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Motivations

Our aim is to establish general principles for solving efficiently
systems of polynomial equations. Very roughly speaking,
algorithms for solving such systems can be divided into two
classes: one algebraic with methods based on symbolic
computation, the other one based on numerical analysis and
approximation. In these lectures our interest focuses on this
numerical approach.
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In the first lecture we describe the general principles of
continuation methods, and their numerical counterparts: the
predictor-corrector algorithms. We estimate the complexity of
such methods via the condition number analysis.

The second lecture is devoted to the probabilistic aspects of
such questions. What can be said for random polynomial
systems ? What is the distribution of the condition number ?
What is the complexity of path-following methods on the
average ?

In the third lecture we emphasize on a new approach, based on
the condition metric (to be defined), and we list some open
problems.
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The space of homogeneous polynomial
system
Let Hd be the vector space of homogeneous polynomials

f : Cn+1 → Cn,

f = (f1, . . . , fn) in the variable z = (z0, z1, . . . , zn), with degree
d = (d1, . . . ,dn), so that fi has degree di , and

fi(z0, z1, . . . , zn) =
∑

α0+α1+...+αn=di

ai,αzα0
0 zα1

1 . . . zαn
n

or, in the simpler form,

fi(z) =
∑
|α|=di

ai,αzα.
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The space Hd is equipped with the Hermitian inner product

〈f ,g〉d =
n∑

i=1

〈fi ,gi〉di
=

n∑
i=1

∑
|α|=di

α0!α1! . . . αn!

di !
ai,αbi,α

with gi(z) =
∑
|α|=di

bi,αzα.

This inner product is unitarily invariant:

〈f ◦ u,g ◦ u〉d = 〈f ,g〉d

for any unitary transformation u : Cn+1 → Cn+1.
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The solution variety
The solution variety for the polynomial solving problem is

Vd = {(f , ζ) ∈ P (Hd )× Pn (C) : f (ζ) = 0} .

Here P (Hd ) denotes the projective space associated with Hd

and Pn (C) the projective space associated with Cn+1.

We take projective spaces instead of vector spaces because, by
homogeneity, the zeros of a given f are lines through the origin
in Cn+1 that is points in Pn (C), and the zeros of f and a multiple
λf are the sames.

The solution variety is a submanifold in P (Hd )× Pn (C) and

dimVd = dim P (Hd ) .
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Well-posed and ill-posed problems

A problem (f , ζ) ∈ Vd is well-posed when ζ is a simple root of
the system f or, equivalently, when

rank Df (ζ) = n

or, equivalently, when the derivative of the first projection

Π1 : Vd → P (Hd ) , Π1(f , ζ) = f

DΠ1(f , ζ) : T(f ,ζ)Vd → Tf P (Hd )

is an isomorphism.
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Otherwise, (f , ζ) is said ill-posed. The set of ill-posed problems
is the critical variety denoted by

Σ′ = {(f , ζ) ∈ Vd : rank Df (ζ) < n} .

Its projection onto the space of systems is the discriminant
variety

Σ = Π1 (Σ′) = {f ∈ P (Hd ) : ∃ζ with (f , ζ) ∈ Σ′} .
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The solution variety

Jean-Pierre Dedieu () Complexity of Bézout’s Theorem and the Condition Number 10 / 67



The continuation method

Let (f0, ζ0) ∈ Vd \ Σ′ be given. For example

f0,i(z) = zdi−1
0 zi , ζ0 = e0 = (1,0, . . . ,0).

Consider a smooth path

ft ∈ P (Hd ) \ Σ, 0 ≤ t ≤ 1,

connecting f0 to a target system f1. For example the affine
homotopy

ft = (1− t)f0 + tf1.

