Polar and Bipolar Varieties

Marc Giusti

LIX
Laboratoire d'Informatique
CNRS-Polytechnique
FRANCE

Joint work with
B. Bank (Humboldt Universität zu Berlin)
J. Heintz (Universidades de Buenos Aires y Cantabria)
L. Lehmann(Humboldt-Universität zu Berlin)
L. M. Pardo (Universidad de Cantabria)

Fields Institute
Thematic Program on the Foundations of Computational Mathematics Workshop on Complexity of Numerical Computation

REAL SOLVING [Bank-G-Heintz-Lehmann-Pardo]

Motivation: Wavelet construction via algorithmic real algebraic geometry

REAL SOLVING [Bank-G-Heintz-Lehmann-Pardo]

Motivation: Wavelet construction via algorithmic real algebraic geometry

During the last three decades discrete wavelet transforms arose as an important tool in signal analysis and in data compression (e.g. of picture or audio signals).

REAL SOLVING [Bank-G-Heintz-Lehmann-Pardo]

Motivation: Wavelet construction via algorithmic real algebraic geometry

During the last three decades discrete wavelet transforms arose as an important tool in signal analysis and in data compression (e.g. of picture or audio signals).

The wavelet transforms we consider shall possess the practical important properties of symmetry and orthogonality. The specification of such a wavelet transform depends on a finite number of real parameters. Those parameters have to obey certain polynomial equations.

REAL SOLVING [Bank-G-Heintz-Lehmann-Pardo]

Motivation: Wavelet construction via algorithmic real algebraic geometry

During the last three decades discrete wavelet transforms arose as an important tool in signal analysis and in data compression (e.g. of picture or audio signals).

The wavelet transforms we consider shall possess the practical important properties of symmetry and orthogonality. The specification of such a wavelet transform depends on a finite number of real parameters. Those parameters have to obey certain polynomial equations.

If the system of those equations has real solutions at all, the solution set can consist of a finite number of points or can be a variety of positive dimension.

In the literature published on this topic, only example problems with a finite solution set were presented. For the computation of those examples it was sufficient to solve quadratic equations in one or two variables. This is easily done with the help of the tools of common computer algebra systems.

In the literature published on this topic, only example problems with a finite solution set were presented. For the computation of those examples it was sufficient to solve quadratic equations in one or two variables. This is easily done with the help of the tools of common computer algebra systems.

Examples with real solution sets of positive dimension have the advantage that one can search for optimal solutions for some given, desired properties.

In the literature published on this topic, only example problems with a finite solution set were presented. For the computation of those examples it was sufficient to solve quadratic equations in one or two variables. This is easily done with the help of the tools of common computer algebra systems.

Examples with real solution sets of positive dimension have the advantage that one can search for optimal solutions for some given, desired properties.

To characterize the set of real solutions of a system of polynomial equations it is a first step to find at least one point in each connected component.

In the literature published on this topic, only example problems with a finite solution set were presented. For the computation of those examples it was sufficient to solve quadratic equations in one or two variables. This is easily done with the help of the tools of common computer algebra systems.

Examples with real solution sets of positive dimension have the advantage that one can search for optimal solutions for some given, desired properties.

To characterize the set of real solutions of a system of polynomial equations it is a first step to find at least one point in each connected component.

It turns out that the algorithm of the TERA-project performes very well with this task and is able to solve a larger number of examples than the best known commercial polynomial solvers.

An algebraic curve

Geometric resolution

- Late eighties ... early nineties seminal historical papers by [G-Heintz], [G-Heintz-Pardo et al.], ... [Krick-Pardo]
- Design of algorithms [G-Lecerf-Salvy], [Durvye-Lecerf], [Durvye '08], [Heintz-Krick-Puddu-Sabia-Waissbein]
- Implementation [Lecerf], Lehmann, Schost: KRONECKER
- TERA group

Aldaz, Avendaño, Bank, Beltran, Bostan, Cafure, Castaño, Castro, Dickenstein, Durvye, Fitchas, G, Grimson, Hägele, Heintz, Jeronimo, Krick, Lecerf, Lehmann, Llovet, Mandel, Marchand, Matera, M'bakop, Montaña, Morais, Morgenstern, Pardo, Puddu, Sabia, Salvy, Schost, Sedoglavic, Sessa, Smietanski, Solernó, Turull, Wachenchauzer, Waissbein, ...

Introduction

- Polar varieties are objects coming from classical algebraic geometry. When generic they provide a tool for the design of algorithms in real algebraic geometry that exhibit an intrinsic complexity.

