Symbolic deformation techniques for polynomial system solving

Lecture 2

BY GRÉGOIRE LECERF

Université de Versailles & CNRS France http://www.math.uvsq.fr/~lecerf

Complexity of Numerical Computation, 2009

The Kronecker solver

K: any field of characteristic 0. f_1, \ldots, f_n, g : polynomials in $\mathbb{K}[x_1, \ldots, x_n]$.

$$f_1(x_1,...,x_n) = \dots = f_n(x_1,...,x_n) = 0, \qquad g(x_1,...,x_n) \neq 0$$

 $\mathcal{I}_i \!=\! (f_1,...,f_i) \!: g^\infty \!=\! \{f \,|\, \exists n, g^n \, f \!\in\! (f_1,...,f_i) \}$

 $\mathcal{J}_i = \mathcal{I}_i + (x_1, ..., x_{n-i}), \ \mathcal{K}_i = \mathcal{I}_i + (x_1, ..., x_{n-i-1})$

For simplicity we assume that the system is regular and reduced:

- f_{i+1} is a nonzero divisor modulo $\mathcal{I}_i: f_{i+1} h \in \mathcal{I}_i \Rightarrow h \in \mathcal{I}_i$,
- \mathcal{I}_i is radical: $\mathcal{I}_i = \sqrt{\mathcal{I}_i} = \{f \mid \exists n, f^n \in \mathcal{I}_i\}.$

With generic coordinates:

- $\mathcal{V}(\mathcal{J}_i)$ is a finite set of regular points, called the *i*th lifting fiber,
- $\mathcal{V}(\mathcal{K}_i)$ is a curve, called the *i*th lifting curve.

Algorithm overview

- 1. Perform a random affine change of the variables.
- 2. Initialize the process with the solution set of $\mathcal{J}_0 = (x_1, ..., x_n)$.

From the solution set of \mathcal{J}_i compute the one of \mathcal{J}_{i+1} as follows:

- a) Lifting step: compute a representation of the lifting curve \mathcal{K}_i .
- b) Intersection step: compute $\mathcal{V}(\mathcal{K}_i) \cap \mathcal{V}(f_{i+1})$.
- c) Cleaning step: deduce $\mathcal{V}(\mathcal{J}_{i+1}) = (\mathcal{V}(\mathcal{K}_i) \cap \mathcal{V}(f_{i+1})) \setminus \mathcal{V}(g)$.
- 3. Rewrite the solutions if \mathcal{J}_n in terms of the orginal variables.

Contents

Proof of the correctness of the Kronecker solver from scratch:

- **Prerequisite:** primary decomposition and integral ring extensions.
- **Computational dimension theory:** prove the dimension of the intermediate solution sets.
- **Incremental solving and degree theory:** describe the intersection step, and bound the degrees of the polynomials in the lifting fibers and curves.

References

- DURVYE and LECERF, A concise proof of the Kronecker polynomial system solver from scratch, *Expositiones Mathematicae*, 2007.
- DURVYE's Ph.D thesis, http://www.math.uvsq.fr/~durvye, 2008.

Motivations

- Elementary and concise proof of the solver.
- Extend the solver to compute the primary decomposition.

Prerequisite

 \mathbb{K} : any field, with algebraic closure $\overline{\mathbb{K}}$.

Primary decomposition

Definition 1. An ideal Q is primary if $fg \in Q \Rightarrow f \in Q$ or $\exists m, g^m \in Q$.

The radical of \mathcal{Q} is prime, it is called the prime belonging to \mathcal{Q} .

Example 2. $Q = (x_1^2, x_1 x_2, x_2^2)$ is primary with radical (x_1, x_2) .

Example 3. $\mathcal{I} = (x_2^2, x_1 x_2)$ is not primary: take $f = x_2$ and $g = x_1$. But $\sqrt{\mathcal{I}} = (x_2)$ is prime.

Theorem 4. Any ideal \mathcal{I} admits a primary decomposition that is: $\mathcal{I} = \bigcap_{l=1}^{s} \mathcal{Q}_{l}$, with \mathcal{Q}_{l} primary, and none of the \mathcal{Q}_{l} can be discarded.

