
Symbolic deformation techniques
for polynomial system solving

Lecture 3

by Grégoire Lecerf

Université de Versailles & CNRS
France

http://www.math.uvsq.fr/~lecerf

Complexity of Numerical Computation, 2009

The Kronecker solver

K: any field of characteristic 0.
f1,	 , fn, g: polynomials in K[x1,	 , xn].

f1(x1,	 , xn)=
 = fn(x1,	 , xn) = 0, g(x1,	 , xn)� 0

Ii =(f1,	 , fi): g∞, J i = Ii + (x1,	 , xn−i), Ki = Ii +(x1,	 , xn−i−1)

We assume that the system is regular and reduced:

• fi+1 is a nonzero divisor modulo Ii,

• Ii is radical.

With generic coordinates:

• V(J i) is a finite set of regular points, called the ith lifting fiber,

• V(Ki) is a curve, called the ith lifting curve.

Algorithm overview

1. Perform a random affine change of the variables.

2. Initialize the process with the solution set of J 0 =(x1,	 , xn).

From the solution set of J i compute the one of J i+1 as follows:

a) Lifting step: compute a representation of the lifting curve Ki.

b) Intersection step: compute V(Ki)∩V(fi+1).

c) Cleaning step: deduce V(J i+1)= (V(Ki)∩V(fi+1)) \V(g).

3. Rewrite the solutions if J n in terms of the orginal variables.

Contents

• Univariate representations of zero and one dimensional varieties

• Algorithmic details of each step with cost analysis

• Overview of the extensions and generalizations

Univariate representations

I of dimension r ≥ 0 in general Noether position:

A: =K[x1,	 , xr]� K[x1,	 , xn]/I = :B

is an integral ring extension s.t.:

∀i≥ r + 1,∃q ∈A[T], q(xi)∈I and degx1,	 ,xr,T q =degT q.

Let A′ =K(x1,	 , xr), B
′=A

′[xr+1,	 , xn]/I ′.

B
′ is a finite A

′ algebra of dimension δ: =deg I =dimA ′B
′.

Let u =λr+1xr+1 +
 +λnxn be a K-linear form.

2

Proposition 1. Assume that I is radical. Then the following assertions are equivalent:

a) The powers of u generate B
′.

b) The degree of the minimal polynomial of u in B
′ equals δ.

c) There exist unique polynomials q, vr+1,	 , vn in A
′[T] such that

I ′ =(q(u), xr+1− vr+1(u),	 , xn − vn(u)),

q monic, and deg vj ≤deg q − 1 for all j.

d) There exist unique polynomials q, wr+1,	 , wn in A
′[T] such that

I ′= (q(u), q ′(u)xr+1−wr+1(u),	 , q ′(u)xn −wn(u)),

q monic, and degwj ≤deg q − 1 for all j.

Definition 2. u satisfying the assertions above is a primitive element for I.
q, vr+1,	 , vn is called a univariate representation of I.
q, wr+1,	 , wn is called a Kronecker representation of I.

Such a representation encodes the birational morphism between V(I) and V(q).

V(I) is the Zariski closure of

{(α1,	 , αr, vr+1(α1,	 , αr, β),	 , vn(α1,	 , αr, β)) |
q(α1,	 , αr, β)= 0, vj(α1,	 , αr, β)well defined for all j}

Example 3. If V(I) is a finite set of points p1,	 , pδ, the minimal polynomial of u is

q =
∏

α∈{u(p1),	 ,u(pδ)}

(T −α).

u is primitive iff it takes different values at the pi.

Kronecker’s trick (1882)

“The birational map is a first order deformation of the eliminant polynomial.”

uΛ = Λr+1xr+1 +
 +Λnxn, with symbolic coefficients.
qΛ: minimal polynomial of uΛ in B

′.

wΛ,j =− ∂qΛ

∂Λj
, for all j ∈ {r + 1,	 , n}.