Introduction

- Polar varieties are objects coming from classical algebraic geometry. When generic they provide a tool for the design of algorithms in real algebraic geometry that exhibit an intrinsic complexity.
- In particular to find efficiently one representative point in every connected component of a real algebraic variety constitutes a fundamental problem in real algebraic geometry. We tackle this problem by exploiting the geometric solving of generic or (sufficiently generic) polar varieties (by the algorithm Kronecker)

Introduction

- Polar varieties are objects coming from classical algebraic geometry. When generic they provide a tool for the design of algorithms in real algebraic geometry that exhibit an intrinsic complexity.
- In particular to find efficiently one representative point in every connected component of a real algebraic variety constitutes a fundamental problem in real algebraic geometry. We tackle this problem by exploiting the geometric solving of generic or (sufficiently generic) polar varieties (by the algorithm Kronecker)
- Several generalisations of the notion of polar variety allows us to drop successively the assumptions of hypersurface, compactness and smoothness.

Polar varieties: Notations

Let A be a generic $((n-1) \times n)$-matrix.

For an index i, fixed between 1 and $n-1$, we denote by

$$
A_{i}:=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n-i, 1} & a_{n-i, 2} & \cdots & a_{n-i, n}
\end{array}\right],
$$

the sub-matrix of A formed by the lines $1,2, \ldots, n-i$ of A.

- $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{V}:=\mathcal{V}_{\mathbb{C}}(f):=\left\{x \in \mathbb{C}^{n} \mid f(x)=0\right\}$
- $\mathcal{V}_{\mathbb{R}}$ its real trace $\mathcal{V}_{\mathbb{C}} \cap \mathbb{A}_{\mathbb{R}}{ }^{n}$

Polar varieties: Definitions

The i-th (open) polar variety of $\mathcal{V}_{\mathbb{R}}$
is defined by
$\Delta_{i}(A):=\left\{x \in \mathcal{V}_{\mathbb{R}} \backslash \operatorname{Sing} \mathcal{V}_{\mathbb{R}} \mid T_{x} \mathcal{V}_{\mathbb{R}}\right.$ not transversal to ker $\left.A_{i}\right\}$.
$\Delta_{i}(A)$ is the set of all points in $\mathcal{V}_{\mathbb{R}}$, where the $((1+n-i) \times n)$-matrix

$$
\begin{gathered}
\mathcal{A}_{i}(x):=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}} \\
A_{i}
\end{array}\right] \text { is not of maximal rank, i.e., } \\
\operatorname{rank} \mathcal{A}_{i}(x) \leq n-i
\end{gathered}
$$

Polar varieties: Definitions

The i-th (open) polar variety of $\mathcal{V}_{\mathbb{R}}$

is defined by

$$
\Delta_{i}(A):=\left\{x \in \mathcal{V}_{\mathbb{R}} \backslash \operatorname{Sing} \mathcal{V}_{\mathbb{R}} \mid T_{x} \mathcal{V}_{\mathbb{R}} \text { not transversal to ker } A_{i}\right\} .
$$

$\Delta_{i}(A)$ is the set of all points in $\mathcal{V}_{\mathbb{R}}$,

$$
\text { where the }((1+n-i) \times n) \text {-matrix }
$$

$$
\begin{gathered}
\mathcal{A}_{i}(x):=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}} \\
A_{i}
\end{array}\right] \text { is not of maximal rank, i.e., } \\
\operatorname{rank} \mathcal{A}_{i}(x) \leq n-i .
\end{gathered}
$$

The i-th (closed) polar variety of $\mathcal{V}_{\mathbb{R}}$

is defined as the Zariski-closure of the i-th open polar variety.

Polar varieties: Determinantal Equations in the Smooth Case

- If the hypersurface $\mathcal{V}_{\mathbb{R}}$ is smooth, one obtains natural equations by adjoining to $f=0$ all maximal minors of the matrix $\mathcal{A}_{i}(x)$.
- According to the maximal codimension of determinantal varieties, the expected codimension of the i-th polar variety is i ,

$$
n-(1+n-i)+1=i
$$

- Corresponding to the flag

$$
\operatorname{ker} A_{n-1} \subset \ldots \subset \operatorname{ker} A_{1}=\operatorname{ker} A
$$

the polar varieties form a decreasing sequence of subvarieties of \mathcal{V} with expected codimension $1, \ldots, n-1$.

