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Introduction

Consider the following underdetermined linear system

n

m

A x =

=

b

where A ∈ Rm×n, with n ≫ m.

Can we find the sparsest solution?
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Introduction

• Signal processing: We make a few measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g.
Fourier, wavelet). Can we reconstruct the signal exactly?

• Coding: Suppose we transmit a message which is corrupted by a few errors.
How many errors does it take to start losing the signal?

• Statistics: Variable selection in regression (LASSO, etc).
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Introduction

Why sparsity?

• Sparsity is a proxy for power laws. Most results stated here on sparse vectors
apply to vectors with a power law decay in coefficient magnitude.

• Power laws appear everywhere. . .

◦ Zipf law: word frequencies in natural language follow a power law.

◦ Ranking: pagerank coefficients follow a power law.

◦ Signal processing: 1/f signals

◦ Social networks: node degrees follow a power law.

◦ Earthquakes: Gutenberg-Richter power laws

◦ River systems, cities, net worth, etc.
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Introduction

Frequency vs. word in Wikipedia (from Wikipedia).
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Introduction

Frequency vs. magnitude for earthquakes worldwide. Christensen, Danon, Scanlon
& Bak (2002)
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Introduction
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9% wavelet coefs.

Left: Original image.
Right: Same image reconstructed from 9% largest wavelet coefficients.
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Introduction

• Getting the sparsest solution means solving

minimize Card(x)
subject to Ax = b

which is a (hard) combinatorial problem in x ∈ Rn.

• A classic heuristic is to solve instead

minimize ‖x‖1

subject to Ax = b

which is equivalent to an (easy) linear program.

A. d’Aspremont, F. Bach, L. El Ghaoui. Fields Institute workshop on complexity of numerical computation, October 2009. 8



The l1 heuristic

• We seek to solve
minimize Card(x)
subject to Ax = b.

• Given an a priori bound on the solution, this can be formulated as a Mixed
Integer Linear Program:

minimize 1
Tu

subject to Ax = b
|x| � Bu
u ∈ {0, 1}n.

This is a hard combinatorial problem. . .
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l1 relaxation

Assuming |x| ≤ 1, we can replace:

Card(x) =

n
∑

i=1

1{xi 6=0}

with

‖x‖1 =

n
∑

i=1

|xi|

Graphically, assuming x ∈ [−1, 1] this is:

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the largest convex lower bound on Card(x) in [−1, 1].
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l1 relaxation

minimize Card(x)
subject to Ax = b

becomes minimize ‖x‖1

subject to Ax = b

• Relax the constraint u ∈ {0, 1}n as u ∈ [0, 1]n in the MILP formulation.

• Can also be seen as a Lagrangian relaxation.

• Same trick can be generalized (cf. minimum rank semidefinite program by
Fazel, Hindi & Boyd (2001)).
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Introduction

Example: fix A, draw many random sparse signals e and plot the probability of
perfectly recovering e by solving

minimize ‖x‖1

subject to Ax = Ae

in x ∈ Rn over 100 samples, with n = 50 and m = 30.
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Introduction

• Donoho & Tanner (2005), Candès & Tao (2005):

For certain matrices A, when the solution e is sparse enough, the solution of
the ℓ1-minimization problem is also the sparsest solution to Ax = Ae.

• This happens even when Card(e) = O(m) asymptotically in n when
m = O(n), which is provably optimal.
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Introduction

Similar results exist for rank minimization.

• The ℓ1 norm is replaced by the trace norm on matrices.

• Exact recovery results are detailed in Recht, Fazel & Parrilo (2007), Candes &
Recht (2008), . . .
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Introduction

Explicit conditions on the matrix A for perfect recovery of all sparse signals e.

• Restricted Isometry Property (RIP) from Candès & Tao (2005).

• Nullspace Property (NSP) from Donoho & Huo (2001), Cohen, Dahmen &
DeVore (2009), . . .

Candès & Tao (2005) and Cohen et al. (2009) show that these conditions are
satisfied by certain classes of random matrices: Gaussian, Bernoulli, etc.
(Donoho & Tanner (2005) use a geometric argument)

One small problem. . .

Testing these conditions on general matrices is harder than finding the sparsest
solution to an underdetermined linear system for example.
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Outline

• Introduction

• Testing the RIP

• Testing the NSP

• Limits of performance
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Testing the RIP

• Given 0 < k ≤ n, Candès & Tao (2005) define the restricted isometry
constant δk(A) as smallest number δ such that

(1 − δ)‖z‖2
2 ≤ ‖AIz‖2

2 ≤ (1 + δ)‖z‖2
2,

for all z ∈ R|I| and any index subset I ⊂ [1, n] of cardinality at most k, where
AI is the submatrix formed by extracting the columns of A indexed by I.

• The constant δk(A) measures how far sparse subsets of the columns of A are
from being an isometry.

• Candès & Tao (2005): δk(A) controls sparse recovery using ℓ1-minimization.
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Testing the RIP

Following Candès & Tao (2005), suppose the solution has cardinality k.

• If δ2k(A) < 1, we can recover the error e by solving:

minimize Card(x)
subject to Ax = Ae

in the variable x ∈ Rn, which is a combinatorial problem.