Proposition 4. If I is unmixed of degree δ, and in general Noether position then:

a) I is radical iff qΛ is squarefree.

b) If I is radical then uΛ is primitive, qΛ∈A[T], qΛ(uΛ)∈I.
c) degx1,	 ,xr,T qΛ = δ.

Proof. By differentiating qΛ(uΛ)∈I wrt Λj:

qΛ
′ (uΛ)xj −wΛ,j(uΛ)∈I. (1)

I radical ⇒IΛ radical ⇒ qΛ is squarefree.
Conversely, if qΛ is squarefree then qΛ

′ (uΛ) is invertible in B′, hence I ′ is radical.
The unmixedness hypothesis implies the radicality of I. �

3

u =λr+1 xr+1 +
 + λn xn

qλ, wλ,r+1,	 , wλ,n:
specializations of qΛ, wΛ,r+1,	 , wΛ,n at Λr+1 = λr+1,	 ,Λn =λn.

Corollary 5. Assume that I is radical, unmixed, and in general Noether position.

a) u is primitive for I iff qλ is squarefree.

b) If u is primitive for I then

• qλ, wλ,r+1,	 , wλ,n is a Kronecker representation of I,
• qλ(u), qλ

′ (u)xr+1−wλ,r+1(u),..., qλ
′ (u)xn −wλ,n(u) belong to I,

• degx1,	 ,xr,T qλ = δ, degx1,	 ,xr,T wλ,j ≤ δ.

Example 6. f1 =(x2− 2 x3)
2 +x1

2 + x3
2− 2, f2 = (x2− 2 x3)

2 +x1
2− 1.

The ideal I =(f1, f2) admits the following Kronecker representation with u =x2:

u4 +
(

2 x1
2− 10

)

u2 + x1
4 + 6x1

2 + 9= 0,
x2 =

(

− 4 x1
2 + 20

)

u2− 4 x1
4− 24 x1

2− 36

4 u3 +
(

4 x1
2− 20

)

u
,

x3 =
8 u2− 8 x1

2− 24

4 u3 +
(

4 x1
2− 20

)

u
.

Remark 7. The denominator in a univariate representation is the discriminant of q,
which has degree δ(δ − 1) in general. Therefore the size of a Kronecker representation is
in general smaller than a univariate one.

Remark 8. These goods properties in terms of degrees also hold for the size of the
integer coefficients. This is used in the RUR algorithm (Rational Univariate Representa-
tion) by Rouillier and Roy (1996).

Specialization of the independent variables

“Kronecker representations can actually represent all points of V(I).”

Let q, wr+1,	 , wn be a Kronecker representation of I with primitive element u.
Let J = I + (x1,	 , xr).
Let Q,Wr+1,	 ,Wn be the specializations of q,wr+1,	 , wn at x1 =
 =xr = 0.

Assume that:

• I is radical, unmixed, and in Noether position,

• u is primitive for J
√

– otherwise change u.

Proposition 9. Let M = gcd (Q, Q′), q̃ = Q/M (squarefree part of Q). Then M divides
all the Wj, so that we can compute w̃j = q̃ ′ (Wj/M)/(Q′/M)mod q̃.

q̃ , w̃r+1,	 , w̃n is a Kronecker representation of J
√

.

Computational model and cost analysis

• We focus on the dense representation for polynomials.

4

Example: the size of a bivariate polynomial of bi-degree (n, m) is

(n +1)(m+ 1).

• When over an effective field K, each binary arithmetic operation (× , + ,− , /, =)
costs O(1).

• ”Soft big Oh” notation: f(d)∈ Õ(g(d)) means f(d)∈ g(d)(log g(d))O(1).

• ”Softly linear in d”= Õ(d),

“Softly quadratic in d”= Õ(d2),...

• The product, division, (sub)resultant, and extended gcd of two univariate polyno-
mials of degree d over a field take softly linear time.

Example 10.