Proof. Decompose \mathcal{I} as much as possible. By Noetherianity this leads to a finite intersection. Then show that an irreducible ideal is primary.

Example 5. $(x_2^2, x_1 x_2) = (x_2) \cap (x_1^2, x_1 x_2, x_2^2) = (x_2) \cap (x_1, x_2^2)$ – no uniqueness!

Definition 6.

- $\sqrt{\mathcal{Q}_1}, ..., \sqrt{\mathcal{Q}_s}$ are called the primes associated to \mathcal{I} .
- An associated prime is *isolated* if it does not contain an other one, otherwise it is said *embedded*.

Example 7. $(x_2^2, x_1 x_2) = (x_2) \cap (x_1^2, x_1 x_2, x_2^2) = (x_2) \cap (x_1, x_2^2).$ (x₂) is isolated, while (x_1, x_2) is embedded.

Integral dependencies

A: a subring of $\mathbb{K}[x_1, ..., x_n]$ containing $1 \in \mathbb{K} - e.g.$ $\mathbb{A} = \mathbb{K}[x_1, ..., x_r]$.

Definition 8. $e_1, ..., e_s$ in $\mathbb{K}[x_1, ..., x_n]$ are algebraically dependent modulo \mathcal{I} if $\exists E \in \mathbb{K}[z_1, ..., z_s]$ non-zero s.t. $E(e_1, ..., e_s) \in \mathcal{I}$. Otherwise they are algebraically independent, or free, modulo \mathcal{I} .

Example 9. x_1, x_2 are algebraically independent modulo $(x_1^2 + x_2^2 + x_3^2 - 1)$.

Definition 10. *e* in $\mathbb{K}[x_1, ..., x_n]$ is algebraic over \mathbb{A} modulo \mathcal{I} if $\exists q \in \mathbb{A}[T]$ non-zero *s.t.* $q(e) \in \mathcal{I}$.

Example 11. x_3 is algebraic over $\mathbb{K}[x_1, x_2]$ modulo $(x_1^2 x_3^4 + x_2^2 + x_1^2 - 1)$.

Definition 12. e in $\mathbb{K}[x_1, ..., x_n]$ is integral over \mathbb{A} modulo \mathcal{I} if $\exists q \in \mathbb{A}[T]$ non-zero and monic s.t. $q(e) \in \mathcal{I}$.

Example 13. x_2 is not integral over $\mathbb{K}[x_1]$ modulo (x_1x_2-1) .

After replacing x_2 by $x_1 + x_2$ the equation becomes $x_2^2 + x_1 x_2 - 1$, and x_2 becomes integral.

Proposition 14. Integral elements over A modulo \mathcal{I} form a subring of $\mathbb{K}[x_1, ..., x_n]$.

Proof. $q_1(e_1) = 0$, $q_2(e_2) = 0$. Consider:

Resultant_{T₂} (Resultant_{T₁} $(T - (T_1 + T_2), q_1(T_1)), q_2(T_2)).$

Definition 15. *e* in generally integral over \mathbb{A} modulo \mathcal{I} if $\exists q \in \mathbb{A}[T]$ non-zero and monic s.t. $q(e) \in \mathcal{I}$ and $\deg q(x_1, ..., x_n, T^{\deg e}) = \deg_T q(x_1, ..., x_n, T^{\deg e})$.

Example 16. x_2 is integral but not generally integral over $\mathbb{K}[x_1]$ modulo $(x_2 - x_1^2)$.

Example 17. x_2 is generally integral over $\mathbb{K}[x_1]$ modulo $(x_2^2 - x_1^2)$.

Dimension

Definition 18. Transcendence degree of \mathbb{F} over \mathbb{K} : cardinality of a maximal subset of \mathbb{F} whose elements are algebraically independent over \mathbb{K} .

Theorem 19. If Γ is a set of generators of \mathbb{F} over \mathbb{K} , then any subset of algebraically independent elements of Γ can be completed into a transcendence basis with elements of Γ .

Example 20. $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(x_1, \dots, x_n) = n.$

Definition 21. If \mathcal{I} is a prime ideal then the dimension dim \mathcal{I} of \mathcal{I} is the transcendence degree of $\mathbb{K}[x_1, ..., x_n]/\mathcal{I}$ over \mathbb{K} .

