Algorithms for large scale structured optimization problems

First-order methods for optimization, variational-inequality and saddle-point problems

(Second Lecture)

Renato D.C. Monteiro (Georgia Tech)

Fields 09 – Toronto October 20-24, 2009

OUTLINE FOR THE SECOND LECTURE

• Smooth convex optimization

- Functions with Lips. continuous gradient
- Projected gradient method
- Lower complexity bound
- Nesterov's optimal method and its variants
- Application to cone programming
- Extensions (smooth + nonsmooth funct's)
- Nonsmooth convex optimization
 - Lower complexity bound
 - Subgradient method
- Specially structured convex optimization
 - Problem class
 - Nesterov's smooth approximation scheme
 - Remarks
- Algorithms for V.I. and Saddle Pt. Probl.'s
 - V.I. and the saddle pt. problem
 - Prox-mirror and Korpelevich's methods
 - Complexity results for V.I.
 - Complexity results for S.P. problems

SMOOTH CONVEX OPTIMIZATION

Definition: Let $\mathbf{X} \subseteq \Re^{\mathbf{n}}$ be a convex set. A differentiable convex function $\mathbf{f} : \mathbf{X} \to \Re$ has L-Lipschitz continuous gradient if

 $\|\mathbf{f}'(\mathbf{y}) - \mathbf{f}'(\mathbf{x})\|_* \le \mathbf{L} \|\mathbf{y} - \mathbf{x}\|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}.$

where $\|\phi\|_* = \max\{\phi(\mathbf{x}) : \|\mathbf{x}\| \le 1\}$. We write $\mathbf{f} \in \operatorname{Conv}_{\mathbf{L}}^1(\mathbf{X})$.

Notation: For $\mathbf{x} \in \mathbf{X}$, let $\mathbf{l}_{\mathbf{f}}(\cdot; \mathbf{x})$ denote the first-order approximation of \mathbf{f} at \mathbf{x} :

 $\mathbf{l_f}(\mathbf{y}; \mathbf{x}) := \mathbf{f}(\mathbf{x}) + \mathbf{f}'(\mathbf{x})(\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y} \in \Re^{\mathbf{n}}$

Proposition: The following are equivalent:

- a) $\mathbf{f} \in \operatorname{Conv}_{\mathbf{L}}^{1}(\mathbf{X});$
- b) $f \leq l_f(\cdot; x) + L \| \cdot -x \|^2/2;$

PROJECTED GRADIENT METHOD

Given "simple" convex $X \subseteq \Re^n$ and $\mathbf{f} \in \operatorname{Conv}_{\mathbf{L}}^1(\mathbf{X})$, consider the problem

$$\mathbf{f}^* := \min\{\mathbf{f}(\mathbf{x}) : \mathbf{x} \in \mathbf{X}\}$$

and let $\mathbf{X}^* \neq \emptyset$ denote its set of optimal sol's. Assume $\|\cdot\|$ denote an inner product norm.

Projected gradient method (with fixed stepsize)

- 0) Let $\mathbf{x_0} \in \mathbf{X}$ and $\alpha > \mathbf{0}$ be given. Set $\mathbf{k} = \mathbf{0}$.
- 1) Compute

$$\mathbf{x_{k+1}} := \operatorname{argmin} \left\{ \alpha \, \mathbf{l_f}(\mathbf{x}; \mathbf{x_k}) + \frac{\mathbf{L}}{2} \| \mathbf{x} - \mathbf{x_k} \|^2 : \mathbf{x} \in \mathbf{X} \right\} (*)$$

2) Set $\mathbf{k} \leftarrow \mathbf{k} + \mathbf{1}$ and go to step 1.

Iteration (*) can also be written as

$$\mathbf{x_{k+1}} := \mathbf{P_X}\left(\mathbf{x_k} - \frac{\alpha}{\mathbf{L}}\mathbf{f}'(\mathbf{x_k})\right)$$

where P_X denotes the projection operator onto X.

Proposition: If $\alpha \in (0, 2)$, then

$$\mathbf{f}(\mathbf{x}_{\mathbf{k}}) - \mathbf{f}^* \leq \frac{\mathbf{L} \|\mathbf{x}_{\mathbf{0}} - \mathbf{x}^*\|^2}{\alpha (\mathbf{2} - \alpha) \, \mathbf{k}}$$

for any $\mathbf{x}^* \in \mathbf{X}^*$.

LOWER-COMPLEXITY BOUND

Theorem: For any $1 \leq k \leq (n-1)/2$ and $x_0 \in \Re^n$, there exists quadratic function $f \in \operatorname{Conv}_L^1(\Re^n)$ with the following property: any first-order method such that

$$\mathbf{x_k} \in \mathbf{x_0} + \mathrm{lin}\{\mathbf{f}'(\mathbf{x_0}), \ldots, \mathbf{f}'(\mathbf{x_{k-1}})\}$$

for solving $\min{\{\mathbf{f}(\mathbf{x}) : \mathbf{x} \in \Re^{\mathbf{n}}\}}$, satisfies

$$\mathbf{f}(\mathbf{x_k}) - \mathbf{f}^* \geq \frac{\mathbf{3L} \|\mathbf{x_0} - \mathbf{x}^*\|^2}{\mathbf{32}(\mathbf{k} + \mathbf{1})^2}$$