Our objective is to find a zero ζ1 of f1.
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According to the implicit function theorem, we can lift the path
ft ∈ P (Hd ) \ Σ into a unique path

(ft , ζt) ∈ Vd \ Σ′.
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Predictor-Corrector Methods 1

In practice this program is realized via a discretized problem
and an approximation method:

The interval [0,1] is discretized in

0 = t0 < t1 < . . . < tk = 1

and the path (ft , ζt) ∈ Vd \ Σ′ by a sequence of pairs

(fti , zti ) ∈ P (Hd )× Pn (C) , 0 ≤ i ≤ k ,

where zt0 = ζ0 and zti+1 is computed from zti by a
predictor-corrector method.
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Predictor-Corrector Methods bis
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Predictor-Corrector Methods ter

When the points in the mesh (ti) are close enough, the
corresponding pairs (fti , zti ) stay close to the path (ft , ζt) ∈ Vd \Σ′

and zti is a good approximation of ζti .

We measure the complexity of this process as the number k of
points in the mesh.
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Newton’s operator

The correction step in our predictor-corrector algorithm plays a
crucial role! We define it by

zti+1 = Nfti+1
(zti )

where Nf is the projective Newton operator associated with f .
This operator is defined by

Nf (z) = z −
(
Df (z)

∣∣TzPn(C)

)−1 f (z)

where TzPn (C), the tangent space at z ∈ Pn (C), is identified
with

z⊥ =
{

u ∈ Cn+1 : 〈u, z〉 = 0
}
.
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Newton’s sequence

Since Nf (λx) = λNf (x), this operator is well-defined in Pn (C).

We say that x0 ∈ Pn (C) is an approximate zero of f ∈ P (Hd )
with actual zero ζ ∈ Pn (C) when the Newton sequence defined
by

xi+1 = Nf (xi), i ≥ 0,

converges immediatly quadratically to ζ that is when

dP(ζ, xi) ≤
(

1
2

)2i−1

dP(ζ, x0).

Here dP(x , y) is the distance in Pn (C) defined by the sine of the
angle made by the lines through x and y .
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Gamma Theorem

A quantitative criterion to decide whether a given x is an
approximate zero with actual zero ζ is given by

dP(ζ, x) ≤ 3−
√

7
2γ(f , ζ)

with

γ(f , ζ) = ‖ζ‖ sup
k≥2

∥∥∥∥∥
(
Df (ζ)

∣∣
ζ⊥
)−1 Dk f (ζ)

k !

∥∥∥∥∥
1

k−1

.

We now understand much better what we have to do:
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Tubular neighbohood
We want our predictor-corrector sequence (fti , zti ) to stay inside
the tubular neighborhood of the path (ft , ζt) with size
(3−

√
7)/(2γ(ft , ζt)) so that each zti is an approximate zero of fti

with actual zero ζti .
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Definition of the condition number

The condition number measures the size of the first order
variations of the solution of a problem in terms of the size of the
first order variations of the problem. Let

S : Input Space→ Output Space

be the (locally defined) solution map and let p be an instance of
our problem. Then, we define the condition number at p as the
operator norm of the derivative of the solution map at p.
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The case of homogeneous polynomial
systems

For a well-posed problem (f , ζ) ∈ Vd \ Σ′ the condition number is
given by

µ(f , ζ) = ‖f‖
∥∥∥(Df (ζ)

∣∣
ζ⊥
)−1 diag

(
‖ζ‖di−1

)∥∥∥
when the space Hd is equipped with the Hermitian structure
defined previously.

We will see in the second lecture that the condition number
µ(f , ζ) is related to the distance from ill-posed problems like it is
the case for matrices.
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Gamma and the condition number

The last step before reaching our objective is given by the
following estimate (Shub-Smale)

γ(f , ζ) ≤ D2

2
µ(f , ζ)

with D = max di , called the Higher Derivative Estimate. Thus,
the size of the tubular neighborhood of our path (ft , ζt) depends
on the conditionning of the encountered problems.
Ill-conditionned instances implies a very small neighborhood
and increases the complexity k of our algorithm. More precisely:
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Complexity of continuation methods

Theorem
(Shub-Smale) Given a path ft ∈ P (Hd ) \ Σ, 0 ≤ t ≤ 1, a zero ζ0

of f0, and the corresponding lifted path F (t) = (ft , ζt) ∈ Vd \ Σ′,
there exists a mesh 0 = t0 < t1 < . . . < tk = 1 such that each zti
constructed by the Newton predictor-corrector algorithm is an
approximate zero of fti with actual zero ζti with

k ≤ CD2µ(F )2Lf .