Notations and problem

- $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{V}:=\mathcal{V}_{\mathbb{C}}(f):=\left\{x \in \mathbb{C}^{n} \mid f(x)=0\right\}$
- $\mathcal{V}_{\mathbb{R}}$ its real trace $\mathcal{V}_{\mathbb{C}} \cap \mathbb{A}^{n} \mathbb{R}^{\prime}$
- The equation of the hypersurface $f=0$ is assumed to be regular, i.e. : $\mathcal{V}_{\mathbb{R}}$ is non empty and $\operatorname{grad}(f)$ does not vanish on any of its connected component.
- Degree of $f \leq d$

FIND AT LEAST A POINT IN EVERY CONNECTED COMPONENT OF $\mathcal{V}_{\mathbb{R}}$

Small history of the problem

- Grigoriev, Grigoriev/Vorobjov
- Complexity $d^{O(n)}$: Heintz/Roy/Solerno
Barvinok '91
Renegar '92, ,'98
Canny/Emiris, Canny
Blum/Cucker/Shub/Smale
'95, '98
Cucker/Smale
Basu/Pollack/Roy
- More recent papers:

Rouillier/Roy/Safey el Din
Aubry/Rouillier/Safey el Din
Safey el Din/Schost, Safey el Din

- Our contributions
'97, '98, '00, '02, '05, '07, '08, '09

Polar Varieties: Quantification of Data Complexity

- $f \in \mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ regular equation of a real smooth hypersurface

$$
\mathcal{V}_{\mathbb{R}}=f^{-1}(0) \subset \mathbb{R}^{n}, \quad \mathcal{V}_{\mathbb{R}}
$$

- $\mathcal{V}_{\mathbb{R}}$ compact for the moment
- Degree of $f \leq d$
- Evaluation complexity of $f \leq L$
- Maximal degree of the complex polar varieties δ
- Always holds $\delta \leq d^{n}$, d^{n} is the Bézout number)

The smooth past: find a point in every connected component of $\mathcal{V}_{\mathbb{R}}$ when compact and smooth

: Complexity Theorem

- Intrinsic Complexity (number of arithmetic operations in \mathbb{Q})

$$
L(n d \delta)^{O(1)}
$$

- Existence theorem (deterministic in a non-uniform setting)
- Probabilistic version (implementation)
- Extrinsic complexity:

Linear in \mathbf{L}

Polynomial in the Bézout number $\mathbf{d}^{\mathbf{n}}$
We meet the best known extrinsic complexity bounds.

A non compact algebraic curve, still smooth

The non compact case

We consider a larger parameter space, the product of

- a flag variety,
- a variety of hyperquadrics
- a variety of hyperplanes.

The RADAR technology.

Again we arrive in the same complexity class!

Complete intersection case; still smooth

- f_{1}, \ldots, f_{p} a reduced regular sequence
- $\mathcal{V}:=\left\{f_{1}=\cdots=f_{p}=0\right\}$
- $\mathcal{V}_{\mathbb{R}}$ is still smooth

Up to a combinatorial factor we obtain the
same complexity class.

Again the old algebraic curve!

A new fresh one!!

Thom's lips

The hat of the bishop of Jerusalem

$$
f(x, y, z):=z^{2}-\varepsilon^{2}\left(x^{2}+y^{2}-1\right)^{3}=0, \quad \varepsilon \quad \text { small }
$$

The singular hypersurface case

- Hypersurface $\{f=0\}$
- The $((1+n-i) \times n)$-matrix

$$
\mathcal{A}_{i}(x):=\left[\begin{array}{c}
J(f) \\
A_{i}
\end{array}\right] \text { is not of maximal rank }
$$

i.e. $\operatorname{rank} \mathcal{A}_{i}(x) \leq n-i$

- $J(f)(x)$ denotes the gradient of f at $x:=\left(\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right)$

The singular hypersurface case

The (open) polar varieties

are not always non-empty.

The singular hypersurface case

The (open) polar varieties

are not always non-empty.

The (closed) polar varieties
do not move anymore freely if the directions defined by A vary. This is because they contain fixed parts (from the singular locus).

The singular hypersurface case

The (open) polar varieties

are not always non-empty.

The (closed) polar varieties

do not move anymore freely if the directions defined by A vary. This is because they contain fixed parts (from the singular locus).

Worse

We no longer have natural equations since ...

The singular hypersurface case

The (open) polar varieties

 are not always non-empty.
The (closed) polar varieties

do not move anymore freely if the directions defined by A vary. This is because they contain fixed parts (from the singular locus).

Worse

We no longer have natural equations since ...

... The determinantal description
 defined above by the maximal minors is no longer valid since it contains all the singular locus.