Bregman's distance: Let $h : X \to \Re$ be a differentiable σ -strongly convex function, i.e.:

$$\mathbf{h}(\cdot) \ge \mathbf{l_h}(\cdot; \mathbf{x}) + \frac{\sigma}{2} \| \cdot - \mathbf{x} \|^2, \quad \forall \mathbf{x} \in \mathbf{X}$$

Define the Bregman distance $\mathbf{d}_{\mathbf{h}} : \mathbf{X} \times \mathbf{X} \to \Re$ as

$$\mathbf{d}_{\mathbf{h}}(\mathbf{\tilde{x}};\mathbf{x}) = \mathbf{h}(\mathbf{\tilde{x}}) - \mathbf{l}_{\mathbf{h}}(\mathbf{\tilde{x}};\mathbf{x}), \quad \forall \mathbf{x}, \mathbf{\tilde{x}} \in \mathbf{X}$$

Obs: If $\mathbf{h} = \| \cdot \|^2 / 2$, then $\mathbf{d}_{\mathbf{h}}(\mathbf{\tilde{x}}; \mathbf{x}) = \| \mathbf{\tilde{x}} - \mathbf{x} \|^2 / 2$.

NESTEROV'S OPTIMAL METHOD

Let $\{\alpha_k\} \subseteq \Re_{++}$ be such that

$$\alpha_{\mathbf{0}} \in (\mathbf{0}, \mathbf{1}], \qquad \alpha_{\mathbf{k}}^{\mathbf{2}} \leq \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}} \alpha_{\mathbf{i}}$$

and set $\tau_{\mathbf{k}} = \alpha_{\mathbf{k}} / \sum_{i=0}^{\mathbf{k}} \alpha_{i}$. For example, $\alpha_{\mathbf{k}} = (\mathbf{k}+1)/2$ and $\tau_{\mathbf{k}} = 2/(\mathbf{k}+2)$.

Nesterov's algorithm:

- 0) Let $x_0 \in X$ be given and set $u_0 = x_0$ and k = 1.
- 1) Using u_0, \ldots, u_{k-1} , compute

$$\begin{aligned} \mathbf{u}_{\mathbf{k}}^{\mathbf{a}} &:= \arg\min_{\mathbf{x}\in\mathbf{X}} \frac{1}{\mathbf{L}} \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}-1} \alpha_{\mathbf{i}} \mathbf{l}_{\mathbf{f}}(\mathbf{x};\mathbf{u}_{\mathbf{i}}) + \frac{1}{\sigma} \mathbf{d}_{\mathbf{h}}(\mathbf{x};\mathbf{u}_{\mathbf{0}}) \\ \mathbf{x}_{\mathbf{k}} &:= \arg\min_{\mathbf{x}\in\mathbf{X}} \frac{1}{\mathbf{L}} \mathbf{l}_{\mathbf{f}}(\mathbf{x};\mathbf{u}_{\mathbf{k}-1}) + \frac{1}{2} \|\mathbf{x} - \mathbf{u}_{\mathbf{k}-1}\|^{2} \quad (*) \\ \mathbf{u}_{\mathbf{k}} &:= \tau_{\mathbf{k}} \mathbf{u}_{\mathbf{k}}^{\mathbf{a}} + (1 - \tau_{\mathbf{k}}) \mathbf{x}_{\mathbf{k}} \end{aligned}$$

2) Set $\mathbf{k} \leftarrow \mathbf{k} + \mathbf{1}$ and go to step 1.

Tseng's variant: Replace (*) by

$$\mathbf{x}_{\mathbf{k}} = (\mathbf{1} - \tau_{\mathbf{k}-1})\mathbf{x}_{\mathbf{k}-1} + \tau_{\mathbf{k}-1}\mathbf{u}_{\mathbf{k}}^{\mathbf{a}}$$

Proposition: For every k and $\mathbf{x}^* \in \mathbf{X}^*$:

$$\mathbf{f}(\mathbf{x}_{\mathbf{k}}) - \mathbf{f}^* \leq \frac{\mathbf{L} \mathbf{d}_{\mathbf{h}}(\mathbf{x}^*; \mathbf{x}_{\mathbf{0}})}{\sigma \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}-1} \alpha_{\mathbf{i}}}$$

In particular, if $\alpha_{\mathbf{k}} = (\mathbf{k} + \mathbf{1})/\mathbf{2}$ for all \mathbf{k} , then

$$\mathbf{f}(\mathbf{x_k}) - \mathbf{f^*} \le \frac{4\mathbf{L}\,\mathbf{d_h}(\mathbf{x^*};\mathbf{x_0})}{\sigma\mathbf{k}(\mathbf{k+1})} = \mathcal{O}\left(\frac{1}{\mathbf{k^2}}\right)$$

Lower bound: Assume X is *bounded* and let $\theta_{\mathbf{k}}$ and $\mathbf{v}_{\mathbf{k}}$ be the optimal value and optimal solution of

$$\frac{1}{\sum_{i=0}^{k-1} \alpha_i} \min \left\{ \sum_{i=0}^{k-1} \alpha_i \, l_f(\mathbf{x}; \mathbf{u}_i) : \mathbf{x} \in \mathbf{X} \right\}$$

Proposition: For any $k \ge 0$,

$$\mathbf{f}(\mathbf{x}_{\mathbf{k}}) - \mathbf{f}^* \leq \mathbf{f}(\mathbf{x}_{\mathbf{k}}) - \theta_{\mathbf{k}} \leq \frac{\mathbf{L} \, \mathbf{d}_{\mathbf{h}}(\mathbf{v}_{\mathbf{k}}; \mathbf{x}_{\mathbf{0}})}{\sigma \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{k}-1} \alpha_{\mathbf{i}}}$$

Observation: In practice, the number of iterations is usually proportional to the theoretical bound. Hence, if L is too large and/or x_0 is far from x^* , convergence can be quite slow. Auslender-Teboule's variant: Let $\alpha_{\mathbf{k}} = (\mathbf{k} + \mathbf{2})/\mathbf{2}$ and $\tau_{\mathbf{k}} = \mathbf{1}/\alpha_{\mathbf{k}}$ for all k.

