mathbf{k}}=\arg \min _{\mathbf{x} \in \mathbf{X}} \frac{\mathbf{1}}{\sqrt{2} \mathbf{L}}\left\langle\mathbf{F}\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}}\right), \mathbf{x}\right\rangle+\frac{\mathbf{1}}{\sigma} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x} ; \mathbf{x}_{\mathbf{k}-\mathbf{1}}\right)
$$

2) Compute $F\left(y_{k}\right)$ and let

$$
\mathbf{x}_{\mathbf{k}}=\arg \min _{\mathbf{x} \in \mathbf{X}} \frac{\mathbf{1}}{\sqrt{\mathbf{2}} \mathbf{L}}\left\langle\mathbf{F}\left(\mathbf{y}_{\mathbf{k}}\right), \mathbf{x}\right\rangle+\frac{\mathbf{1}}{\sigma} \mathbf{d}_{\mathbf{h}}\left(\mathbf{x} ; \mathbf{x}_{\mathbf{k}-\mathbf{1}}\right)
$$

3) Set $\mathrm{k} \leftarrow \mathrm{k}+1$ and go to step 1 .

Remark: When $h=\|\cdot\|^{2} / 2$, the above method reduces to Korpelevich's algorithm, i.e.:

$$
\begin{aligned}
\mathbf{y}_{\mathbf{k}} & =\mathbf{P}_{\mathbf{X}}\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}}-\lambda \mathbf{F}\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}}\right)\right), \\
\mathbf{x}_{\mathbf{k}} & =\mathbf{P}_{\mathbf{X}}\left(\mathbf{x}_{\mathbf{k}-\mathbf{1}}-\lambda \mathbf{F}\left(\mathbf{y}_{\mathbf{k}}\right)\right) .
\end{aligned}
$$

where $\lambda:=(\sqrt{2} \mathrm{~L})^{-1}$.

COMPLEXITY RESULTS FOR VI

Theorem (Nemirovski): If \mathbf{X} is bounded, then

$$
\min _{\mathbf{x} \in \mathbf{X}}\left\langle\mathbf{F}(\mathbf{x}), \mathbf{x}-\overline{\mathbf{y}}_{\mathbf{k}}\right\rangle \geq-\frac{\sqrt{\mathbf{2}} \mathbf{L} \mathbf{D}_{\mathbf{h}}\left(\mathbf{x}_{\mathbf{0}}\right)}{\mathbf{k} \sigma}
$$

for every $k \geq 1$, where

$$
\overline{\mathbf{y}}_{\mathbf{k}}:=\frac{1}{\mathbf{k}} \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{y}_{\mathbf{i}}, \quad \mathbf{D}_{\mathbf{h}}\left(\mathrm{x}_{\mathbf{0}}\right):=\max _{\mathbf{x} \in \mathbf{X}} \mathrm{d}_{\mathbf{h}}\left(\mathbf{x} ; \mathrm{x}_{\mathbf{0}}\right)
$$

Theorem (M. and Svaiter): If $h=\|\cdot\|^{2} / 2$, then there exist computable $\left(\overline{\mathbf{r}}_{\mathbf{k}}, \bar{\epsilon}_{\mathbf{k}}\right) \in \Re^{\mathbf{n}} \times \Re_{+}$such that

$$
\begin{gathered}
\min _{\mathbf{x} \in \mathbf{X}}\left\langle\mathbf{F}(\mathrm{x})-\overline{\mathbf{r}}_{\mathrm{k}}, \mathrm{x}-\overline{\mathbf{y}}_{\mathrm{k}}\right\rangle \geq-\bar{\epsilon}_{\mathrm{k}} \geq-\frac{2 \sqrt{2} \mathrm{~L}\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|^{2}}{\mathrm{k} \sigma} \\
\left\|\overline{\mathbf{r}}_{\mathbf{k}}\right\| \leq \frac{2 \sqrt{2} \mathbf{L}\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|}{\mathrm{k}}
\end{gathered}
$$

If F is affine, then

$$
\min _{\mathbf{x} \in \mathbf{X}}\left\langle\mathbf{F}\left(\overline{\mathbf{y}}_{\mathbf{k}}\right)-\overline{\mathbf{r}}_{\mathbf{k}}, \mathbf{x}-\overline{\mathbf{y}}_{\mathbf{k}}\right\rangle \geq-\bar{\epsilon}_{\mathbf{k}}
$$

Remark: When $\mathrm{X}=\mathrm{K}$ is a cone, then the latter condition is equivalent to

$$
\mathbf{F}\left(\overline{\mathbf{y}}_{\mathbf{k}}\right)-\overline{\mathbf{r}}_{\mathbf{k}} \in \mathbf{K}^{*}, \quad\left\langle\overline{\mathbf{y}}_{\mathbf{k}}, \mathbf{F}\left(\overline{\mathbf{y}}_{\mathbf{k}}\right)-\overline{\mathbf{r}}_{\mathbf{k}}\right\rangle \leq \bar{\epsilon}_{\mathbf{k}}
$$

COMPLEXITY RESULTS FOR S.P. PROBLEMS

Let $\mathbf{F}=\left(\Phi_{\mathbf{u}}^{\prime},-\Phi_{\mathbf{v}}^{\prime}\right)$ and $\mathbf{X}=\mathbf{U} \times \mathbf{V}$. The S.P. problem is equivalent to $\operatorname{VIP}(\mathbf{F}, \mathbf{X})$.