The singular case

LISSIFICATION AND STRATIFICATION VERSUS DESINGULARIZATION

Canonical desingularization of determinantal varieties - à la ROOM-KEMPF

- In the following let i be a fixed index between 1 and $n-1$. We consider the linear system

$$
J(f)(x)^{T} \lambda+A_{i}^{T} \mu=0
$$

- with x in \mathcal{V} and (λ, μ) in $\mathbb{A}^{1} \times \mathbb{A}^{n-i}$.

The singular case

LISSIFICATION AND STRATIFICATION VERSUS DESINGULARIZATION

Canonical desingularization of determinantal varieties - à la ROOM-KEMPF

- In the following let i be a fixed index between 1 and $n-1$. We consider the linear system

$$
J(f)(x)^{T} \lambda+A_{i}^{T} \mu=0
$$

- with x in \mathcal{V} and (λ, μ) in $\mathbb{A}^{1} \times \mathbb{A}^{n-i}$.

Fundamental property: x singular implies $\mu=0$

The singular case

The parameter space E_{i}

$$
E_{i}:=\left\{\left(x, A_{i}, \lambda, \mu\right) \in \mathbb{A}^{n} \times \mathbb{A}^{n(n-i)} \times \mathbb{A}^{1} \times \mathbb{A}^{n-i} \mid \operatorname{rank} A_{i}=n-i, \mu \neq 0\right\}
$$

The singular case

The parameter space E_{i}

$$
E_{i}:=\left\{\left(x, A_{i}, \lambda, \mu\right) \in \mathbb{A}^{n} \times \mathbb{A}^{n(n-i)} \times \mathbb{A}^{1} \times \mathbb{A}^{n-i} \mid \operatorname{rank} A_{i}=n-i, \mu \neq 0\right\}
$$

Group action

On $E:=E_{i}$ there is a natural right action of the group $G:=G l(n-i) \times G l(1)$:
Let $g:=(B, t) \in G$ and $e:=(x, A, \lambda, \mu) \in E$

$$
\left.E \times G \rightarrow E, \quad(e, g) \mapsto e \cdot g:=\left(x, B^{T} \cdot A, t \lambda, t B^{-1} \cdot \mu\right)\right)
$$

The singular case

The parameter space E_{i}

$$
E_{i}:=\left\{\left(x, A_{i}, \lambda, \mu\right) \in \mathbb{A}^{n} \times \mathbb{A}^{n(n-i)} \times \mathbb{A}^{1} \times \mathbb{A}^{n-i} \mid \operatorname{rank} A_{i}=n-i, \mu \neq 0\right\}
$$

Group action

On $E:=E_{i}$ there is a natural right action of the group $G:=G l(n-i) \times G l(1)$:
Let $g:=(B, t) \in G$ and $e:=(x, A, \lambda, \mu) \in E$

$$
\left.E \times G \rightarrow E, \quad(e, g) \mapsto e \cdot g:=\left(x, B^{T} \cdot A, t \lambda, t B^{-1} \cdot \mu\right)\right) .
$$

Quotient space

G induces on E_{i} an equivalence relation \sim.
We denote by E / \sim the set of G-orbits.

The singular case: small miracle

- The categorical quotient E_{i} / \sim is a geometric quotient, i.e., is endowed with an algebraic variety structure - G is a " good " group (linearly reductive)

The singular case: small miracle

- The categorical quotient E_{i} / \sim is a geometric quotient, i.e., is endowed with an algebraic variety structure $-G$ is a " good " group (linearly reductive)
- This quotient is closed!

The singular case: small miracle

- The categorical quotient E_{i} / \sim is a geometric quotient, i.e., is endowed with an algebraic variety structure - G is a " good " group (linearly reductive)
- This quotient is closed!
- Moreover it is a differentiable manifold, a canonical atlas of $N_{i}:=\binom{n}{n-i}(n-i)$ open charts $U_{k}, 1 \leq k \leq N_{i}$ which are all isomorphic to $\mathbb{A}^{r_{i}}$

The singular case: small miracle

- The categorical quotient E_{i} / \sim is a geometric quotient, i.e., is endowed with an algebraic variety structure - G is a " good " group (linearly reductive)
- This quotient is closed!
- Moreover it is a differentiable manifold, a canonical atlas of $N_{i}:=\binom{n}{n-i}(n-i)$ open charts $U_{k}, 1 \leq k \leq N_{i}$ which are all isomorphic to $\mathbb{A}^{r_{i}}$
- The points in a typical chart are of the form

$$
A=\left[I_{n-i} \tilde{A}\right], \quad \mu=(1, \tilde{\mu})
$$

where I_{n-i} is the identity matrix, \tilde{A} a $(i \times(n-i))$-matrix, and $\tilde{\mu}:=\left(\mu_{2}, \ldots, \mu_{n-i}\right)$.