- $0) \ \ {\rm Given} \ x_0 \in X, \ {\rm set} \ u_0^{\bf a} = x_0 \ {\rm and} \ k=1.$
- 1) Using $u_{k-1}^{a}, x_{k-1}, u_{k-1}$, compute

$$\begin{aligned} \mathbf{u}_{\mathbf{k}}^{\mathbf{a}} &:= \arg\min_{\mathbf{x}\in\mathbf{X}} \frac{1}{\mathbf{L}} \alpha_{\mathbf{k}-1} \, \mathbf{l}_{\mathbf{f}}(\mathbf{x};\mathbf{u}_{\mathbf{k}-1}) + \frac{1}{\sigma} \, \mathbf{d}_{\mathbf{h}}(\mathbf{x};\mathbf{u}_{\mathbf{k}-1}^{\mathbf{a}}) \\ \mathbf{x}_{\mathbf{k}} &:= (1-\tau_{\mathbf{k}-1})\mathbf{x}_{\mathbf{k}-1} + \tau_{\mathbf{k}-1}\mathbf{u}_{\mathbf{k}}^{\mathbf{a}} \\ \mathbf{u}_{\mathbf{k}} &:= \tau_{\mathbf{k}}\mathbf{u}_{\mathbf{k}}^{\mathbf{a}} + (1-\tau_{\mathbf{k}})\mathbf{x}_{\mathbf{k}} \end{aligned}$$

2) Set $\mathbf{k} \leftarrow \mathbf{k} + \mathbf{1}$ and go to step 1.

Proposition: For every k and $\mathbf{x}^* \in \mathbf{X}^*$:

$$\mathbf{f}(\mathbf{x_k}) - \mathbf{f^*} \le \frac{\mathbf{4Ld_h}(\mathbf{x^*}; \mathbf{x_0})}{\sigma \mathbf{k}(\mathbf{k+2})} = \mathcal{O}\left(\frac{1}{\mathbf{k^2}}\right)$$

APPLICATIONS TO CONE PROGR.

Consider

$$\begin{split} \min\{ \langle \mathbf{c}, \mathbf{x} \rangle : \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathcal{K} \}, \\ \max\{ \langle \mathbf{b}, \mathbf{y} \rangle : \mathbf{A}^* \mathbf{y} + \mathbf{s} = \mathbf{c}, \ \mathbf{s} \in \mathcal{K}^* \} \end{split}$$

where \mathcal{K} is a closed convex cone and

$$\mathcal{K}^* = \{ \mathbf{s} : \langle \, \mathbf{s}, \mathbf{x} \,
angle \geq \mathbf{0}, \,\, orall \mathbf{x} \in \mathcal{K} \}$$

Assuming that there is no duality, we can solve the above pair of dual problems by means of the following smooth reformulation

$$\begin{split} \min & (\langle \mathbf{c}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{y} \rangle)^2 + \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \|\mathbf{A}^*\mathbf{y} + \mathbf{s} - \mathbf{c}\|^2 \\ \mathbf{s.t.} & (\mathbf{x}, \mathbf{s}) \in \mathcal{K} \times \mathcal{K}^* \end{split}$$

or alternatively,

 $\begin{array}{ll} \min & [\mathbf{d}_{\mathcal{K}}(\mathbf{x})]^{\mathbf{2}} + [\mathbf{d}_{\mathcal{K}^{*}}(\mathbf{s})]^{\mathbf{2}} \\ \mathbf{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A}^{*}\mathbf{y} + \mathbf{s} = \mathbf{c}, \ \langle \mathbf{c}, \mathbf{x} \rangle = \langle \mathbf{b}, \mathbf{y} \rangle \quad (**) \end{array}$

See Lan, Lu, M. (2009), Jarre and Rendl (2008).

Assume that $f(x) = f_S(x) + f_N(x)$, where $f_S \in Conv_L^1(X)$ and $f_N : X \to \Re$ is a closed convex function.

There exist extensions of Nesterov's algorithm and its variants, which instead of using the linear approximation $f(x) \approx l_f(x; u_k)$, use

 $\mathbf{f}(\mathbf{x})\approx \mathbf{l_{f_s}}(\mathbf{x};\mathbf{u_k})+\mathbf{f_N}(\mathbf{x})$

This leads to subproblems of the form

$$\min_{\mathbf{x}\in\mathbf{X}}\langle \mathbf{c},\mathbf{x}\rangle + \mathbf{f}_{\mathbf{N}}(\mathbf{x}) + \tau \mathbf{d}_{\mathbf{h}}(\mathbf{x};\mathbf{u_0})$$

for some $\mathbf{c} \in \Re^{\mathbf{n}}$ and $\tau > \mathbf{0}$.

Exactly the same complexity bounds can be derived for these extensions.

Example: If $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 + \tau ||\mathbf{x}||_1$ and $\mathbf{h} = || \cdot ||^2/2$, then the above subproblem has a closed form solution (see Wright et al.)