By convention dim (1) = -1. In general dim $\mathcal{I} = \max_{\mathcal{P} \in Ass(\mathcal{I})} \dim \mathcal{P}$, where Ass (\mathcal{I}) is the set of associated primes of \mathcal{I} .

Example 22. dim $(x_1, \ldots, x_i) = n - i$, dim (f) = n - 1 if $f \notin \mathbb{K}$.

Definition 23. \mathcal{I} is unmixed if the dimensions of its associated primes are all equal.

Noether position

Definition 24. \mathcal{I} is in Noether position if there exists $r \in \{0, ..., n\}$ s.t.:

- x_1, \ldots, x_r are algebraically independent modulo \mathcal{I} ,
- $x_{r+1}, ..., x_n$ are integral over $\mathbb{K}[x_1, ..., x_r]$ modulo \mathcal{I} .

Example 25. $(x_2 - x_1^2)$ is in Noether position with r = 1.

Example 26. $(x_3^2 - x_1, x_2^2 - x_1)$ is in Noether position with r = 1.

Theorem 27. Assume $\mathcal{I} \neq (1)$.

- a) If $x_{r+1}, ..., x_n$ are integral over $\mathbb{K}[x_1, ..., x_r]$ modulo \mathcal{I} then dim $\mathcal{I} \leq r$. Equality holds iff $x_1, ..., x_r$ are in addition algebraically independent modulo \mathcal{I} .
- b) If $x_1, ..., x_r$ are algebraically independent modulo \mathcal{I} then dim $\mathcal{I} \geq r$. If equality holds then $x_{r+1}, ..., x_n$ are algebraic over $\mathbb{K}[x_1, ..., x_r]$ modulo \mathcal{I} converse holds if \mathcal{I} is unmixed.

Example 28. n = 3, $\mathcal{I} = (x_1 x_2 - 1, x_3) \cap (x_1)$, dim $\mathcal{I} = 2$. x_1 is algebraically independent modulo \mathcal{I} . x_2 and x_3 are algebraic over $\mathbb{K}[x_1]$ modulo \mathcal{I} .

Part (a) does not hold with "algebraic" instead of "integral".

Definition 29. \mathcal{I} is in general Noether position if there exists $r \in \{0, ..., n\}$ s.t.:

- x_1, \ldots, x_r are algebraically independent modulo \mathcal{I} ,
- $x_{r+1}, ..., x_n$ are generally integral over $\mathbb{K}[x_1, ..., x_r]$ modulo \mathcal{I} .

Example 30. $(x_2 - x_1^2)$ is not in general Noether position.

Example 31. $(x_3^2 - x_1, x_2^2 - x_1^2)$ is in general Noether position with r = 1.

Algorithm

Following [GIUSTI and HEINTZ, 1993].

Algorithm 32. Computation of a general Noether position Input: ideal \mathcal{I} .

Ouput: the dimension r of \mathcal{I} , and a matrix M such that $\mathcal{I} \circ M$ is in general Noether position, where $\mathcal{I} \circ M = \{f \circ M(x_1, ..., x_n)^t | f \in \mathcal{I}\}.$

- 1. Initialize i with n and M with the identity matrix.
- 2. While $(\mathcal{I} \circ M) \cap \mathbb{K}[x_1, ..., x_i] \neq (0)$ do
 - a) take $a \in \mathcal{I} \cap \mathbb{K}[x_1, ..., x_i]$ non-zero,
 - b) let h be the homogeneous component of highest degree of a,
 - c) take $(\alpha_1^{(i)}, ..., \alpha_{i-1}^{(i)}, 1) \in \mathbb{K}^i$ s.t. $h(\alpha_1^{(i)}, ..., \alpha_{i-1}^{(i)}, 1) \neq 0$ – at random whenever \mathbb{K} has sufficiently many elements,
 - d) for k from 1 to i-1 replace $M_{i,k}$ with $\alpha_k^{(i)}$,
 - e) decrease i by 1.
- 3. Return r = i and M.

Proof.

By induction we show that $x_{i+1}, ..., x_n$ are generally integral over $\mathbb{K}[x_1, ..., x_i]$ when entering step *i*.