• If δ2k(A) <
√

2 − 1, we can recover the error e by solving:

minimize ‖x‖1

subject to Ax = Ae

in the variable x ∈ Rn, which is a linear program.
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Testing the RIP

The constant δ2k(A) < 1 also controls reconstruction error when exact
recovery does not occur, with

‖x∗ − e‖1 ≤ 2
1 + (

√
2 − 1)δ2k(A)

1 − δ2k(A)/(
√

2 − 1)
σk(e)

where x∗ is the solution to the ℓ1 minimization problem and e is the original
signal, with

σk(x) = min
Card(u)≤k

‖u − e‖1

denoting the best possible approximation error.

See Cohen et al. (2009) or Candes (2008) for simple proofs.
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Testing the RIP

• The restricted isometry constant δk(A) can be computed by solving the
following sparse eigenvalue problem

(1 + δmax
k ) = max. xT (AAT )x

s. t. Card(x) ≤ k
‖x‖ = 1,

in x ∈ Rm (a similar problem gives δmin
k and δk(A) = max{δmin

k , δmax
k }).

• SDP relaxation in d’Aspremont, El Ghaoui, Jordan & Lanckriet (2007):

maximize xTAATx
subject to ‖x‖2 = 1

Card(x) ≤ k,

is bounded by
maximize Tr(AATX)
subject to Tr(X) = 1

1
T |X |1 ≤ k

X � 0,
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Semidefinite relaxation

As in Goemans & Williamson (1995) for example, start from

maximize xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

where x ∈ Rn. Let X = xxT and write everything in terms of the matrix X

maximize Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT ,

Replace X = xxT by the equivalent X � 0, Rank(X) = 1

maximize Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

again, this is the same problem.
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Semidefinite relaxation

We have made some progress:

• The objective Tr(AX) is now linear in X

• The (non-convex) constraint ‖x‖2 = 1 became a linear constraint Tr(X) = 1.

But this is still a hard problem:

• The Card(X) ≤ k2 is still non-convex.

• So is the constraint Rank(X) = 1.

We still need to relax the two non-convex constraints above:

• If u ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2. So we can replace

Card(X) ≤ k2 by the weaker (but convex): 1
T |X |1 ≤ k.

• We simply drop the rank constraint
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Semidefinite Programming

Semidefinite relaxation:

max. xTAx
s.t. ‖x‖2 = 1

Card(x) ≤ k,

is bounded by
max. Tr(AX)
s.t. Tr(X) = 1

1
T |X |1 ≤ k

X � 0,

This is a (convex) semidefinite program in the variable X ∈ Sn and can be
solved efficiently (roughly O(n4) in this case).
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Testing the RIP
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Upper bound on δS using approximate sparse eigenvectors, for a Bernoulli matrix
of dimension n = 1000, p = 750 (blue cicles).
Lower bound on δS using approximate sparse eigenvectors (black squares).
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Testing the NSP

Given A ∈ Rm×n and k > 0, Donoho & Huo (2001) or Cohen et al. (2009)
among others, define the Nullspace Property of the matrix A as

‖xT‖1 ≤ αk‖x‖1

for all vectors x ∈ Rn with Ax = 0 and index subsets T ⊂ [1, n] with
cardinality k, for some αk ∈ [0, 1).

Once again, two thresholds:

• α2k < 1 means recovery is guaranteed by solving a ℓ0 minimization problem.

• αk < 1/2 means recovery is guaranteed by solving a ℓ1 minimization problem.

Cohen et al. (2009) show that RIP (2k, δ) implies NSP with
α = (1 + 5δ)/(2 + 2δ), so the NSP is a weaker condition for sparse recovery.
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Testing the NSP

• By homogeneity, we have

αk = max
{Ax=0, ‖x‖1=1}

max
{‖y‖∞=1, ‖y‖1≤k}

yTx

• An upper bound can be computed by solving

maximize Tr(Z)
subject to AXAT = 0, ‖X‖1 ≤ 1,

‖Y ‖∞ ≤ 1, ‖Y ‖1 ≤ k2, ‖Z‖1 ≤ k,
(

X ZT

Z Y

)

� 0,

which is a semidefinite program in X,Y ∈ Sn, Z ∈ Rn×n.

• This is a standard semidefinite relaxation, except for the redundant constraint
‖Z‖1 ≤ k which significantly improves performance. Extra column-wise
redundant constraints further tighten it.

• Another LP-based relaxation was derived in Juditsky & Nemirovski (2008).
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Testing the NSP

• Use an elimination result for LMIs in Boyd, El Ghaoui, Feron & Balakrishnan
(1994, §2.6.2) to reduce the size of the problem and express it in terms of a
matrix P where AP = 0 with P TP = I.

• Compute the dual and using binary search to certify αk ≤ 1/2, we solve

maximize λmin

(

P TU1P −1
2P

T (I + U4)
−1

2(I + UT
4 )P U2 + U3

)

subject to ‖U1‖∞ + k2‖U2‖∞ + ‖U3‖1 + k‖U4‖∞ ≤ 1/2

in the variables U1, U2, U3 ∈ Sn and U4 ∈ Rn×n.