Consider the problem

 $\mathbf{f}^* := \min\{\mathbf{f}(\mathbf{x}) : \mathbf{x} \in \mathbf{X}\}$

where $\mathbf{X} \subseteq \Re^{\mathbf{n}}$ is closed convex and $\mathbf{f} : \Re^{\mathbf{n}} \to \Re$ is convex. Let $\mathbf{X}^* \neq \emptyset$ denote its set of optimal sol's.

Lower complexity bound: Assume $X = \Re^n$. Given $x_0 \in \Re^n$ and positive constants R, M, consider the class $\mathcal{F}(x_0, M, R)$ of functions f such that:

- a) $\exists \mathbf{x}^* \in \mathbf{X}^*$ such that $\|\mathbf{x}^* \mathbf{x_0}\| \leq \mathbf{R};$
- b) f is M-Lipschitz continuous on the closed ball $\{\mathbf{x} : \|\mathbf{x} \mathbf{x_0}\| \leq \mathbf{R}\}.$

Proposition: For any $k \leq n - 1$, there exists $f \in \mathcal{F}(x_0, M, R)$ with the property that any algorithm which generates $\{x_k\}$ such that

 $\mathbf{x_k} \in \mathbf{x_0} + \mathrm{lin}\{\mathbf{g_0}, \ldots, \mathbf{g_{k-1}}\},\$

where $\mathbf{g_i} \in \partial \mathbf{f}(\mathbf{x_i})$ for all i, satisfies

$$\mathbf{f}(\mathbf{x_k}) - \mathbf{f}^* \geq rac{\mathbf{MR}}{\mathbf{2}(\mathbf{1} + \sqrt{\mathbf{k} + \mathbf{1}}\,)}$$

Question: Is there an optimal method?

SUBGRADIENT METHOD

Subgradient method:

- 0) Let $\mathbf{x_0} \in \mathbf{X}$ be given and set $\mathbf{k} = \mathbf{0}$.
- 1) Choose $\alpha_{\mathbf{k}} > \mathbf{0}$ and $\mathbf{g}_{\mathbf{k}} \in \partial \mathbf{f}(\mathbf{x}_{\mathbf{k}})$, and set

$$\mathbf{x}_{k+1} := \mathbf{P}_{\mathbf{X}} \left(\mathbf{x}_{k} - \alpha_{k} \frac{\mathbf{g}_{k}}{\|\mathbf{g}_{k}\|} \right)$$

2) Set $\mathbf{k} \leftarrow \mathbf{k} + \mathbf{1}$ and go to step 1.

Proposition: Assume that f is M-Lipschitz continuous on X. Then, for all k and $x^* \in X^*$

$$\min_{i=0,\dots,k} \left[\mathbf{f}(\mathbf{x}_i) - \mathbf{f}^* \right] \leq \mathbf{M} \left(\frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2 + \sum_{i=0}^k \alpha_i^2}{2\sum_{i=0}^k \alpha_i} \right)$$

Corollary: Fix $\mathbf{K} \geq \mathbf{0}$. If $\mathbf{R} \geq \|\mathbf{x}_{\mathbf{0}} - \mathbf{x}^*\|$ is known and we set $\alpha_{\mathbf{k}} = \mathbf{R}/\sqrt{\mathbf{K}+1}$ for all $\mathbf{k} = \mathbf{0}, \dots, \mathbf{K}$, then

$$\min_{\mathbf{i}=\mathbf{0},\ldots,\mathbf{K}} \left[\mathbf{f}(\mathbf{x_i}) - \mathbf{f}^*\right] \leq \frac{\mathbf{M}\mathbf{R}}{\sqrt{\mathbf{K}+1}}$$

Specially Structured Convex Optim.

Consider $f^* := \min\{f(x) : x \in X\}$, where

$$\mathbf{f}(\mathbf{x}) = \phi(\mathbf{x}) + \max_{\mathbf{\tilde{x}} \in \mathbf{\tilde{X}}} \langle \mathbf{\tilde{x}}, \mathbf{Cx} \rangle - \tilde{\phi}(\mathbf{\tilde{x}}),$$

 $\phi \in \operatorname{Conv}_{L_{\phi}}^{1}(\mathbf{X})$, set $\tilde{\mathbf{X}} \subseteq \Re^{\tilde{\mathbf{n}}}$ is compact convex, $\mathbf{C}: \Re^{\mathbf{n}} \to \Re^{\tilde{\mathbf{n}}}$ is linear, and $\tilde{\phi}: \tilde{\mathbf{X}} \to \Re$ is convex The dual problem is $\max{\{\tilde{\mathbf{f}}(\tilde{\mathbf{x}}) : \tilde{\mathbf{x}} \in \tilde{\mathbf{X}}\}}$, where $\tilde{\mathbf{f}}: \Re^{\tilde{\mathbf{n}}} \to \Re$ is defined as

$$\tilde{\mathbf{f}}(\tilde{\mathbf{x}}) = -\tilde{\phi}(\tilde{\mathbf{x}}) + \min_{\mathbf{x} \in \mathbf{X}} \langle \mathbf{C}^* \tilde{\mathbf{x}}, \mathbf{x} \rangle + \phi(\mathbf{x}).$$

f is non-smooth but it can be approximated by the smooth convex function

$$\mathbf{f}_{\mu}(\mathbf{x}) = \phi(\mathbf{x}) + \max_{\mathbf{\tilde{x}} \in \mathbf{\tilde{X}}} \langle \mathbf{\tilde{x}}, \mathbf{Cx} \rangle - \tilde{\phi}(\mathbf{\tilde{x}}) - \mu \, \mathbf{\tilde{h}}(\mathbf{\tilde{x}}) \quad (*)$$

where $\mu > 0$ and $\tilde{\mathbf{h}}$ is a $\tilde{\sigma}$ -strongly convex function such that $\min{\{\tilde{\mathbf{h}}(\tilde{\mathbf{x}}) : \tilde{\mathbf{x}} \in \tilde{\mathbf{X}}\}} = 0$.