Therefore dim $\mathcal{I} \leq i$ with equality iff $\mathcal{I} \circ M \cap \mathbb{K}[x_1, ..., x_i] = (0)$.

Effect of the local change of variables:

$$h(x_1 + \alpha_1^{(i)} x_i, ..., x_{i-1} + \alpha_{i-1}^{(i)} x_i, x_i) = h(\alpha_1^{(i)}, ..., \alpha_{i-1}^{(i)}, 1) x_i^{\deg a} + \cdots$$

It follows that x_i becomes generally integral over $\mathbb{K}[x_1, ..., x_{i-1}]$.

Example 33. $I = (f_1, f_2)$

$$f_1 = x_2 x_3 - x_1, \quad f_2 = x_1 x_2 - x_3$$

• $a = f_1$, replace x_2 by $x_2 + x_3$. The equations become:

$$f_1 = x_3^2 + x_2 x_3 - x_1, \quad f_2 = x_1 x_2 + x_1 x_3 - x_3.$$

• $a = \operatorname{Res}_{x_3}(f_1, f_2) = x_1 x_2^2 - (x_1 - 1)^2$, replace x_1 by $x_1 + x_2$, so that

$$a = x_2^3 + (x_1 - 1) x_2^2 - 2 (x_1 - 1) x_2 - (x_1 - 1)^2$$

Theorem 34. There exists a Zariski dense subset of upper triangular $n \times n$ matrices M with 1 on their diagonal such that $\mathcal{I} \circ M$ is in general Noether position.

Unmixedness and torsion

Proposition 35. Assume that \mathcal{I} is in Noether position. Then $\mathbb{B} = \mathbb{K}[x_1, ..., x_n]/\mathcal{I}$ is a torsion-free \mathbb{A} -module iff \mathcal{I} is unmixed. – Recall that $\mathbb{A} = \mathbb{K}[x_1, ..., x_n]$.

Proof. Consider the primary decomposition of $\mathcal{I} = \mathcal{Q}_1 \cap \cdots \cap \mathcal{Q}_s$, with associated primes $\mathcal{P}_1, \ldots, \mathcal{P}_s$. \mathcal{I} is unmixed iff $\mathbb{A} \cap \mathcal{P}_l = (0)$ for all l.

If \mathbb{B} has torsion then $\exists a \in \mathbb{A} \setminus \{0\}$ and $b \notin \mathcal{I}$ s.t. $a \ b \in \mathcal{I}$. There exists l s.t. $b \notin \mathcal{Q}_l$, whence $a \in \mathcal{P}_l$.

Conversely, if \mathcal{I} is not unmixed, $\exists a \in \mathbb{A} \cap \mathcal{P}_l \setminus \{0\}$ for some l, and thus $\exists n, a^n \in \mathcal{Q}_l$. Let $b \in \bigcap_{i \neq l} \mathcal{Q}_i \setminus \mathcal{Q}_l$, we have $a^n b \in \mathcal{I}$. Therefore a^n is a torsion element for \mathbb{B} .

Example 36. $(x_2^2, x_1 x_2) = (x_2) \cap (x_1, x_2^2), x_1$ is a torsion element.

Example 37. $(x_1 x_2)$ is unmixed of dimension 1, but \mathbb{B} has torsion. The Noether position is thus necessary.

Characteristic and Minimal Polynomials

$$\begin{split} \mathcal{I} &= (1), \ r = \dim \mathcal{I}, \\ \mathbb{A} &= \mathbb{K}[x_1, ..., x_r], \ \mathbb{A}' = \mathbb{K}(x_1, ..., x_r), \ \mathbb{B} = \mathbb{K}[x_1, ..., x_n]/\mathcal{I}, \ \mathbb{B}' = \mathbb{A}'[x_{r+1}, ..., x_n]/\mathcal{I}', \\ \text{where } \mathcal{I}' \text{ is the extension of } \mathcal{I} \text{ to } \mathbb{A}'[x_{r+1}, ..., x_n]/\mathcal{I}'. \\ \text{Let } f \in \mathbb{K}[x_1, ..., x_n]. \end{split}$$

If \mathcal{I}' is in Noether position then \mathbb{B}' is a finite dimensional \mathbb{A}' -vector space. $\chi(T) \in \mathbb{A}'[T]$: characteristic polynomial of the multiplication by f in \mathbb{B}' . $\mu(T) \in \mathbb{A}'[T]$: minimal polynomial of the multiplication by f in \mathbb{B}' .