C is an absolute constant, Lf is the length of the path ft in
P (Hd ), and

µ(F ) = sup
0≤t≤1

µ(ft , ζt)

is the condition number of the path.
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The sparse case

A polynomial system is sparse when it has few non-zero
coefficients (fewnomials) or when its coefficients depend on a
small number of parameters, for example

(x + a)m + b)n.

Let K denote a set of such systems. We suppose it is a
submanifold of small dimension in P (Hd ).
The sparse solution variety is

VK = {(f , ζ) ∈ K × Pn (C) : f (ζ) = 0} .

We define the sparse condition number µK in only considering
perturbations of the system which respect the sparse structure.
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The sparse case bis

µ(f , ζ) = sup
‖DSol(f , ζ)(ḟ )‖

‖ḟ‖
, ḟ ∈ Tf P (Hd ) ,

while

µK(f , ζ) = sup
‖DSol(f , ζ)(ḟ )‖

‖ḟ‖
, ḟ ∈ TfK.

The second supremum is smaller than the first.
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The sparse case ter

Following the previous lines it may be shown that the complexity
of continuation methods for a path

F (t) = (ft , ζt) ∈ VK, 0 ≤ t ≤ 1,

is bounded by
CD2µK(F )µ(F )Lf .

Here C is a constant, and µK(F ) ≤ µ(F ) the sparse and
non-sparse condition numbers.
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Second Talk : Motivation

We have seen in the previous talk the important role played by
the condition number in the complexity of predictor-corrector
methods based on Newton method. Let us recall this bound:

CD2 max
0≤t≤1

µ(ft , ζt)
2Lf .

In order to obtain estimates on the average for this complexity
bound we have to study the distribution of the condition number.
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The Normalized Condition Number

For a well-posed problem (f , ζ) ∈ Vd \ Σ′ the condition number is
equal to

µ(f , ζ) = ‖f‖
∥∥∥(Df (ζ)

∣∣
ζ⊥
)−1 diag

(
‖ζ‖di−1

)∥∥∥ .
We define the normalized condition number by

µnorm(f , ζ) = ‖f‖
∥∥∥(Df (ζ)

∣∣
ζ⊥
)−1 diag

(
d1/2

i ‖ζ‖di−1
)∥∥∥ .

We have
µ(f , ζ) ≤ µnorm(f , ζ) ≤ D1/2µ(f , ζ).
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The Normalized Condition Number bis

We have defined the condition number µ(f , ζ) as the operator
norm of the derivative of the solution map at (f , ζ) ∈ V .
The normalized consition number obey to the same law: but we
have to change the metric structure in P (Hd ) taking

〈f ,g〉norm =
n∑

i=1

d−1
i 〈fi ,gi〉i

instead of

〈f ,g〉norm =
n∑

i=1

〈fi ,gi〉i .
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The Condition Number: matrices

Consider the solution variety associated to the problem: solve
the linear system

Ax = b.

Here A is given, b the problem instance, x = A−1b the solution
and

b ∈ Cn → A−1b ∈ Cn

the solution map. We equip Cn of the usual Hermitian structure
so that the associated condition number is

µ(b, x) = ‖A−1‖2.
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The Condition Number Theorem: matrices

Eckart-Young Theorem relate this condition number to the
Frobenius distance of A to singular matrices:

‖A−1‖2 =
1

dF (A,Σ
,

Σ = {A ∈ Cn×}
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The Condition Number Theorem

The main interest of the normalized condition number is given
by the Condition Number Theorem which relates µnorm(f , ζ)
and the distance of (f , ζ) to a certain set of ill-posed problems.
Define