Mmx] use "algebramix"; p == modulus probable_next_prime 2^30

1073741827

Mmx] gcd_time_sample (d: Int): Floating == {

F == polynomial (i mod p| i in 0..d);

G == polynomial (random () mod p | i in 0..d);

b == time(); gcd (F, G); as_floating (time() - b) };

Mmx] v == [[3*2^i, gcd_time_sample (3*2^i)] | i in 4..14]

[[48, 13.00], [96, 15.00], [192, 35.00], [384, 83.00], [768, 192.0], [1536, 417.0], [3072, 978.0],
[6144, 2.291e3], [12288, 5.387e3], [24576, 1.120e4]]

Mmx] include "graphix/diagram.mmx"

Mmx] $draw_diagram v

0 3.000e4

0

2.000e4

5

Mmx]

Back to the Kronecker solver

K: any field with characteristic 0 or sufficiently high.

f1,	 , fn, g: polynomials in K[x1,	 , xn].

f1(x1,	 , xn)=
 = fn(x1,	 , xn) = 0, g(x1,	 , xn)� 0

Ii =(f1,	 , fi): g∞, J i = Ii + (x1,	 , xn−i), Ki = Ii + (x1,	 , xn−i−1)

Assumptions:

• fi+1 is a nonzero divisor modulo Ii,

• Ii is radical.

Proposition 11. For all i ∈ {0, 	 , n − 1}, the ideals Ii + (fi+1)
√

and Ii+1 are
unmixed of dimension n− i− 1.

After a random affine change of the variables we can assume that the following proper-
ties hold with a high probability:

• Ii is in general Noether position for all i.

• Ii +(fi+1) is in general Noether position.

• J i is radical.

• J i+1 = Ki + (fi+1)
√

: g∞.

• xn−i is primitive for Ii +(fi+1).

Lifting step

Let r =n− i.

Input: Q,Wr+1,	 , Wn, a Kronecker representation of J i.

Ouput: Q̃ , W̃r+1,	 , W̃n, a Kronecker representation of Ki.

Assumptions: Ii + (x1,	 , xr) is radical with primitive element xr+1.

Â=K[[x1,	 , xr]], B̂= Â[xr+1,	 , xn]/Î , where Î is the extension of I.

Let q, wr+1, 	 , wn (resp. vr+1, 	 , vn) be the Kronecker (resp. univariate) representation
of I.

We already know:

• Q,Wr+1,	 ,Wn are the specializations of q, wr+1,	 , wn at

x1 =
 =xr =0.

6

• Q̃ , W̃r+1,	 , W̃n are the specializations of q, wr+1,	 , wn at

x1 =
 = xr−1 = 0.

• q ′ is invertible in Â[T]/q.

Strategy: approximate in Â with a variant of the Newton operator.

Successive approximations: o0, o1, o2,... with ok = (x1,	 , xr−1, xr
2k

).

Proposition 12. (half of the Jacobian Criterion)

• Î =(q(xr+1), xr+1− vr+1(xr+1),	 , xn − vn(xr+1)).

• The Jacobian matrix J of f1,	 , fi w.r.t. xr+1,	 , xn is invertible in B̂.

Let q[k], vr+1
[k]

,	 , vn
[k]

be the approximations of q, vr+1,	 , vn to precision ok.

Algorithm 13. Lifting step

1. Initialize with q[0] = Q, vj
[0]

=Wj/Q′mod Q, for all j.

2. Do the following steps while precision 2k is less than δ = deg Q+ 1:

a. Apply the following Newton iteration modulo q[k] and ok+1:






ṽr+1
[k+1]�

ṽn
[k+1]






=







vr+1
[k]�
vn
[k]






−J−1





f1�
fi





(

x1,	 , xr, vr+1
[k]

,	 , vn
[k]

)

b. ∆ = ṽr+1
[k+1]− vr+1

[k] = ṽr+1
[k+1]−T, belongs to ok[T].

c. q[k+1] = q[k]− (∆ q[k]′mod q[k]) to precision ok+1.

d. vj
[k+1]

= ṽj
[k+1]− (∆ ṽj

[k+1]′
mod q[k]) to precision ok+1.