Theorem 38. Assume that \mathcal{I} is in Noether position, and let $d = \deg f$.

- a) χ and μ belong to $\mathbb{A}[T]$. If \mathcal{I} an f are homogeneous then $\chi(T^d)$ and $\mu(T^d)$ are homogeneous when seen in $\mathbb{K}[x_1, ..., x_r, T]$.
- b) If the Noether position is general then

$$\deg \chi(x_1, ..., x_r, T^d) = \deg_T \chi(x_1, ..., x_r, T^d).$$

Idem for μ .

c) If \mathcal{I} is unmixed then $\chi(f)$ and $\mu(f)$ belong to \mathcal{I} .

Proof. (a) f integral over $\mathbb{A} \Rightarrow \exists q \in \mathbb{A}[T]$ monic s.t. $q(f) \in \mathcal{I}$.

Since μ divides q in $\mathbb{A}'[T]$, we deduce that $\mu \in \mathbb{A}[T]$, by the classical Gauss lemma. If \mathcal{I} and f are homogeneous we can take q such that $q(T^d)$ is homogeneous.

(b) We can take q such that

$$\deg q(x_1, ..., x_r, T^d) = \deg_T q(x_1, ..., x_r, T^d).$$

The same property holds for the irreducible factors of q, hence for χ and μ .

(c) $\mu(f) \in \mathcal{I}' \Rightarrow \exists a \in \mathbb{A} \setminus \{0\}$ and $b \in \mathcal{I}$, $\mu(f) = b/a$. It follows that $a \,\mu(f) = 0$ holds in \mathbb{B} . Since \mathbb{B} is torsion-free we have $\mu(f) = 0$ in \mathbb{B} .

Example 39. $\mathcal{I} = (x_1^2, x_1, x_2)$ and $f = x_2 + 1$. We have $\mathcal{I}' = (x_2)$ and $\mu = T - 1$. But $\mu(f) = x_2 \notin \mathcal{I}$. Unmixedness is necessary in (c).

Example 40. $\mathcal{I} = (x_2 - x_1^2), f = x_2, \mu = T - x_1^2$ shows that the general Noether position is necessary in (b).

Incremental solving

 $\begin{aligned} \mathcal{I} \neq (1), \ r &= \dim \mathcal{I}, \\ \mathbb{A} = \mathbb{K}[x_1, \dots, x_r], \ \mathbb{A}' = \mathbb{K}(x_1, \dots, x_r), \ \mathbb{B} = \mathbb{K}[x_1, \dots, x_n]/\mathcal{I}, \ \mathbb{B}' = \mathbb{A}'[x_{r+1}, \dots, x_n]/\mathcal{I}', \\ \text{where } \mathcal{I}' \text{ is the extension of } \mathcal{I} \text{ to } \mathbb{A}'[x_{r+1}, \dots, x_n]/\mathcal{I}'. \end{aligned}$

 $\chi(T) \in \mathbb{A}'[T]$: characteristic polynomial of the multiplication by f in \mathbb{B}' . $\mu(T) \in \mathbb{A}'[T]$: minimal polynomial of the multiplication by f in \mathbb{B}' .

 χ_0 and μ_0 : constant coefficients of χ and μ .

Lemma 41. Assume that \mathcal{I} is unmixed of dimension r, and in general Noether position.

- a) μ_0 and χ_0 belong to $\mathcal{I} + (f)$, $(\mathcal{I} + (f)) \cap \mathbb{A} \subseteq \sqrt{(\mu_0)} = \sqrt{(\chi_0)}$.
- b) f is a zerodivisor in $\mathbb{B} \Leftrightarrow \chi_0 = 0 \Leftrightarrow \mu_0 = 0 \Leftrightarrow x_1, ..., x_r$ are algebraically independent modulo $\mathcal{I} + (f)$.

c)
$$\mathcal{I} + (f) = (1) \Leftrightarrow \chi_0 \in \mathbb{K} \setminus \{0\} \Leftrightarrow \mu_0 \in \mathbb{K} \setminus \{0\}.$$

Proof. (a) We know that $\mu(f) \in \mathcal{I}$. It follows that $\mu_0 \in \mathcal{I} + (f)$. Idem for χ_0 . Let $a \in (\mathcal{I} + (f)) \cap \mathbb{A}$. Let $g \in \mathbb{K}[x_1, ..., x_n]$ such that $a - gf \in \mathcal{I}$.