The singular case: medium miracle

- Let us consider in E_{i} the subvariety defined by the equations

$$
f(x)=0, \quad J(f)(x)^{T} \lambda+A_{i}^{T} \mu=0
$$

The singular case: medium miracle

- Let us consider in E_{i} the subvariety defined by the equations

$$
f(x)=0, \quad J(f)(x)^{T} \lambda+A_{i}^{T} \mu=0
$$

- It is invariant under G.

The singular case: medium miracle

- Let us consider in E_{i} the subvariety defined by the equations

$$
f(x)=0, \quad J(f)(x)^{T} \lambda+A_{i}{ }^{T} \mu=0
$$

- It is invariant under G.
- Therefore, we can consider its image S_{i} by the canonical quotient map, and its subsets $S_{i, k}:=S_{i} \cap U_{k}$

The singular case: medium miracle

- Let us consider in E_{i} the subvariety defined by the equations

$$
f(x)=0, \quad J(f)(x)^{T} \lambda+A_{i}{ }^{T} \mu=0
$$

- It is invariant under G.
- Therefore, we can consider its image S_{i} by the canonical quotient map, and its subsets $S_{i, k}:=S_{i} \cap U_{k}$
- S_{i} is closed!!

The singular case: great miracle

Theorem

- Let $1 \leq k \leq N_{i}$

The singular case: great miracle

Theorem

- Let $1 \leq k \leq N_{i}$
- Then, identifying U_{k} with $\mathbb{A}^{r_{i}}$, the constructible set $S_{i, k}$ becomes a smooth closed subvariety of the affine space $\mathbb{A}^{r_{i}}$

The singular case: great miracle

Theorem

- Let $1 \leq k \leq N_{i}$
- Then, identifying U_{k} with $\mathbb{A}^{r_{i}}$, the constructible set $S_{i, k}$ becomes a smooth closed subvariety of the affine space $\mathbb{A}^{r_{i}}$
- Moreover, $S_{i, k}$ is equidimensional of dimension $D_{i}:=i(n-i)-1$ and given as a transversal intersection of $n+1$ equations of degree d which have a circuit representation of size $O(L+n+i(n-i))$

The singular case: great miracle

Theorem

- Let $1 \leq k \leq N_{i}$
- Then, identifying U_{k} with $\mathbb{A}^{r_{i}}$, the constructible set $S_{i, k}$ becomes a smooth closed subvariety of the affine space $\mathbb{A}^{r_{i}}$
- Moreover, $S_{i, k}$ is equidimensional of dimension $D_{i}:=i(n-i)-1$ and given as a transversal intersection of $n+1$ equations of degree d which have a circuit representation of size $O(L+n+i(n-i))$
- In particular, S_{i} is a smooth subvariety of $E_{i / \sim}$ and the varieties $S_{i, k}, 1 \leq k \leq N_{i}$ form an open atlas of S_{i}.

The singular case: great miracle

The bipolar varieties

- The canonical projection

$$
E_{i / \sim} \quad \longrightarrow \mathbb{A}^{n}
$$

maps S_{i} surjectively onto the open set of smoothness $\mathcal{V} \backslash \operatorname{Sing} \mathcal{V}$ of smooth points (recall: $\mathcal{V}:=\left\{x \in \mathbb{A}^{n} \mid f(x)=0\right\}$).

The singular case: great miracle

The bipolar varieties

- The canonical projection

$$
E_{i / \sim} \quad \longrightarrow \mathbb{A}^{n}
$$

maps S_{i} surjectively onto the open set of smoothness $\mathcal{V} \backslash \operatorname{Sing} \mathcal{V}$ of smooth points (recall: $\mathcal{V}:=\left\{x \in \mathbb{A}^{n} \mid f(x)=0\right\}$).

- S_{i} is a smooth complete intersection variety.

The singular case: great miracle

The bipolar varieties

- The canonical projection

$$
E_{i / \sim} \quad \longrightarrow \mathbb{A}^{n}
$$

maps S_{i} surjectively onto the open set of smoothness $\mathcal{V} \backslash \operatorname{Sing} \mathcal{V}$ of smooth points (recall: $\mathcal{V}:=\left\{x \in \mathbb{A}^{n} \mid f(x)=0\right\}$).