Proposition:

i) (*) has a unique optimal solution $\tilde{\mathbf{x}}_{\mu}(\mathbf{x})$ and $\mathbf{f}'_{\mu}(\mathbf{x}) = \mathbf{C}^* \tilde{\mathbf{x}}_{\mu}(\mathbf{x}).$

ii) \mathbf{f}'_{μ} is \mathbf{L}_{μ} -Lips. cont. with $\mathbf{L}_{\mu} := \mathbf{L}_{\phi} + \|\mathbf{C}\|^2/(\mu\tilde{\sigma})$.

iii) $\mathbf{f}_{\mu}(\cdot) \leq \mathbf{f}(\cdot) \leq \mathbf{f}_{\mu}(\cdot) + \mu \mathbf{\tilde{D}}$, where $\mathbf{\tilde{D}} = \max_{\mathbf{\tilde{x}} \in \mathbf{\tilde{X}}} \mathbf{\tilde{h}}(\mathbf{\tilde{x}})$.

Nesterov's approximation scheme: Set $\mu = \epsilon/(2\tilde{D})$ and apply Nesterov's smooth method to f_{μ} with stepsize $\alpha_{\mathbf{k}} = (\mathbf{k} + 1)/2$ until an iterate $\mathbf{x}_{\mathbf{k}}$ s.t. $\mathbf{f}(\mathbf{x}_{\mathbf{k}}) - \mathbf{f}^* \leq \epsilon$ is found.

Theorem (Nesterov): If $D \ge d_h(x^*; x_0)$ is known, then the above scheme generates a sequence $\{x_k\}$ satisfying

$$\begin{split} \mathbf{f}(\mathbf{x_k}) - \mathbf{f^*} &\leq \quad \mu \tilde{\mathbf{D}} + \left(\mathbf{L}_{\phi} + \frac{\|\mathbf{C}\|^2}{\mu \tilde{\sigma}} \right) \frac{4 \mathbf{d_h}(\mathbf{x^*}; \mathbf{x_0})}{\sigma \mathbf{k} (\mathbf{k} + 1)} \\ &\leq \quad \frac{\epsilon}{2} + \left(\mathbf{L}_{\phi} + \frac{2 \tilde{\mathbf{D}} \|\mathbf{C}\|^2}{\epsilon \tilde{\sigma}} \right) \frac{4 \mathbf{D}}{\sigma \mathbf{k}^2} \quad (*) \end{split}$$

where $\mathbf{h} : \mathbf{X} \to \Re$ is the σ -strongly convex function used by Nesterov's smooth method. Hence, # of iterations of Nesterov's scheme is bounded by

$$\left[\left(\mathbf{L}_{\phi} + rac{2 ilde{\mathbf{D}} \|\mathbf{C}\|^2}{\epsilon ilde{\sigma}}
ight)^rac{1}{2} \left(rac{8\mathbf{D}}{\sigma\epsilon}
ight)^rac{1}{2}
ight] = \left[rac{4\|\mathbf{C}\|}{\epsilon} \sqrt{rac{\mathbf{D} ilde{\mathbf{D}}}{\sigma ilde{\sigma}}}
ight]$$

Lower bound result: Assume X is bounded and that now $D \ge \sup_{x \in X} d_h(x^*; x)$. Letting

$$\tilde{\mathbf{x}}_{\mathbf{k}} := \frac{\sum_{i=0}^{\mathbf{k}} \alpha_{i} \tilde{\mathbf{x}}_{\mu}(\mathbf{x}_{\mathbf{k}})}{\sum_{i=0}^{\mathbf{k}} \alpha_{i}}$$

then $\tilde{\mathbf{f}}(\mathbf{\tilde{x}_k}) \leq \mathbf{f}^*$ and $\mathbf{f}(\mathbf{x_k}) - \tilde{\mathbf{f}}(\mathbf{\tilde{x}_k})$ is bounded by (*).

Remarks:

1) Unless f^* is known or X is bounded, we do not know when $f(x_k) - f^* \leq \epsilon$ occurs.

2) If $\tilde{\phi}(\tilde{\mathbf{x}})$ is already $\tilde{\sigma}$ -strongly convex, then there is no need to add a perturbation term inside the inner maximization.

In this case, **f** is already $\mathbf{L}_{\mathbf{f}}$ -Lipschitz continuous with $\mathbf{L}_{\mathbf{f}} = \mathbf{L}_{\phi} + \|\mathbf{C}\|^2 / \tilde{\sigma}$, and we can apply Nesterov's optimal method directly to **f**. The resulting complexity is

$$\mathbf{2} \| \mathbf{C} \| \sqrt{rac{\mathbf{D}}{\sigma ilde{\sigma} \epsilon}} = \mathcal{O}\left(rac{1}{\sqrt{\epsilon}}
ight)$$

to find $\mathbf{x}_{\mathbf{k}}$ such that $\mathbf{f}(\mathbf{x}_{\mathbf{k}}) - \mathbf{f}^* \leq \epsilon$.