3. Q̃ is the truncation of q[k+1] to precision δ +1.

4. Wj is the truncation of q[k]′ vr+1
[k]

mod q[k] to precision δ +1.

Example 14.
Mmx] include "gregorix/kronecker_naive.mmx";

Mmx] f1 == x2^2 + 5*x3^2 - 4*x2*x3 - 2

x22− 4 x2x3+ 5x32− 2

Mmx] d == 2; q == polynomial (-2/5,0,1)

x2− 2

5

Mmx] v3 == polynomial (rational 0, 1)

x

Mmx] evaluate (f1, [x2, x3],

[polynomial rational 0, v3],

e :-> polynomial e) mod q

0

Mmx] Q == polynomial (series q[i] | i in 0..d+1)

(

1+ O
(

z10
))

x2 +O
(

z10
)

x− 2

5
+O

(

z10
)

7

Mmx] V3 == modular (polynomial (series v3[i] | i in 0..d), Q);

z == modular (polynomial series (rational 0, rational 1),Q);

V3
(

1+ O
(

z10
))

a +O
(

z10
)

Mmx] op == newton_operator ([f1], [x3])




x22− 4 x2x3+ 5x32− 2

4
(

x2− 5 x3

2

) + x3





Mmx] series_precision := 2;

Vt == evaluate (op, [x2, x3], [z, V3],

e :-> modular (polynomial series e, Q))
[

(

1+ O
(

z2
))

a +
2

5
z +O

(

z2
)

]

Mmx] Delta == preimage Vt[0] - preimage V3

O
(

z2
)

x +
2

5
z +O

(

z2
)

Mmx] Q - (Delta * derive Q mod Q)

(

1+ O
(

z2
))

x2 +

(

− 4

5
z + O

(

z2
)

)

x− 2

5
+ O

(

z2
)

Mmx] f1 / 5

x22

5
− 4 x2x3

5
− 2

5
+ x32

Mmx]

Cost analysis

Since the precision is doubled at each step it suffices to examine the cost of the last step
only, where the precision is δ +1.

1. Cost of operations in K[[xr]][T]/(q): Õ(δ2).

2. Evaluation of f1,	 , fi: L operations in K[[xr]][T]/(q).

3. Evaluation of J : n L operations in K[[xr]][T]/(q).

4. Inverse of the value of J via a specific application of Newton’s method: O(n4)
operations in K[[xr]][T]/(q).

Total: (n L +n4)Õ(δ2) operations in K.

Intersection step

Input: Kronecker representation of the curve Ki:

Q̃(xr, T) = 0, x1 =
 = xr−1 =0,

xr+1 =T , Q̃
′
(xr, T)xj = W̃j(xr, T), for j ≥ r +2.

Output: univariate representation of Ki +(fi+1):

Q̂(T)= 0, x1 =
 =xr−1 = 0,

xr = T , xj = V̂j(T), for j ≥ r +1.

8

Proposition 15. The caracteristic polynomial of xr modulo Ki +(fi+1) is

Q̂(xr) =ResultantT(f(xr, Ṽr+1(T),	 , Ṽn(T)), Q̃(T)),

where Ṽj = W̃j/Q̃
′
mod Q̃.

Proof. The coordinates being sufficiently generic, the constant coefficient χ0 of the
characteristic polynomial of fi+1 modulo Ki is the characteristic polynomial of xr

modulo Ki +(fi+1). �

Let S1 =SubResultant1,T(f(xr, Ṽr+1(T),	 , Ṽn(T)), Q̃(T))= D(xr)T −N(xr).

S1∈K(xr)[T].

Proposition 16. With sufficiently generic coordinates:

• D(xr) is invertible modulo Q̂(xr),

• xr+1 =N (xr)/D(xr) modulo Ki +(fi+1).

• S1(xr)mod Q̂(xr) can be computed directly in K[xr]/(Q̂(xr))[T].

Algorithm 17. δ =degK= deg Q̃, d =deg fi+1.