ρ(f , ζ) = dP((f , ζ),Σζ)

where
Σζ = Σ′ ∩ (P (Hd )× {ζ}) = Σ′ ∩ Π−1

2 (ζ)

is the set of ill-posed problems with a multiple root at ζ, and

dP((f , ζ),Σζ) = min
(g,ζ)∈Σζ

dP(f ,g)

as previously.
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Theorem
(Shub-Smale, Condition Number Theorem)

µnorm(f , ζ) =
1

ρ(f , ζ)
.
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Probability measures

The probability measures on Pn(C), and on P (Hd ) are induced
by the underlying Riemannian structures given by the Hermitian
structures on Cn+1 and Hd . These Riemannian structures give a
product structure on P (Hd )× Pn(C) and an induced structure on
Vd .
They are invariant under the action of the unitary group Un+1

((f , ζ),u) ∈ Vd × Un+1 → (f ◦ u,u∗(ζ)) ∈ Vd .
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Distribution of the condition number in Vd

Theorem
(Shub-Smale) If n > 1 and D ≥ 1, for any ε > 0

Prob
{

(f , ζ) ∈ Vd : µnorm(f , ζ) ≥ 1
ε

}
≤ ε2nNC

(C is an absolute constant and N = dimHd ).
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Distribution of the condition number in P (Hd)

Define
µnorm(f ) = max

f (ζ)=0
µnorm(f , ζ).

Theorem
(Shub-Smale) When n > 1 and D ≥ 1, for any 0 < ε < 1/

√
n,

one has

Prob
{

f ∈ P (Hd ) : µnorm(f ) ≥ 1
ε

}
≤ ε4n3N2D

4

where D = d1d2 . . . dn is the Bézout number.
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Complexity on the average

Given (f0, ζ0) ∈ Vd \ Σ′ we consider the path tf1 + (1− t)f0,
0 ≤ t ≤ 1 to reach an approximate zero of a given f1 and the
corresponding Newton predictor-corrector method.

Theorem
(Shub-Smale) Given 0 < σ < 1, there exists (f0, ζ0) ∈ Vd \ Σ′

such that k steps are sufficient to find an approximate zero of
any f1 ∈ P (Hd ) with probability of failure σ and

k ≤ CN3

σ1−ε , ε =
1

logD

(or CN4/σ1−ε if some di = 1 or n ≤ 4).
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Comments

A priori, the initial pair (f0, ζ0) depends on the degree
d = (d1, . . . ,dn) and on the probability of failure σ.
The proof given by the authors does not give an explicit
construction for (f0, ζ0).
They conjecture that

f0 = (xdi−1
0 xi)1≤i≤n, ζ0 = e0 = (1,0, . . . ,0)

is a good initial guess.
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Complexity on the average, bis

From this theorem we obtain non uniform algorithm in
probabilistic polynomial time for Bézout’s Theorem:

Theorem
(Shub-Smale) Fixing d, the average number to find an
approximate zero of f ∈ P (Hd ) is less than CN4 unless n ≤ 4 or
some di = 1. In this latter case we get CN5.
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σ-efficient pairs

Given σ > 0, a pair (f0, z0) ∈ P (Hd )× Pn (C) is said σ-efficient
when there is a polynomial

k = k
(
σ−1,n,N,d

)
such that, for any f1 ∈ P (Hd ), k steps of Newton
predictor-corrector method associated with the affine homotopy
tf1 + (1− t)f0, with initial pair (f0, z0), are sufficient to find an
approximate zero of f1 with probability of failure σ.

Shub-Smale’s Theorem shows that σ-efficient pairs always
exists.
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Questor sets

Given a muti-degree d , Beltrán-Pardo give an explicit
construction of a subset of the solution variety Gd ⊂ Vd that
share the common zero e0 = (1,0, . . . ,0) with the following
property:
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Questor sets bis

Theorem
(Beltrán-Pardo) For any 0 < σ < 1, the probability that a
randomly chosen pair (f0,e0) ∈ Gd is σ-efficient is greater than

1− σ.

