Testing the Nullspace Property using Semidefinite Programming

Alex d'Aspremont, Francis Bach, Laurent El Ghaoui
Princeton University, École Normale Supérieure/INRIA, U.C. Berkeley.

Support from NSF, DHS and Google.

Introduction

Consider the following underdetermined linear system

where $A \in \mathbf{R}^{m \times n}$, with $n \gg m$.

Can we find the sparsest solution?

Introduction

- Signal processing: We make a few measurements of a high dimensional signal, which admits a sparse representation in a well chosen basis (e.g. Fourier, wavelet). Can we reconstruct the signal exactly?
- Coding: Suppose we transmit a message which is corrupted by a few errors. How many errors does it take to start losing the signal?
- Statistics: Variable selection in regression (LASSO, etc).

Introduction

Why sparsity?

- Sparsity is a proxy for power laws. Most results stated here on sparse vectors apply to vectors with a power law decay in coefficient magnitude.
- Power laws appear everywhere. . .
- Zipf law: word frequencies in natural language follow a power law.
- Ranking: pagerank coefficients follow a power law.
- Signal processing: $1 / f$ signals
- Social networks: node degrees follow a power law.
- Earthquakes: Gutenberg-Richter power laws
- River systems, cities, net worth, etc.

Introduction

Frequency vs. word in Wikipedia (from Wikipedia).

Introduction

Frequency vs. magnitude for earthquakes worldwide. Christensen, Danon, Scanlon \& Bak (2002)

Introduction

Left: Original image.
Right: Same image reconstructed from 9\% largest wavelet coefficients.

Introduction

- Getting the sparsest solution means solving

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Card}(x) \\
\text { subject to } & A x=b
\end{array}
$$

which is a (hard) combinatorial problem in $x \in \mathbf{R}^{n}$.

- A classic heuristic is to solve instead

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=b
\end{array}
$$

which is equivalent to an (easy) linear program.

The l_{1} heuristic

- We seek to solve

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Card}(x) \\
\text { subject to } & A x=b
\end{array}
$$

- Given an a priori bound on the solution, this can be formulated as a Mixed Integer Linear Program:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & A x=b \\
& |x| \preceq B u \\
& u \in\{0,1\}^{n} .
\end{array}
$$

This is a hard combinatorial problem. . .

l_{1} relaxation

Assuming $|x| \leq 1$, we can replace:

$$
\operatorname{Card}(x)=\sum_{i=1}^{n} 1_{\left\{x_{i} \neq 0\right\}}
$$

with

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

Graphically, assuming $x \in[-1,1]$ this is:

The l_{1} norm is the largest convex lower bound on $\operatorname{Card}(x)$ in $[-1,1]$.

l_{1} relaxation

$\operatorname{minimize}$	$\operatorname{Card}(x)$		
subject to	$A x=b$	\quad becomes \quad	minimize
:---	$\quad\|x\|_{1}$,		

- Relax the constraint $u \in\{0,1\}^{n}$ as $u \in[0,1]^{n}$ in the MILP formulation.
- Can also be seen as a Lagrangian relaxation.
- Same trick can be generalized (cf. minimum rank semidefinite program by Fazel, Hindi \& Boyd (2001)).

Introduction

Example: fix A, draw many random sparse signals e and plot the probability of perfectly recovering e by solving

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=A e
\end{array}
$$

in $x \in \mathbf{R}^{n}$ over 100 samples, with $n=50$ and $m=30$.

Introduction

- Donoho \& Tanner (2005), Candès \& Tao (2005):

For certain matrices A, when the solution e is sparse enough, the solution of the ℓ_{1}-minimization problem is also the sparsest solution to $A x=A e$.

- This happens even when $\operatorname{Card}(\mathbf{e})=\mathbf{O}(\mathbf{m})$ asymptotically in n when $m=O(n)$, which is provably optimal.

Introduction

Similar results exist for rank minimization.

- The ℓ_{1} norm is replaced by the trace norm on matrices.
- Exact recovery results are detailed in Recht, Fazel \& Parrilo (2007), Candes \& Recht (2008), . . .

Introduction

Explicit conditions on the matrix A for perfect recovery of all sparse signals e.

- Restricted Isometry Property (RIP) from Candès \& Tao (2005).
- Nullspace Property (NSP) from Donoho \& Huo (2001), Cohen, Dahmen \& DeVore (2009), . . .

Candès \& Tao (2005) and Cohen et al. (2009) show that these conditions are satisfied by certain classes of random matrices: Gaussian, Bernoulli, etc.
(Donoho \& Tanner (2005) use a geometric argument)

One small problem. . .

Testing these conditions on general matrices is harder than finding the sparsest solution to an underdetermined linear system for example.