Example: Consider

$$\min_{\mathbf{x}} \mathbf{f}(\mathbf{x}) := \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \|\mathbf{x}\|_1,$$

where **A** has full column rank. Can be reformulated as

$$\mathbf{f}(\mathbf{x}) := \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2} + \max\{\langle \mathbf{x}, \mathbf{\tilde{x}} \rangle : \|\mathbf{\tilde{x}}\|_{\infty} \leq 1\}$$

or as the dual $\max\{\mathbf{\tilde{f}}(\mathbf{\tilde{x}}): \|\mathbf{\tilde{x}}\|_{\infty} \leq 1\}$, where

$$\begin{aligned} \tilde{\mathbf{f}}(\tilde{\mathbf{x}}) &:= & \min_{\mathbf{x}} \langle \, \mathbf{x}, \tilde{\mathbf{x}} \, \rangle + \| \mathbf{A}\mathbf{x} - \mathbf{b} \|^{2} \\ &= & - \max_{\mathbf{x}} \langle \, \mathbf{x}, -\tilde{\mathbf{x}} \, \rangle - \| \mathbf{A}\mathbf{x} - \mathbf{b} \|^{2} \end{aligned}$$

Algorithms for V.I. and Saddle Point Problems

Variational Inequality: Assume

- $\mathbf{X} \subseteq \Re^{\mathbf{n}}$ is a non-empty closed convex set
- $\bullet~ F: X \rightarrow \Re^{n}$ is a continuous monotone map

The (monotone) variational inequality (VI) problem VIP(F, X) consists of finding x^* such that

$$\mathbf{x}^* \in \mathbf{X}, \qquad \min_{\mathbf{x} \in \mathbf{X}} \left< \mathbf{x} - \mathbf{x}^*, \mathbf{F}(\mathbf{x}) \right> \geq \mathbf{0}$$

or equivalently,

$$\mathbf{x}^* \in \mathbf{X}, \qquad \min_{\mathbf{x} \in \mathbf{X}} \left< \mathbf{x} - \mathbf{x}^*, \mathbf{F}(\mathbf{x}^*) \right> \geq \mathbf{0}$$

Assumptions:

- the set of solutions of VIP(F, X) is nonempty.
- **F** is **L**-Lipschitz continuous:

 $\|\mathbf{F}(\mathbf{\tilde{x}}) - \mathbf{F}(\mathbf{x})\| \le \mathbf{L} \|\mathbf{\tilde{x}} - \mathbf{x}\|, \quad \forall \mathbf{x}, \, \mathbf{\tilde{x}} \in \mathbf{X}.$

Remark: $\min{\{f(\mathbf{x}) : \mathbf{x} \in \mathbf{X}\}}$ is clearly equivalent to $VI(f', \mathbf{X})$ and the second assumption is equivalent to f having L-Lipschitz continuous gradient.

SADDLE POINT PROBLEM

Assume that $\Phi: \mathbf{U} \times \mathbf{V} \to \Re$ is a function such that

- $\Phi(\cdot, \mathbf{v})$ is convex for all $\mathbf{v} \in \mathbf{V}$;
- $\Phi(\mathbf{u}, \cdot)$ is concave for all $\mathbf{u} \in \mathbf{U}$.

Saddle point probl: Find $(\mathbf{u}^*, \mathbf{v}^*) \in \mathbf{U} \times \mathbf{V}$ such that $\Phi(\mathbf{u}^*, \mathbf{v}) \leq \Phi(\mathbf{u}^*, \mathbf{v}^*) \leq \Phi(\mathbf{u}, \mathbf{v}^*), \quad \forall (\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V} \quad (*)$ which, for Φ smooth, is equivalent to $\mathbf{VI}(\mathbf{F}, \mathbf{X})$ with

$$\mathbf{F} = (\mathbf{\Phi}'_{\mathbf{u}}, -\mathbf{\Phi}'_{\mathbf{v}}), \quad \mathbf{X} = \mathbf{U} \times \mathbf{V}$$

Optimiz. view: Consider the pair of dual probl's

(P)
$$\mathbf{f}_{\mathbf{P}}^* := \min_{\mathbf{u} \in \mathbf{U}} \left(\mathbf{f}_{\mathbf{P}}(\mathbf{u}) := \max_{\mathbf{v} \in \mathbf{V}} \Phi(\mathbf{u}, \mathbf{v}) \right)$$

(D) $\mathbf{f}_{\mathbf{D}}^* := \max_{\mathbf{v} \in \mathbf{V}} \left(\mathbf{f}_{\mathbf{D}}(\mathbf{v}) := \min_{\mathbf{u} \in \mathbf{U}} \Phi(\mathbf{u}, \mathbf{v}) \right)$

Clearly,

$$\mathbf{f_D}(\mathbf{v}) \leq \Phi(\mathbf{u}, \mathbf{v}) \leq \mathbf{f_P}(\mathbf{u}), \ \ \forall (\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V}$$

and hence $\mathbf{f}_{\mathbf{D}}^* \leq \mathbf{f}_{\mathbf{P}}^*$.