 $g \text{ integral } \Rightarrow \exists g^{\alpha} + \nu_{\alpha-1} g^{\alpha-1} + \dots + \nu_0 \in \mathcal{I}.$

Multiplying by f^{α} : $a^{\alpha} + \nu_{\alpha-1} a^{\alpha-1} f + \dots + \nu_0 f^{\alpha} \in \mathcal{I}$.

Therefore $\mu(T)$ divides $a^{\alpha} + \nu_{\alpha-1} a^{\alpha-1}T + \dots + \nu_0 T^{\alpha}$, whence $a^{\alpha} \in (\mu_0)$.

(b) If $\mu_0 = 0$ then $f\nu(f) \in \mathcal{I}$, with $\nu(T) = \mu(T)/T$ and $\nu(f) \notin \mathcal{I}$.

Conversely, if f is a zerodivisor, let $g \notin \mathcal{I}$ s.t. $fg \in \mathcal{I}$.

There exists a primary component \mathcal{Q} of \mathcal{I} such that $g \notin \mathcal{Q}$ and $fg \in \mathcal{Q}$.

It follows that $f \in \sqrt{\mathcal{Q}}$, and that $\mu_0 \in \sqrt{\mathcal{Q}}$. Since \mathcal{I} is unmixed, $\sqrt{\mathcal{Q}}$ has dimension r, hence $\mu_0 = 0$.

(c) follows directly from (a).

Incremental unmixedness of the radical

Theorem 42. (Principal ideal theorem) Assume that \mathcal{I} is unmixed, and let $f \in \mathbb{K}[x_1, ..., x_n]$ be a nonzerodivisor in \mathbb{B} . If $\mathcal{I} + (f) \neq (1)$ then $\sqrt{\mathcal{I} + (f)}$ is unmixed of dimension r-1.

Proof. (sketch, following SHAFAREVICH)

We assume: $r \geq 1$, $\mathcal{I} + (f) \neq (1)$, \mathcal{I} and $\mathcal{I} + (f)$ are in general Noether position, $\deg_{x_r} \mu_0 = \deg \mu_0 \geq 1$, and that \mathcal{I} and (f) are homogeneous.

- $\mathbb{B} = \mathbb{K}[x_1, ..., x_n]$ is an integral ring extension of $\mathbb{K}[x_1, ..., x_{r-1}, f]$:
 - $\circ \quad E(x_1, \dots, x_{r-1}, f) \in \mathcal{I} \Rightarrow \mu_0 \text{ divides } E(x_1, \dots, x_{r-1}, 0) \Rightarrow f = 0,$
 - $\circ \quad \deg_{x_r} \mu_0 = \deg \mu_0 \Rightarrow x_r \text{ is integral over } \mathbb{K}[x_1, \dots, x_{r-1}, f] \mod \mathcal{I}.$
- It suffices to prove that $\mathbb{K}[x_1,...,x_n]/\sqrt{\mathcal{I}+(f)}$ is $\mathbb{K}[x_1,...,x_{r-1}]$ torsion-free.
- Let $b \in \mathbb{K}[x_1, ..., x_n]$ and $a \in \mathbb{K}[x_1, ..., x_{r-1}] \setminus \{0\}$ s.t. $a b \in \sqrt{\mathcal{I} + (f)}$.
- Let m and g s.t. $a^m b^m fg \in \mathcal{I}$.
- Let \mathbb{B}_f be \mathbb{B} viewed as a $\mathbb{K}[x_1, ..., x_{r-1}, f]$ -module, and \mathbb{B}'_f be the corresponding vector space.
- Let $\rho(T) = T^{\alpha} + \rho_{\alpha-1} T^{\alpha-1} + \dots + \rho_0$, be the minimal polynomial of g in \mathbb{B}'_f . We have that $\rho \in \mathbb{K}[x_1, \dots, x_{r-1}, f][T]$.
- The minimal polynomial of b^m in \mathbb{B}'_f is

$$f^{\alpha}\rho(a^{m}T/f)/a^{m\alpha} = T^{\alpha} + \rho_{\alpha-1}\frac{f}{a^{m}}T^{\alpha-1} + \dots + \frac{f^{j}}{a^{mj}}\rho_{0}.$$