For these σ-efficient pairs (f0,e0) ∈ Gd , and for any f1 ∈ P (Hd ),

k = Cn5N2d4σ−2

steps of Newton predictor-corrector method associated with the
affine homotopy tf1 + (1− t)f0, and the initial pair (f0,e0), are
sufficient to find an approximate zero of f1 with probability of
failure σ.
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Questor sets ter

Beltrán-Pardo construction gives a uniform algorithm in
probabilistic polynomial time to find an approximate zero of a
given polynomial system.
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Third Talk : Motivation

The classical approach to continuation methods to solve
polynomial systems may be summarized in the following steps

Consider in the space of systems a path connecting an
initial system with a target system,
Lift it in the solution variety, starting with a given zero of
the initial system to obtain a zero for the target system,
Follow the lifted path using a predictor-corrector method.
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Motivation bis

The complexity of these methods is dominated by the condition
number of the encountered problems along the lifted path, and,
even if the initial and target systems are well-conditionned, this
lifted path may be very close to the critical variety giving
ill-conditionned problems, and slowering our algorithm.

To avoid this difficulty we search for a path in the solution variety
as short as possible which stays as far as possible from the
critical variety !

How to proceed ?
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Condition length

The length of a path F (t) = (ft , ζt), 0 ≤ t ≤ 1, for the usual
Riemannian structure in Vd is given by

L(F ) =

∫ 1

0

∥∥∥∥ d
dt

(ft , ζt)

∥∥∥∥
(ft ,ζt )

dt

with ∥∥∥(ḟ , ζ̇)
∥∥∥2

(f ,ζ)
=

∥∥∥ḟ
∥∥∥2

‖f‖2 +

∥∥∥ζ̇∥∥∥2

‖ζ‖2

for any (ḟ , ζ̇) ∈ T(f ,ζ)Vd .
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Condition length bis

The length in the condition metric also called condition
length is defined by

Lκ(F ) =

∫ 1

0

∥∥∥∥ d
dt

(ft , ζt)

∥∥∥∥
(ft ,ζt )

µnorm(ft , ζt)dt .

The condition distance between two pairs F0, and F1 ∈ Vd \ Σ′

is given as the infimum of the lengths of paths with endpoints F0

and F1:

dκ(F0,F1) = inf {Lκ(F ) : F (0) = F0, F (1) = F1} .

A curve which realizes this infimum, parametrized by arc-length,
is called a minimizing condition geodesic.
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Condition length ter

Condition length and condition geodesics are related to the
condition Riemannian structure defined on Vd \ Σ′ by

〈·, ·〉κ,(f ,ζ) = 〈·, ·〉(f ,ζ) µnorm(f , ζ)2.

Notice that µnorm(f , ζ) is not a smooth function on Vd \ Σ′;
however it is locally Lipschitz.
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The solution variety as a length space

Theorem
Vd \ Σ′ equipped with the condition metric dκ is a complete
metric space. Moreover, given two pairs F0 and F1 in this space,
there exists an absolutly continuous minimizing condition
geodesic F (t) such that

dκ(F0,F1) = Lκ(F ), F (0) = F0, F (1) = F1.

Such a condition geodesic is C1 with a Lipschitz derivative, that
is W 2,∞.
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Complexity in the condition length

The interest of considering minimizing condition geodesics
appear clearly in the following:

Theorem
(Shub) Given a smooth path F = (ft , ζt) ∈ Vd \ Σ′, 0 ≤ t ≤ 1,

k ≤ CD3/2Lκ(F )

steps are sufficient to follow approximately this path.
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Complexity in the condition length bis

Since

Lκ(F ) ≤ µnorm(F )L(F ) ≤ µnorm(F )µ(F )Lf ≤ D1/2µ(F )2Lf

the bound in terms of the condition length is an improvement of
Bézout 1 Main Theorem:

CD3/2Lκ(F ) ≤ CD2µ(F )2Lf .