• Shows that the relaxation is rotation invariant.
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Testing the NSP

• The complexity of computing the Euclidean projection (x0, y0, z0, w0) ∈ R3n on

‖x‖∞ + k2‖y‖∞ + ‖z‖1 + k‖w‖∞ ≤ α

is bounded by O(n log n log2(1/ǫ)), where ǫ is the target precision in projecting.

• Using smooth optimization techniques as in Nesterov (2007), we get the
following complexity bound:

O

(

n4
√

log n

ǫ

)

• In practice, this is still slow. Much slower than the LP relaxation in Juditsky &
Nemirovski (2008). Slower also than a similar algorithm in d’Aspremont et al.
(2007) to bound the RI constant.
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Testing the NSP

• We can use randomization to generate certificates that αk > 1/2 and show
that sparse recovery fails.

• Concentration result: let X ∈ Sn, x ∼ N (0, X) and δ > 0, we have

P

(

‖x‖1

(
√

2/π +
√

2 log δ)
∑n

i=1 (Xii)
1/2

≥ 1

)

≤ 1

δ

• Highlights the importance of the redundant constraint on Z:

‖Z‖1 ≤
(

n
∑

i=1

(Xii)
1/2

)(

n
∑

i=1

(Yii)
1/2

)

with equality when the SDP solution has rank one.
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Testing the NSP

• Tightness: writing SDPk the optimal value of the relaxation, we have

SDPk − ǫ

g(X, δ)h(Y, n, k, δ)
≤ αk ≤ SDPk

where
g(X, δ) = (

√

2/π +
√

2 log δ)
∑n

i=1 (Xii)
1/2

and

h(Y, n, k, δ) = max{(
√

2 log 2n +
√

2 log δ) max
i=1,...,n

(Yii)
1/2,

(
√

2/π +
√

2 log δ)
∑n

i=1 (Yii)
1/2

k
}

• Because
∑n

i=1(Xii)
1/2 ≤ √

n here, this is roughly

SDPk − ǫ

max
{√

2 log 2n,
√

m
k

√

n
m

√

1
k

}

C
√

n
≤ αk ≤ SDPk

A. d’Aspremont, F. Bach, L. El Ghaoui. Fields Institute workshop on complexity of numerical computation, October 2009. 31



Testing the NSP

Relaxation ρ α1 α2 α3 α4 α5 Strong k Weak k

LP 0.5 0.27 0.49 0.67 0.83 0.97 2 11

SDP 0.5 0.27 0.49 0.65 0.81 0.94 2 11

SDP low. 0.5 0.27 0.31 0.33 0.32 0.35 2 11

LP 0.6 0.22 0.41 0.57 0.72 0.84 2 12

SDP 0.6 0.22 0.41 0.56 0.70 0.82 2 12

SDP low. 0.6 0.22 0.29 0.31 0.32 0.36 2 12

LP 0.7 0.20 0.34 0.47 0.60 0.71 3 14

SDP 0.7 0.20 0.34 0.46 0.59 0.70 3 14

SDP low. 0.7 0.20 0.27 0.31 0.35 0.38 3 14

LP 0.8 0.15 0.26 0.37 0.48 0.58 3 16

SDP 0.8 0.15 0.26 0.37 0.48 0.58 3 16

SDP low. 0.8 0.15 0.23 0.28 0.33 0.38 3 16

Given ten sample Gaussian matrices of leading dimension n = 40, we list median
upper bounds on the values of αk for various cardinalities k and matrix shape
ratios ρ. We also list the asymptotic upper bound on both strong and weak
recovery computed in Donoho & Tanner (2008) and the lower bound on αk

obtained by randomization using the SDP solution (SDP low.).
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Limits of performance

• The SDP relaxation is tight for α1.

• Based on results in Juditsky & Nemirovski (2008), this also means that it can
prove perfect recovery at cardinality k = O(

√
k∗) when A satisfies RIP at the

optimal rate k = O(k∗).

• It cannot do better than k = O(
√

k∗). (Counter-example by A. Nemirovski:
feasible point of the SDP where k =

√
k∗ with objective greater than 1/2 in

testing the NSP).

• The LP relaxation in Juditsky & Nemirovski (2008) guarantees the same
k = O(

√
k∗) when A satisfies RIP at k = O(k∗). It also cannot do better than

this rate.

• The same kind of argument shows that the DSCPA relaxation in d’Aspremont
et al. (2007) cannot do better than k = O(

√
k∗).

This means that all current convex relaxations for testing sparse recovery
conditions achieve a maximum rate of O(

√
m). . .
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Conclusion

• Good news: Tractable convex relaxations of sparse recovery conditions prove
recovery at cardinality k = O(

√
k∗) for any matrix satisfying NSP at the

optimal rate k = O(k∗).

• Bad news: Testing recovery conditions on deterministic matrices at the
optimal rate O(m) remains an open problem.

What next?

• Improved relaxations.

• Test weak recovery instead.

• Prove hardness of testing NSP and RIP beyond O(
√

m): optimization would
do worst than sampling a few Gaussian variables?
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