• a^{mj} divides $f^j \rho_{\alpha-j}$ in $\mathbb{K}[x_1, ..., x_{r-1}, f]$ for all j, whence $(b^m)^{\alpha} \in \mathcal{I} + (f)$. \Box

Example 43. $\mathcal{I} = (x_1, x_2) \cap (x_3, x_4)$ is unmixed. With the nonzerodivisor $f = x_2 - x_3$ we have $\sqrt{\mathcal{I} + (f)} = (x_1, x_2, x_3) \cap (x_2, x_3, x_4)$ is unmixed, while $\mathcal{I} + (f) = (x_1, x_2, x_3) \cap (x_2, x_3, x_4) \cap (x_1, x_2 - x_3, x_3^2, x_4)$ is not.

Incremental computation of the characteristic polynomial

Proposition 44. Assume that \mathcal{I} has dimension $r \geq 1$, is unmixed, and is in Noether position. Let f be a nonzerodivisor in \mathbb{B} . Then $\chi_0(x_1, ..., x_{r-1}, T)$ is proportional over $\mathbb{K}(x_1, ..., x_{r-1})$ to the characteristic polynomial of x_r modulo the extension \mathcal{J}' of $\mathcal{J} = \mathcal{I} + (f)$ to $\mathbb{K}(x_1, ..., x_{r-1})[x_r, ..., x_n]$.

The proportionality over \mathbb{K} holds iff \mathcal{J} is in Noether position.

Proof.

- Let $\tilde{\mathcal{I}}$ be the extension of \mathcal{I} to $\mathbb{K}(x_1, ..., x_{r-1})[x_r, x_{r+1}, ..., x_n]$, and let $\tilde{\mathbb{B}} = \mathbb{K}(x_1, ..., x_{r-1})[x_r, x_{r+1}, ..., x_n]/\tilde{\mathcal{I}}$.
- Since \mathbb{B} is a torsion-free \mathbb{A} -module, so is $\tilde{\mathbb{B}}$ seen as a $\mathbb{K}(x_1, ..., x_{r-1})[x_r]$ -module. Therefore $\tilde{\mathbb{B}}$ is free of finite rank thanks to Noether position.
- Smith form of the multiplication by f: there exists two bases $e_1, ..., e_{\delta}$ and $e'_1, ..., e'_{\delta}$ of $\tilde{\mathbb{B}}$, and monic polynomials $h_1, ..., h_{\delta}$ such that h_l divides h_{l+1} and that $fe_l = h_l e'_l$ in $\tilde{\mathbb{B}}$ for all l: $\tilde{\mathbb{B}}/(f) \simeq \bigoplus_{l=1}^{\delta} \mathbb{K}(x_1, ..., x_{r-1})[x_r]/(h_l)$.
- Since a basis of $\tilde{\mathbb{B}}$ induces a basis of \mathbb{B}' we have that $\chi_0 = a h_1 \cdots h_{\delta}$ for some $a \in \mathbb{K}(x_1, \dots, x_{r-1})$.
- $B = \{x_r^{\alpha_l} e'_l | 1 \le l \le \delta, 0 \le \alpha_l \le \deg h_l 1\}$ is a basis of $\tilde{\mathbb{B}}/(f)$ seen as a $\mathbb{K}(x_1, ..., x_{r-1})$ -algebra:

• In $\tilde{\mathbb{B}}$, $(f) = (h_1 e'_1, ..., h_\delta e'_\delta)$.