Let $\left\{\overline{\mathbf{y}}_{\mathbf{k}}\right\} \subseteq \mathbf{U} \times \mathbf{V}$ be the ergodic sequence generated by the prox mirror method, and write $\overline{\mathbf{y}}_{\mathbf{k}}=\left(\overline{\mathbf{u}}_{\mathbf{k}}, \overline{\mathbf{v}}_{\mathbf{k}}\right)$.

Theorem (Nemirovski): If $\mathbf{U} \times \mathbf{V}$ is bounded, then

$$
\mathbf{f}_{\mathbf{P}}\left(\overline{\mathbf{u}}_{\mathrm{k}}\right)-\mathrm{f}_{\mathrm{D}}\left(\overline{\mathbf{v}}_{\mathbf{k}}\right) \leq \frac{\sqrt{2} \mathbf{L} \mathbf{D}_{\mathbf{h}}\left(\mathrm{x}_{\mathbf{0}}\right)}{\mathrm{k} \sigma}
$$

Theorem (M. and Svaiter): If $h=\|\cdot\|^{2} / 2$, then there exist computable $\overline{\mathbf{r}}_{\mathbf{k}}=\left(\overline{\mathbf{r}}_{\mathbf{k}}^{\mathbf{u}}, \overline{\mathbf{r}}_{\mathbf{k}}^{\mathbf{v}}\right)$ and $\bar{\epsilon}_{\mathbf{k}} \geq 0$ such that the perturbed S.P. problem with

$$
\boldsymbol{\Phi}^{\mathbf{k}}(\mathbf{u}, \mathbf{v})=\boldsymbol{\Phi}(\mathbf{u}, \mathbf{v})+\left\langle\overline{\mathbf{r}}_{\mathbf{k}}^{\mathbf{u}}, \mathbf{u}\right\rangle+\left\langle\overline{\mathbf{r}}_{\mathbf{k}}^{\mathbf{v}}, \mathbf{v}\right\rangle
$$

satisfies

$$
\begin{gathered}
\mathrm{f}_{\mathrm{P}}^{\mathrm{k}}\left(\overline{\mathrm{u}}_{\mathrm{k}}\right)-\mathrm{f}_{\mathrm{D}}^{\mathrm{k}}\left(\overline{\mathbf{v}}_{\mathrm{k}}\right) \leq \bar{\epsilon}_{\mathrm{k}} \leq \frac{2 \sqrt{2} \mathrm{~L}\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|^{2}}{\mathrm{k} \sigma} \\
\left\|\overline{\mathbf{r}}_{\mathrm{k}}\right\| \leq \frac{2 \sqrt{2} \mathrm{~L}\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|}{\mathrm{k}}
\end{gathered}
$$

where f_{P}^{k} and f_{D}^{k} are the associated primal and dual functions.

THANK YOU!

 AND
THE END

RELATIVE SCALE BOUNDS

Consider the problem $\mathbf{f}^{*}=\min \{\mathbf{f}(\mathbf{x}): \mathbf{C x}=\mathbf{d}\}$, where C is $m \times n, 0 \neq d \in \Re^{\mathrm{m}}$ and $\mathrm{f}: \Re^{\mathrm{n}} \rightarrow \Re$ is convex, homogenous of degree 1 and $0 \in \operatorname{int} \partial f(0)$.

For some inner product norm $\|\cdot\|$, assume that

$$
\mathbf{B}(\mathbf{0} ; \mathbf{m}) \subseteq \partial \mathbf{f}(\mathbf{0}) \subseteq \mathbf{B}(\mathbf{0} ; \mathbf{M})
$$

for some $\mathbf{0}<\mathbf{m} \leq M$, or equivalently, $\mathbf{m}\|\mathbf{x}\| \leq \mathbf{f}(\mathbf{x}) \leq$ $\mathrm{M}\|\mathrm{x}\|$ for all x . Clearly, $\mathrm{f}^{*}>0$.

Lemma: Let $\mathbf{x}_{0}:=\operatorname{argmin}\{\|\mathrm{x}\|: \mathbf{C x}=\mathrm{d}\}$. Then,

$$
\mathbf{R}:=\frac{\mathbf{f}\left(\mathbf{x}^{\mathbf{0}}\right)}{\mathbf{m}} \geq \frac{\mathbf{f}^{*}}{\mathbf{m}} \geq\left\|\mathbf{x}_{\mathbf{0}}-\mathbf{x}^{*}\right\|, \quad \frac{\mathbf{f}\left(\mathbf{x}^{\mathbf{0}}\right)}{\mathbf{f}^{*}} \leq \frac{\mathbf{M}}{\mathbf{m}}
$$

Proposition (Nesterov): The subgradient method with stepsize $\alpha_{\mathbf{k}}=\mathbf{R} / \sqrt{\mathbf{K}+1}, \mathbf{k}=\mathbf{0}, \ldots, \mathbf{K}$, where \mathbf{R} is as above and

$$
\mathbf{K}:=\left\lfloor\frac{(\mathbf{M} / \mathbf{m})^{4}}{\delta^{2}}\right\rfloor
$$

satisfies

$$
\frac{\mathbf{1}}{\mathbf{f}^{*}}\left(\min _{\mathbf{i}=\mathbf{0}, \ldots, \mathbf{K}}\left[\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)-\mathbf{f}^{*}\right]\right) \leq \delta
$$

Remark: The norm should be chosen so that M / m is as small as possible.