1. Compute Q̂(xr) by interpolation at d δ + 1 points.

2. Compute S1(xr)mod Q̂(xr). Let V̂r+1(xr)= N(xr)/D(xr)mod Q̂(xr).

3. For j ≥ r + 2, compute V̂j(xr)= Ṽ (xr, V̂r+1(xr))mod Q̂(xr).

Proof. deg Q̂ ≤ d δ (Bézout theorem). �

Cost

1. With fast multipoint evaluation the parametrization of the curve can be special-

ized at all the points with Õ(n d δ2) operations in K. Then each value of Q̂ takes

L Õ(δ). The interpolation costs Õ(d δ).

2. S1(xr) mod Q̂(xr) takes L Õ(d δ
2

) for the evaluation of fi+1 and then Õ(d δ2)
more operations for the subresultant.

3. The substitution takes Õ(n d δ2) by naive evaluation.

Total cost: (L + n) Õ(d δ2).

Example 18.

Mmx] include "gregorix/kronecker_naive.mmx"; type_mode?:= true;

Mmx] f_org: Vector Symbolic == [x1^2 + x2^2 + x3^2 - 2,

x1^2 + x2^2 - 1,

x1 - x2 + 3 * x3];

x: Vector Symbolic == [x1, x2, x3];

y: Vector Symbolic == [x1, x2 - 2 * x3, x3];

f: Vector Symbolic == replace (f_org, x, y)
[

(x2− 2 x3)
2
+ x12 + x32− 2, (x2− 2 x3)

2
+x12− 1, x1− x2 +5 x3

]

: Vector

(Symbolic)

9

Mmx] t == polynomial quotient polynomial (rational 0, 1);

V3 == polynomial (quotient polynomial rational 0,

quotient polynomial rational 1);

q == monic_part evaluate (replace (f[0],x1,0), x[1,3],

[t, V3], e :-> polynomial quotient polynomial e)

y2− 4

5
x y +

1

5
x2− 2

5
: Polynomial (Quotient (Polynomial (Rational)))

Mmx] val == evaluate (replace (f[1],x1,0), x[1,3], [t,V3],

e :-> polynomial quotient polynomial e) mod q

− 4

5
x y +

1

5
x2 +

3

5
: Polynomial (Quotient (Polynomial (Rational)))

Mmx] q == monic_part numerator resultant (val, q)

x4− 10 x2 + 9: Polynomial (Rational)

Mmx] v2 == polynomial (rational 0, 1);

aux == - val[0] / val[1];

v3 == preimage (modular (numerator aux, q)

/ modular (denominator aux, q))

− 1

12
x3 +

13

12
x: Polynomial (Rational)

Mmx] vals ==evaluate (replace (f[0,2],[x1],[0:>Symbolic]),

x[1,3], [v2,v3], e :-> polynomial e)
[

5

144
x6− 41

72
x4 +

365

144
x2− 2,

1

36
x6− 7

18
x4 +

49

36
x2− 1

]

: Vector (Generic)

Mmx] [e mod q | e in vals]

[0, 0]: Vector (Generic)

Cost summary

At step i with degree δi =deg Ii and d =maxi deg fi.

• lifting: (n L+ n4)Õ(δi
2)

• intersection: (L +n) Õ(d δi
2)

• cleaning: (L +n) Õ(δi)

Total cost: (n L +n4)Õ(dδ2), with δ =maxi=1	 n−1 δi.

Equidimensional decomposition

For any I = (f1, 	 , fs), and any polynomial g compute the equidimensional decomposi-
tion of

V(I: g∞) =V0∪
 ∪Vn,

where Vi is the equidimensional component of dimension i.

Algorithm 19. (overview)

Let V0
i ∪
 ∪Vn

i be the equidimensional decomposition of V((f1,	 , fi): g∞).