 $\begin{array}{l} \textbf{Proposition: For } (\mathbf{u}^*,\mathbf{v}^*)\in \mathbf{U}\times \mathbf{V},\, (\mathbf{u}^*,\mathbf{v}^*) \text{ is a saddle} \\ \textbf{point (i.e., satisfies (*)) if and only if } \mathbf{f_D}(\mathbf{v}^*)=\mathbf{f_P}(\mathbf{u}^*), \\ \textbf{in which case } \mathbf{f}^*_{\mathbf{D}}=\boldsymbol{\Phi}(\mathbf{u}^*,\mathbf{v}^*)=\mathbf{f}^*_{\mathbf{P}}. \end{array}$

Algorithms for VI

Let $h : X \to \Re$ be a σ -strongly convex function and $d_h : X \times X \to \Re$ be the associated Bregman distance:

$$\mathbf{d}_{\mathbf{h}}(\mathbf{\tilde{x}};\mathbf{x}) = \mathbf{h}(\mathbf{\tilde{x}}) - \mathbf{l}_{\mathbf{h}}(\mathbf{\tilde{x}};\mathbf{x}), \quad \forall \mathbf{x}, \mathbf{\tilde{x}} \in \mathbf{X}$$

Prox-mirror method:

- 0) Let $x_0 \in X$ be given and set k = 1.
- 1) Compute $\mathbf{F}(\mathbf{x_{k-1}})$ and let

$$\mathbf{y}_{\mathbf{k}} = \arg\min_{\mathbf{x}\in\mathbf{X}} \frac{1}{\sqrt{2}\mathbf{L}} \langle \mathbf{F}(\mathbf{x}_{\mathbf{k}-1}), \mathbf{x} \rangle + \frac{1}{\sigma} \mathbf{d}_{\mathbf{h}}(\mathbf{x}; \mathbf{x}_{\mathbf{k}-1})$$

2) Compute $\mathbf{F}(\mathbf{y}_{\mathbf{k}})$ and let

$$\mathbf{x}_{\mathbf{k}} = \arg\min_{\mathbf{x}\in\mathbf{X}} \ \frac{1}{\sqrt{2}\mathbf{L}} \langle \mathbf{F}(\mathbf{y}_{\mathbf{k}}), \mathbf{x} \rangle + \frac{1}{\sigma} \mathbf{d}_{\mathbf{h}}(\mathbf{x}; \mathbf{x}_{\mathbf{k-1}})$$

3) Set $\mathbf{k} \leftarrow \mathbf{k} + \mathbf{1}$ and go to step 1.

Remark: When $\mathbf{h} = \| \cdot \|^2 / 2$, the above method reduces to Korpelevich's algorithm, i.e.:

$$\mathbf{y}_{\mathbf{k}} = \mathbf{P}_{\mathbf{X}}(\mathbf{x}_{\mathbf{k}-1} - \lambda \mathbf{F}(\mathbf{x}_{\mathbf{k}-1})),$$

$$\mathbf{x}_{\mathbf{k}} = \mathbf{P}_{\mathbf{X}}(\mathbf{x}_{\mathbf{k}-1} - \lambda \mathbf{F}(\mathbf{y}_{\mathbf{k}})).$$

where $\lambda := (\sqrt{2}L)^{-1}$.

Complexity results for VI

Theorem (Nemirovski): If X is bounded, then

$$\min_{\mathbf{x}\in\mathbf{X}}\langle \mathbf{F}(\mathbf{x}), \mathbf{x} - \bar{\mathbf{y}}_{\mathbf{k}} \rangle \geq -\frac{\sqrt{2}\,\mathbf{L}\,\mathbf{D}_{\mathbf{h}}(\mathbf{x}_{\mathbf{0}})}{\mathbf{k}\,\sigma}$$

for every $k \ge 1$, where

$$\bar{\mathbf{y}}_{\mathbf{k}} := \frac{1}{\mathbf{k}} \sum_{i=1}^{\mathbf{k}} \mathbf{y}_{i}, \qquad \mathbf{D}_{\mathbf{h}}(\mathbf{x}_{0}) := \max_{\mathbf{x} \in \mathbf{X}} \mathbf{d}_{\mathbf{h}}(\mathbf{x}; \mathbf{x}_{0})$$

Theorem (M. and Svaiter): If $\mathbf{h} = \| \cdot \|^2/2$, then there exist computable $(\overline{\mathbf{r}}_{\mathbf{k}}, \overline{\epsilon}_{\mathbf{k}}) \in \Re^{\mathbf{n}} \times \Re_+$ such that

 $\min_{\mathbf{x}\in\mathbf{X}}\langle \mathbf{F}(\mathbf{x}) - \bar{\mathbf{r}}_{\mathbf{k}}, \mathbf{x} - \bar{\mathbf{y}}_{\mathbf{k}} \rangle \geq -\bar{\epsilon}_{\mathbf{k}} \geq -\frac{2\sqrt{2}\,\mathbf{L}\,\|\mathbf{x}_{\mathbf{0}} - \mathbf{x}^*\|^2}{\mathbf{k}\,\sigma}$

$$\|ar{\mathbf{r}}_{\mathbf{k}}\| \leq rac{2\sqrt{2}\mathbf{L}\|\mathbf{x}_{\mathbf{0}}-\mathbf{x}^{*}\|}{\mathbf{k}}$$

If **F** is affine, then

$$\min_{\mathbf{x}\in\mathbf{X}}\langle\,\mathbf{F}(\mathbf{\bar{y}_k})-\mathbf{\bar{r}_k},\mathbf{x}-\mathbf{\bar{y}_k}\,\rangle\geq-\overline{\epsilon}_k$$

Remark: When $\mathbf{X} = \mathbf{K}$ is a cone, then the latter condition is equivalent to

$$\mathbf{F}(\mathbf{ar{y}_k}) - \mathbf{ar{r}_k} \in \mathbf{K}^*, \;\; \langle \, \mathbf{ar{y}_k}, \mathbf{F}(\mathbf{ar{y}_k}) - \mathbf{ar{r}_k} \,
angle \leq ar{\epsilon}_k$$

Let $\mathbf{F} = (\Phi'_{\mathbf{u}}, -\Phi'_{\mathbf{v}})$ and $\mathbf{X} = \mathbf{U} \times \mathbf{V}$. The S.P. problem is equivalent to $\mathbf{VIP}(\mathbf{F}, \mathbf{X})$.