- S_{i} is a smooth complete intersection variety.
- S_{i} is not compact as soon as $\operatorname{Sing} \mathcal{V} \neq \emptyset$.

The singular case: great miracle

The bipolar varieties

- The canonical projection

$$
E_{i / \sim} \quad \longrightarrow \mathbb{A}^{n}
$$

maps S_{i} surjectively onto the open set of smoothness $\mathcal{V} \backslash \operatorname{Sing} \mathcal{V}$ of smooth points (recall: $\mathcal{V}:=\left\{x \in \mathbb{A}^{n} \mid f(x)=0\right\}$).

- S_{i} is a smooth complete intersection variety.
- S_{i} is not compact as soon as $\operatorname{Sing} \mathcal{V} \neq \emptyset$.
- We can apply the technology developped previously for this case and consider of course its polar varieties (generalized). If sufficiently generic they form the bipolar varieties of de \mathcal{V}.

The singular case: great miracle

The bipolar varieties

- The canonical projection

$$
E_{i / \sim} \quad \longrightarrow \mathbb{A}^{n}
$$

maps S_{i} surjectively onto the open set of smoothness $\mathcal{V} \backslash \operatorname{Sing} \mathcal{V}$ of smooth points (recall: $\mathcal{V}:=\left\{x \in \mathbb{A}^{n} \mid f(x)=0\right\}$).

- S_{i} is a smooth complete intersection variety.
- S_{i} is not compact as soon as $\operatorname{Sing} \mathcal{V} \neq \emptyset$.
- We can apply the technology developped previously for this case and consider of course its polar varieties (generalized). If sufficiently generic they form the bipolar varieties of de \mathcal{V}.
- The fibers $S_{i}(A)$ are (closed), generically smooth subvarieties dominating surjectively the (open) polar variety $\Delta_{i}(A)$.

The bipolar lattice

- The bipolar varieties are organized by decreasing codimension in strictly ascending dimension:

$$
B_{i, D_{i}} \subset \cdots \subset B_{i, j} \subset \cdots B_{i, 1} \subset B_{i, 0}=S_{i}
$$

The bipolar lattice

- The bipolar varieties are organized by decreasing codimension in strictly ascending dimension:

$$
B_{i, D_{i}} \subset \cdots \subset B_{i, j} \subset \cdots B_{i, 1} \subset B_{i, 0}=S_{i}
$$

- If we let run also the index i from $n-1$ to 1 , we obtain a tow-dimensional lattice of bipolar varieties

The bipolar lattice

- The bipolar varieties are organized by decreasing codimension in strictly ascending dimension:

$$
B_{i, D_{i}} \subset \cdots \subset B_{i, j} \subset \cdots B_{i, 1} \subset B_{i, 0}=S_{i}
$$

- If we let run also the index i from $n-1$ to 1 , we obtain a tow-dimensional lattice of bipolar varieties
- A walk in this lattice is a path of length at most n, starting from a zero-dimensional bipolar variety $B_{i_{1}, D_{i_{1}}}$ to end up at an orbit variety $B_{i_{2}, 0}=S_{i_{2}}$

The bipolar lattice

- The bipolar varieties are organized by decreasing codimension in strictly ascending dimension:

$$
B_{i, D_{i}} \subset \cdots \subset B_{i, j} \subset \cdots B_{i, 1} \subset B_{i, 0}=S_{i}
$$

- If we let run also the index i from $n-1$ to 1 , we obtain a tow-dimensional lattice of bipolar varieties
- A walk in this lattice is a path of length at most n, starting from a zero-dimensional bipolar variety $B_{i_{1}, D_{i_{1}}}$ to end up at an orbit variety $B_{i_{2}, 0}=S_{i_{2}}$
- At each step either the index i or the codimension j decreases

The bipolar lattice

- The bipolar varieties are organized by decreasing codimension in strictly ascending dimension:

$$
B_{i, D_{i}} \subset \cdots \subset B_{i, j} \subset \cdots B_{i, 1} \subset B_{i, 0}=S_{i}
$$

- If we let run also the index i from $n-1$ to 1 , we obtain a tow-dimensional lattice of bipolar varieties
- A walk in this lattice is a path of length at most n, starting from a zero-dimensional bipolar variety $B_{i_{1}, D_{i_{1}}}$ to end up at an orbit variety $B_{i_{2}, 0}=S_{i_{2}}$
- At each step either the index i or the codimension j decreases
- The bipolar varieties found under way along the walk, modulo suitable sections and indentifications, form an ascending sequence along which the dimension increases exactly by one. It is important to observe that their real traces are non empty, hence dense.