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Testing the RIP

- Given $0<k \leq n$, Candès \& Tao (2005) define the restricted isometry constant $\delta_{k}(A)$ as smallest number δ such that

$$
(1-\delta)\|z\|_{2}^{2} \leq\left\|A_{I} z\right\|_{2}^{2} \leq(1+\delta)\|z\|_{2}^{2},
$$

for all $z \in \mathbf{R}^{|I|}$ and any index subset $I \subset[1, n]$ of cardinality at most k, where A_{I} is the submatrix formed by extracting the columns of A indexed by I.

- The constant $\delta_{k}(A)$ measures how far sparse subsets of the columns of A are from being an isometry.
- Candès \& Tao (2005): $\delta_{k}(A)$ controls sparse recovery using ℓ_{1}-minimization.

Testing the RIP

Following Candès \& Tao (2005), suppose the solution has cardinality k.

- If $\delta_{2 k}(A)<1$, we can recover the error e by solving:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Card}(x) \\
\text { subject to } & A x=A e
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, which is a combinatorial problem.

- If $\delta_{2 k}(A)<\sqrt{2}-1$, we can recover the error e by solving:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=A e
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, which is a linear program.

Testing the RIP

The constant $\delta_{2 k}(A)<1$ also controls reconstruction error when exact recovery does not occur, with

$$
\left\|x^{*}-e\right\|_{1} \leq 2 \frac{1+(\sqrt{2}-1) \delta_{2 k}(A)}{1-\delta_{2 k}(A) /(\sqrt{2}-1)} \sigma_{k}(e)
$$

where x^{*} is the solution to the ℓ_{1} minimization problem and e is the original signal, with

$$
\sigma_{k}(x)=\min _{\operatorname{Card}(u) \leq k}\|u-e\|_{1}
$$

denoting the best possible approximation error.

See Cohen et al. (2009) or Candes (2008) for simple proofs.

Testing the RIP

- The restricted isometry constant $\delta_{k}(A)$ can be computed by solving the following sparse eigenvalue problem

$$
\begin{aligned}
& \left(1+\delta_{k}^{\max }\right)=\max . \quad x^{T}\left(A A^{T}\right) x \\
& \text { s. t. } \operatorname{Card}(x) \leq k \\
& \|x\|=1 \text {, }
\end{aligned}
$$

in $x \in \mathbf{R}^{m}$ (a similar problem gives $\delta_{k}^{\min }$ and $\delta_{k}(A)=\max \left\{\delta_{k}^{\min }, \delta_{k}^{\max }\right\}$).

- SDP relaxation in d'Aspremont, El Ghaoui, Jordan \& Lanckriet (2007):

$$
\begin{array}{llll}
\text { maximize } & x^{T} A A^{T} x \\
\text { subject to } & \|x\|_{2}=1 \\
& \text { is bounded by } & \begin{array}{c}
\text { maximize }
\end{array} & \operatorname{Tr}\left(A A^{T} X\right) \\
& \text { subject to } & \operatorname{Tr}(X)=1 \\
& & \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& & X \succeq 0,
\end{array}
$$

Semidefinite relaxation

As in Goemans \& Williamson (1995) for example, start from

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{maximize} & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{array}
\end{array}
$$

where $x \in \mathbf{R}^{n}$. Let $X=x x^{T}$ and write everything in terms of the matrix X

$$
\begin{array}{ll}
\begin{array}{cl}
\operatorname{maximize} & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T},
\end{array} .=\text {. }
\end{array}
$$

Replace $X=x x^{T}$ by the equivalent $X \succeq 0, \operatorname{Rank}(X)=1$

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X \succeq 0, \operatorname{Rank}(X)=1,
\end{array}
$$

again, this is the same problem.

Semidefinite relaxation

We have made some progress:

- The objective $\operatorname{Tr}(A X)$ is now linear in X
- The (non-convex) constraint $\|x\|_{2}=1$ became a linear constraint $\operatorname{Tr}(X)=1$.

But this is still a hard problem:

- The $\operatorname{Card}(X) \leq k^{2}$ is still non-convex.
- So is the constraint $\operatorname{Rank}(X)=1$.

We still need to relax the two non-convex constraints above:

- If $u \in \mathbf{R}^{p}, \operatorname{Card}(u)=q$ implies $\|u\|_{1} \leq \sqrt{q}\|u\|_{2}$. So we can replace $\operatorname{Card}(X) \leq k^{2}$ by the weaker (but convex): $\mathbf{1}^{T}|X| \mathbf{1} \leq k$.
- We simply drop the rank constraint

Semidefinite Programming

Semidefinite relaxation:

\max	$x^{T} A x$		
s.t.	$\\|x\\|_{2}=1$		
	$\operatorname{Card}(x) \leq k$,		

$$
\begin{array}{ll}
\max . & \operatorname{Tr}(A X) \\
\text { s.t. } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0,
\end{array}
$$

$$
\text { is bounded by } \quad \text { s.t. } \quad \operatorname{Tr}(X)=1
$$

This is a (convex) semidefinite program in the variable $X \in \mathbf{S}^{n}$ and can be solved efficiently (roughly $O\left(n^{4}\right)$ in this case).