Let $\{\bar{\mathbf{y}}_{\mathbf{k}}\} \subseteq \mathbf{U} \times \mathbf{V}$ be the ergodic sequence generated by the prox mirror method, and write $\bar{\mathbf{y}}_{\mathbf{k}} = (\bar{\mathbf{u}}_{\mathbf{k}}, \bar{\mathbf{v}}_{\mathbf{k}})$.

Theorem (Nemirovski): If $\mathbf{U} \times \mathbf{V}$ is bounded, then

$$\mathbf{f_P}(\mathbf{\bar{u}_k}) - \mathbf{f_D}(\mathbf{\bar{v}_k}) \le \frac{\sqrt{2} \, \mathbf{L} \, \mathbf{D_h}(\mathbf{x_0})}{\mathbf{k} \, \sigma}$$

Theorem (M. and Svaiter): If $\mathbf{h} = \|\cdot\|^2/2$, then there exist computable $\mathbf{\bar{r}_k} = (\mathbf{\bar{r}_k^u}, \mathbf{\bar{r}_k^v})$ and $\mathbf{\bar{\epsilon}_k} \ge \mathbf{0}$ such that the perturbed S.P. problem with

$$\Phi^{\mathbf{k}}(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u},\mathbf{v}) + \langle \, \overline{\mathbf{r}}_{\mathbf{k}}^{\mathbf{u}},\mathbf{u} \, \rangle + \langle \, \overline{\mathbf{r}}_{\mathbf{k}}^{\mathbf{v}},\mathbf{v} \, \rangle$$

satisfies

$$\begin{split} \mathbf{f}_{\mathbf{P}}^{\mathbf{k}}(\bar{\mathbf{u}}_{\mathbf{k}}) - \mathbf{f}_{\mathbf{D}}^{\mathbf{k}}(\bar{\mathbf{v}}_{\mathbf{k}}) &\leq \bar{\epsilon}_{\mathbf{k}} \leq \frac{2\sqrt{2}\,\mathbf{L}\,\|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}}{\mathbf{k}\,\sigma} \\ \|\bar{\mathbf{r}}_{\mathbf{k}}\| &\leq \frac{2\sqrt{2}\mathbf{L}\|\mathbf{x}_{0} - \mathbf{x}^{*}\|}{\mathbf{k}} \end{split}$$

where f_P^k and f_D^k are the associated primal and dual functions.

THANK YOU! AND THE END

Relative scale bounds

Consider the problem $f^* = \min\{f(x) : Cx = d\}$, where C is $m \times n$, $0 \neq d \in \Re^m$ and $f : \Re^n \to \Re$ is convex, homogenous of degree 1 and $0 \in \operatorname{int} \partial f(0)$.

For some inner product norm $\|\cdot\|$, assume that

 $\mathbf{B}(\mathbf{0};\mathbf{m})\subseteq\partial\mathbf{f}(\mathbf{0})\subseteq\mathbf{B}(\mathbf{0};\mathbf{M})$

for some $0 < m \le M$, or equivalently, $m \|\mathbf{x}\| \le \mathbf{f}(\mathbf{x}) \le M \|\mathbf{x}\|$ for all \mathbf{x} . Clearly, $\mathbf{f}^* > \mathbf{0}$.

Lemma: Let $\mathbf{x}_0 := \operatorname{argmin}\{\|\mathbf{x}\| : \mathbf{C}\mathbf{x} = \mathbf{d}\}$. Then,

$$\mathbf{R} := \frac{\mathbf{f}(\mathbf{x}^0)}{\mathbf{m}} \geq \frac{\mathbf{f}^*}{\mathbf{m}} \geq \|\mathbf{x}_0 - \mathbf{x}^*\|, \quad \frac{\mathbf{f}(\mathbf{x}^0)}{\mathbf{f}^*} \leq \frac{\mathbf{M}}{\mathbf{m}}$$

Proposition (Nesterov): The subgradient method with stepsize $\alpha_{\mathbf{k}} = \mathbf{R}/\sqrt{\mathbf{K}+1}$, $\mathbf{k} = \mathbf{0}, \dots, \mathbf{K}$, where **R** is as above and

$$\mathbf{K} := \left\lfloor \frac{(\mathbf{M}/\mathbf{m})^4}{\delta^2} \right\rfloor$$

satisfies

$$\frac{1}{\mathbf{f}^*} \left(\min_{\mathbf{i}=\mathbf{0},...,\mathbf{K}} \left[\mathbf{f}(\mathbf{x}_{\mathbf{i}}) - \mathbf{f}^* \right] \right) \leq \delta$$

Remark: The norm should be chosen so that M/m is as small as possible.