10

For i from 0 to s− 1 do:

1. For j from 0 to n compute (V j
i ∩ V(fi+1)) \ V(g): that produces components of

dimensions i or i− 1:
Vn

i ∩V(fi+1)=Wn∪Wn−1
′ ,

Vn−1
i ∩V(fi+1)=Wn−1∪Wn−2

′ ,
...

V1
i ∩V(fi+1) =W1∪W0

′ ,

V0
i ∩V(fi+1)=W0.

2. Deduce the decomposition V((f1,	 , fi+1): g
∞) from the W j and W j

′.

Theorem 20. (Lecerf, 2001, 2003) The equidimensional decomposition can be
computed with

s n4 (n L +n4)Õ((d δa)
3),

operations in K, with a probabilistic algorithm, where

δa = max
i=0,	 ,s

∑

Q∈Isolated primaries(I)

deg(Q).

Each component is represented by a set of lifting fibers.

Remark 21.

• Step 2 requires the following subroutine: (V ,W)� V \W .
This is responsible of the cubic exponent in δa.

• Lifting a curve for a multiple component needs a generalization of Newton’s oper-
ator.

• Irreducible decomposition reduces to polynomial factorization.

Example 22. f1 =(x1 +x2− 1)2 x2, f2 = x1 x2.

• V(f1) = V(x2) ∪ V(x1 + x2 − 1): irreducible components of dimension 1 and degree
1 and resp. multiplicities 1 et 2.

• V(x2)∩V(f2) =V(x2),
V(x1 +x2− 1)∩V(f2) =V(x1, x2− 1)∪V(x2, x1− 1).

• V(f1)∩V(f2)=V(x2)∪V(x1, x2− 1).

Example 23. Generalization of Newton’s methods in singular cases:

• {(0, 1)} is a lifting fiber for V(x1 +x2− 1) with multiplicity 2 in (f1).

• But {(0, 1)} is a lifting fiber for V(x1 +x2− 1) with mult. 1 in (∂f1/∂x2).

This technique is known as deflation – it extends to the multivariate case with good
complexity [Lecerf, 2002].

Other references. Alternative strategy, by replacing the original system by random
linear combinations of the equations – thanks to Bertini’s theorem:

f1 =x1
2, f2 = x2

2, f3 = x3
2
 f1 =x1

2 +x2
2 +x3

2, f2 =x1
2 + 2x2

2 +3 x3
2, f3 =3 x1

2 +x2
2 +5 x3

2

• Krick and Pardo, 1996: idea of using Bertini’s theorem for polynomial system
solving.

11

• Lecerf, 2000.

• Jeronimo, Puddu, Sabia, 2000, 2001, 2002.

• Jeronimo, Krick, Sabia, Sombra, 2004.

Primary decomposition

Open problems

• What is a good representation for primary ideals with a functional representa-
tion?

• Is there a best representation for the embedded components?

First partial results for the zero-dimensional isolated primary components
[Durvye, 2005, 2008]

1. Replace the system by generic linear combinations of the equations.

2. Apply the Kronecker solver to compute the isolated solutions only.

3. At each solution, compute the module defined by the germ of the last lifting
curve.

4. Compute the coimage of the multiplication by the last equation in this module.

x1

x2,	 , xn

fn

Kn−1

 The overhead only concerns the multiple roots and is polynomial in the multiplici-
ties.

More references

Specific types of systems

• Heintz, Krick, Puddu, Sabia, Waissbein (2000): extended deformation tech-
niques.

• Pardo, San Martín (2004): Pham systems.

• Jeronimo, Matera, Solerno, Waissbein (2008): sparse systems.

Numerical framework

• Castro, Pardo, Hägele, Morais (2001): comparison between numeric and
symbolic solving.

• Sommese, Verschelde, and Wampler (2005): purely numerical versions of the
incremental equidimensional and primes decompositions.

Real algebraic geometry

• Bank, Giusti, Heintz, and Mbakop (1997, 2001).

• Bank, Giusti, Heintz, and Pardo (2004, 2005, 2009).

• Safey el Din, and Schost (2004, 2005).

12