- Any $g = \sum_{l=1}^{\delta} g_l e'_l \in \tilde{\mathbb{B}}$ can be reduced mod (f) so that deg $g_l < \deg h_l$.
- Let $\sum_{l=1}^{\delta} r_l e'_l = 0$ in $\tilde{\mathbb{B}}/(f)$ with deg $r_l < \deg h_l$. There exist q_l such that $\sum_{l=1}^{\delta} (r_l + q_l h_l) e'_l = 0$ holds in $\tilde{\mathbb{B}}$. It follows that $r_l + q_l h_l = 0$, and that $r_l = 0$.
- In the basis B the multiplication matrix of x_r in $\mathbb{B}/(f)$ is block diagonal formed by the companion matrices of the h_l . It follows that that the characteristic polynomial q of x_r in $\mathbb{B}/(f)$ equals h_1, \ldots, h_δ , hence is proportional to q.

We leave out the last assertion. \Box

Example 45. n = 2, $\mathcal{I} = (x_2^2 + x_1 x_2)$, r = 1, and $f = x_1^2$. {1, x_2 } form a basis of the $\mathbb{K}[x_1]$ -module $\tilde{\mathbb{B}} = \mathbb{K}[x_1, x_2]/\tilde{\mathcal{I}}$, $h_1 = h_2 = x_1^2$. The matrix of multiplication by f is $\begin{pmatrix} x_1^2 & 0 \\ 0 & x_1^2 \end{pmatrix}$.

$$\tilde{\mathbb{B}}/(f) = \mathbb{K}[x_1]/(h_1) \oplus \mathbb{K}[x_1]/(h_1)x_2$$

These two submodules are stable by multiplication by x_1 but $\mathbb{K}[x_1]/(h_1)$ is not stable by multiplication by x_2 . The above direct sum can not be seen as a decomposition of $\tilde{\mathbb{B}}/(f)$ into stable $\mathbb{K}(x_1, ..., x_{r-1})$ -algebras.

Degree and Bézout theorem

$$\begin{split} &M: \text{ invertible } n \times n \text{ matrix over } \mathbb{K}. \\ &\mathcal{I}_M = \mathcal{I} \circ M, \ \mathbb{B}_M = \mathbb{K}[x_1, \dots, x_n] / \mathcal{I}_M, \ \mathbb{B}'_M = \mathbb{A}'[x_{r+1}, \dots, x_n] / \mathcal{I}'_M. \\ &\delta: \text{ dimension of } \mathbb{B}'. \\ &\delta_M: \text{ dimension of } \mathbb{B}'_M. \end{split}$$

Theorem 46. Assume that \mathcal{I} is unmixed and in general Noether position.

- a) $\delta_M \leq \delta$.
- b) $\delta_M = \delta$ iff \mathcal{I}_M is in general Noether position.

Proof. The longest and most technical proof... but it can be done using the same induction as in the Kronecker solver. \square

Remark 47. This theorem is not necessary to the cost analysis of the solver.

Definition 48. The degree of an unmixed ideal \mathcal{I} , written deg \mathcal{I} , is δ_M for any matrix M such that \mathcal{I}_M is in general Noether position.

Proposition 49. Assume that \mathcal{I} is unmixed.

- a) $\deg \sqrt{\mathcal{I}} \leq \deg \mathcal{I}$, with equality iff \mathcal{I} is radical.
- b) $\deg \mathcal{I}: q^{\infty} \leq \deg \mathcal{I}$, with equality iff q is a nonzerodivisor in \mathbb{B} .

Theorem 50. (Bézout theorem) Assume that \mathcal{I} is unmixed. Let f be a nonzerodivisor in \mathbb{B} , and let $\tilde{\mathcal{J}}$ denote the intersection of the isolated primary components of $\mathcal{J} = \mathcal{I} + \mathcal{I}$ (f). Then we have $\deg \mathcal{J} \leq \deg \mathcal{I} \deg f$.

If \mathcal{I} and f are homogeneous, this is an equality.

Proof. We can assume that \mathcal{I} and \mathcal{J} are in general Noether position. We know that $\tilde{\mathcal{J}}$ is unmixed of dimension -1 or r-1.

The extensions of $\tilde{\mathcal{J}}$ and \mathcal{J} coincide in $\mathbb{K}(x_1, ..., x_{r-1})[x_r, ..., x_n]$.

Thefore deg $\mathcal{J} = \deg \chi_0 \leq \deg \mathcal{I} \deg f$, with equality in the homogenous case.