Algorithmic strategies

- Reversing a walk yields us an algorithmic strategy, which as soon as it finds regular points on bipolars hastens to project them on smooth real points of V

Algorithmic strategies

- Reversing a walk yields us an algorithmic strategy, which as soon as it finds regular points on bipolars hastens to project them on smooth real points of V
- As a bonus we obtain suitable choices of matrices A favourables to our aims

Algorithmic strategies

- Reversing a walk yields us an algorithmic strategy, which as soon as it finds regular points on bipolars hastens to project them on smooth real points of V
- As a bonus we obtain suitable choices of matrices A favourables to our aims
- There exists a particular walk boiling down to the previously known algorithms treating the smooth case.

The complexity theorem

Summarizing we have the following complexity result.

The complexity theorem

Summarizing we have the following complexity result.
Theorem.
Let $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial of degree $d \geq 2$ defining as above complex and real hypersurfaces V and $V_{\mathbb{R}}$. Suppose that f is given by a straight-line program of size L.

The complexity theorem

Summarizing we have the following complexity result.

Theorem.

Let $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial of degree $d \geq 2$ defining as above complex and real hypersurfaces V and $V_{\mathbb{R}}$. Suppose that f is given by a straight-line program of size L.
Each walk \mathcal{W} yields a procedure $\mathcal{R}_{\mathcal{W}}$ which exhibits at least one real algebraic point in each connected component of $V_{\mathbb{R}}$.

The complexity theorem

Summarizing we have the following complexity result.

Theorem.

Let $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial of degree $d \geq 2$ defining as above complex and real hypersurfaces V and $V_{\mathbb{R}}$. Suppose that f is given by a straight-line program of size L.
Each walk \mathcal{W} yields a procedure $\mathcal{R}_{\mathcal{W}}$ which exhibits at least one real algebraic point in each connected component of $V_{\mathbb{R}}$. Its sequential complexity is linear in L and polynomial in d, n and an appropriate geometric quantity $\delta_{\mathcal{W}}$.

The complexity theorem

Summarizing we have the following complexity result.

Theorem.

Let $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial of degree $d \geq 2$ defining as above complex and real hypersurfaces V and $V_{\mathbb{R}}$. Suppose that f is given by a straight-line program of size L.
Each walk \mathcal{W} yields a procedure $\mathcal{R}_{\mathcal{W}}$ which exhibits at least one real algebraic point in each connected component of $V_{\mathbb{R}}$. Its sequential complexity is linear in L and polynomial in d, n and an appropriate geometric quantity $\delta_{\mathcal{W}}$.
This quantity is the maximal degree of the (complex) bipolar varieties of V found along the walk. It is an intrinsic invariant of V and \mathcal{W}, which bounds also the number and the degree of the representative points exhibited by $\mathcal{R}_{\mathcal{W}}$.

Extrinsic Complexity for Finding One Point in Every Connected Component

- For given $1 \leq i \leq n-1$, an algorithm which follows textually our explanations would involve computations with polynomials in $O\left(n+(n-i)^{2}\right)$ variables

Extrinsic Complexity for Finding One Point in Every Connected Component

- For given $1 \leq i \leq n-1$, an algorithm which follows textually our explanations would involve computations with polynomials in $O\left(n+(n-i)^{2}\right)$ variables
- This would lead to a worst case complexity estimation of $d^{O\left(n+(n-i)^{2}\right)}$ whereas the expected worst case complexity is $d^{O(n)}$

Extrinsic Complexity for Finding One Point in Every Connected Component

- For given $1 \leq i \leq n-1$, an algorithm which follows textually our explanations would involve computations with polynomials in $O\left(n+(n-i)^{2}\right)$ variables
- This would lead to a worst case complexity estimation of $d^{O\left(n+(n-i)^{2}\right)}$ whereas the expected worst case complexity is $d^{O(n)}$
- There are two ways out of this dilemma:

Extrinsic Complexity for Finding One Point in Every Connected Component

- For given $1 \leq i \leq n-1$, an algorithm which follows textually our explanations would involve computations with polynomials in $O\left(n+(n-i)^{2}\right)$ variables
- This would lead to a worst case complexity estimation of $d^{O\left(n+(n-i)^{2}\right)}$ whereas the expected worst case complexity is $d^{O(n)}$
- There are two ways out of this dilemma:
- One way is to choose i close to $n-1$

Extrinsic Complexity for Finding One Point in Every Connected Component

- For given $1 \leq i \leq n-1$, an algorithm which follows textually our explanations would involve computations with polynomials in $O\left(n+(n-i)^{2}\right)$ variables
- This would lead to a worst case complexity estimation of $d^{O\left(n+(n-i)^{2}\right)}$ whereas the expected worst case complexity is $d^{O(n)}$
- There are two ways out of this dilemma:
- One way is to choose i close to $n-1$
- Or to remodel in the spirit of the concept of sufficiently generic varieties we introduced more recently.