To improve complexity of path-following methods, this bound
suggests to follow the minimizing condition geodesics in the
solution variety !
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Short paths
The following shows that there exist very short paths connecting
two given pairs in Vd \ Σ′: Let us define

g = (d1/2
1 zd1−1

0 z1, . . . ,d
1/2
n zdn−1

0 zn), and e0 = (1,0, . . . ,0).

Theorem
(Beltrán-Shub) Given (f , ζ) ∈ Vd \ Σ′, there exists a path in the
condition metric with endpoints (g,e0) and (f , ζ) with condition
length

LK ≤ 9nD3/2 + 2
√

n ln
(
µnorm(f , ζ)√

n

)
.

Following such a path will give a complexity in the logarithm of
the condition number instead of its square !
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Self-Convexity

Along a condition geodesic do we really avoid ill-conditionned
problems ? We may reformulate this question in the following
terms :

Given a geodesic F (t) in Vd \ Σ′, is the maximum of µnorm(Ft)
necessarily reached at the endpoints of the path ? That is:
Is µnorm(Ft) a quasi-convex function ?
A stronger property would be:
Is µnorm(Ft) a convex function ?
A much stronger property would be:
Is µnorm(Ft) a log-convex function ?
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Self-Convexity Bis

We call this last property self-convexity of the condition
number that is convexity of the logarithm of the condition
number in the condition Riemannian structure.
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The linear case

Self-convexity holds in the linear case, that is when all the
degrees are equal to 1. Let us be more precise.

Let two integers 1 ≤ n ≤ m be given and let us denote by GLn,m

the space of matrices A ∈ Kn×m with maximal rank : rank A = n,
K = R or C.

The singular values of such matrices are denoted in decreasing
order:

σ1(A) ≥ . . . ≥ σn−1(A) ≥ σn(A) > 0.
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Self-convexity: the linear case bis

The smallest singular value σn(A) is a locally Lipschitz map in
GLn,m.

It is smooth on the open subset

GL>
n,m = {A ∈ GLn,m : σn−1(A) > σn(A)} .
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Self-convexity: the linear case ter

The length of the path X (t) ∈ GLn,m in condition metric is
defined by the integral

Lκ(X ) =

∫ 1

0

∥∥∥∥ d
dt

X (t)

∥∥∥∥
F
σn(X (t))−1dt

where
‖M‖2

F =
∑
|mij |2

denotes the Frobenius norm of the matrix M.
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Self-convexity: the linear case quater

Theorem
(Beltrán-Dedieu-Malajovich-Shub) σn(X (t))−2 is logarithmically
convex along the geodesics in GLn,m for the condition metric.

Its proof is particularly long and difficult.
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2× 2 diagonal case

We consider, in the two following examples, 2× 2 real diagonal
matrices with positive diagonal entries. The condition lenth is
given by

Lκ =

∫ b

a

√
ẋ1(t)2 + ẋ2(t)2

min(x1(t), x2(t))
dt .
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2× 2 diagonal case, bis
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2× 2 diagonal case, ter
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Self-convexity: extensions
Self-convexity holds in a sligthly different context.

Let N be a C2 submanifold without boundary in Rj . Let us
denote by

d(x ,N ) = min
y∈N
‖x − y‖ and α(x) = d(x ,N )−2.

Let U be the largest open set in Rj such that, for any x ∈ U there
is a unique closest point in N to x . When U is equipped with the
new metric

〈·, ·〉κ,x = α(x) 〈·, ·〉
we have

Theorem
(Beltrán-Dedieu-Malajovich-Shub) α : U \ N → R is self-convex.
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Some open problems

1 Does self-convexity hold in the case of polynomial
systems ?

2 How to approximate minimizing condition geodesics in the
solution variety ?

3 More generally, how to compute geodesics in a
Lipschitz-Riemannian structure ?
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