Extrinsic Complexity for Finding One Point in Every Connected Component

- For given $1 \leq i \leq n-1$, an algorithm which follows textually our explanations would involve computations with polynomials in $O\left(n+(n-i)^{2}\right)$ variables
- This would lead to a worst case complexity estimation of $d^{O\left(n+(n-i)^{2}\right)}$ whereas the expected worst case complexity is $d^{O(n)}$
- There are two ways out of this dilemma:
- One way is to choose i close to $n-1$
- Or to remodel in the spirit of the concept of sufficiently generic varieties we introduced more recently.

If we choose $i:=n-1$ we obtain an intrinsic variant of the so called "critical point" method, which is often used in a geometrically unstructured way with extrinsic complexity bounds.

- As said before, for suitably chosen walks \mathcal{W} the quantity $\delta_{\mathcal{W}}$ and the complexity of the procedure $\mathcal{R}_{\mathcal{W}}$ are in worst case of order $d^{O(n)}$
- As said before, for suitably chosen walks \mathcal{W} the quantity $\delta_{\mathcal{W}}$ and the complexity of the procedure $\mathcal{R}_{\mathcal{W}}$ are in worst case of order $d^{O(n)}$
- This meets all previously known algorithmic bounds
- As said before, for suitably chosen walks \mathcal{W} the quantity $\delta_{\mathcal{W}}$ and the complexity of the procedure $\mathcal{R}_{\mathcal{W}}$ are in worst case of order $d^{O(n)}$
- This meets all previously known algorithmic bounds
- Following the works by Castro-G-Heintz-Matera-Pardo, $d^{\Omega(n)}$ is also a lower bound for the worst case complexity of elimination problems like the one under consideration
- As said before, for suitably chosen walks \mathcal{W} the quantity $\delta_{\mathcal{W}}$ and the complexity of the procedure $\mathcal{R}_{\mathcal{W}}$ are in worst case of order $d^{O(n)}$
- This meets all previously known algorithmic bounds
- Following the works by Castro-G-Heintz-Matera-Pardo, $d^{\Omega(n)}$ is also a lower bound for the worst case complexity of elimination problems like the one under consideration
- The only way out of this dilemma is the introduction of intrinsic complexity measures like $\delta_{\mathcal{W}}$.

Conclusion:
THE SAME COMPLEXITY CLASS!

KRONECKER vs. GRÖBNER using MAGMA 2.13

 Polynomial equations from the design of wavelet filters PhD Thesis of Lutz Lehmann, advisor Bernd Bank| δ | δ^{*} | ktime | kmem | gtime | gmem |
| ---: | ---: | ---: | ---: | ---: | :--- |
| 12 | 6 | $1.5 s$ | $3 M B$ | $1.2 s$ | $1 M B$ |
| 12 | 8 | $7 s$ | $3 M B$ | $0.3 s$ | $6 M B$ |
| 54 | 22 | $1 m 20 s$ | $7 M B$ | $3 m 10 s$ | $38 M B$ |
| 28 | 10 | $16 s$ | $9 M B$ | $6.5 s$ | $9 M B$ |
| 28 | 10 | $60 s$ | $10 M B$ | $15 s$ | $10 M B$ |
| 136 | 24 | $30 m$ | $50 M B$ | $>5 h$ | $>800 M B$ |
| 136 | 26 | $1 h 5 m$ | $75 M B$ | $>5 h$ | $>300 M B$ |
| 32 | 6 | $17 s$ | $7 M B$ | $2 m 30 s$ | $17 M B$ |
| 32 | 10 | $45 s$ | $7 M B$ | $67 s$ | $21 M B$ |
| 168 | 36 | $1 h 40 m$ | $98 M B$ | $>5 h$ | $>300 M B$ |

δ : number of complex solutions k... : Kronecker (Lecerf, Lehmann)
δ^{*} : number of real solutions $\mathrm{g} . . \mathrm{:}$ Gröbner (Steel, F4 Faugère)

THANK YOU FOR YOUR ATTENTION!