Testing the RIP

Upper bound on δ_{S} using approximate sparse eigenvectors, for a Bernoulli matrix of dimension $n=1000, p=750$ (blue cicles).
Lower bound on δ_{S} using approximate sparse eigenvectors (black squares).

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Testing the NSP

Given $A \in \mathbf{R}^{m \times n}$ and $k>0$, Donoho \& Huo (2001) or Cohen et al. (2009) among others, define the Nullspace Property of the matrix A as

$$
\left\|x_{T}\right\|_{1} \leq \alpha_{k}\|x\|_{1}
$$

for all vectors $x \in \mathbf{R}^{n}$ with $A x=0$ and index subsets $T \subset[1, n]$ with cardinality k, for some $\alpha_{k} \in[0,1)$.

Once again, two thresholds:

- $\alpha_{2 k}<1$ means recovery is guaranteed by solving a ℓ_{0} minimization problem.
- $\alpha_{k}<1 / 2$ means recovery is guaranteed by solving a ℓ_{1} minimization problem.

Cohen et al. (2009) show that $\operatorname{RIP}(2 k, \delta)$ implies NSP with $\alpha=(1+5 \delta) /(2+2 \delta)$, so the NSP is a weaker condition for sparse recovery.

Testing the NSP

- By homogeneity, we have

$$
\alpha_{k}=\max _{\left\{A x=0,\|x\|_{1}=1\right\}} \max _{\left\{\|y\|_{\infty}=1,\|y\|_{1} \leq k\right\}} y^{T} x
$$

- An upper bound can be computed by solving

$$
\begin{array}{ll}
\text { maximize } & \operatorname{Tr}(Z) \\
\text { subject to } & A X A^{T}=0,\|X\|_{1} \leq 1 \\
& \|Y\|_{\infty} \leq 1,\|Y\|_{1} \leq k^{2},\|Z\|_{1} \leq k \\
& \left(\begin{array}{cc}
X & Z^{T} \\
Z & Y
\end{array}\right) \succeq 0
\end{array}
$$

which is a semidefinite program in $X, Y \in \mathbf{S}_{n}, Z \in \mathbf{R}^{n \times n}$.

- This is a standard semidefinite relaxation, except for the redundant constraint $\|Z\|_{1} \leq k$ which significantly improves performance. Extra column-wise redundant constraints further tighten it.
- Another LP-based relaxation was derived in Juditsky \& Nemirovski (2008).

Testing the NSP

- Use an elimination result for LMIs in Boyd, El Ghaoui, Feron \& Balakrishnan (1994, §2.6.2) to reduce the size of the problem and express it in terms of a matrix P where $A P=0$ with $P^{T} P=\mathbf{I}$.
- Compute the dual and using binary search to certify $\alpha_{k} \leq 1 / 2$, we solve

$$
\begin{array}{ll}
\text { maximize } & \lambda_{\min }\left(\begin{array}{cc}
P^{T} U_{1} P & -\frac{1}{2} P^{T}\left(\mathbf{I}+U_{4}\right) \\
-\frac{1}{2}\left(\mathbf{I}+U_{4}^{T}\right) P & U_{2}+U_{3}
\end{array}\right) \\
\text { subject to } & \left\|U_{1}\right\|_{\infty}+k^{2}\left\|U_{2}\right\|_{\infty}+\left\|U_{3}\right\|_{1}+k\left\|U_{4}\right\|_{\infty} \leq 1 / 2
\end{array}
$$

in the variables $U_{1}, U_{2}, U_{3} \in \mathbf{S}_{n}$ and $U_{4} \in \mathbf{R}^{n \times n}$.

- Shows that the relaxation is rotation invariant.

Testing the NSP

- The complexity of computing the Euclidean projection $\left(x_{0}, y_{0}, z_{0}, w_{0}\right) \in \mathbf{R}^{3 n}$ on

$$
\|x\|_{\infty}+k^{2}\|y\|_{\infty}+\|z\|_{1}+k\|w\|_{\infty} \leq \alpha
$$

is bounded by $O\left(n \log n \log _{2}(1 / \epsilon)\right)$, where ϵ is the target precision in projecting.

- Using smooth optimization techniques as in Nesterov (2007), we get the following complexity bound:

$$
O\left(\frac{n^{4} \sqrt{\log n}}{\epsilon}\right)
$$

- In practice, this is still slow. Much slower than the LP relaxation in Juditsky \& Nemirovski (2008). Slower also than a similar algorithm in d'Aspremont et al. (2007) to bound the RI constant.

Testing the NSP

- We can use randomization to generate certificates that $\alpha_{k}>1 / 2$ and show that sparse recovery fails.
- Concentration result: let $X \in \mathbf{S}_{n}, x \sim \mathcal{N}(0, X)$ and $\delta>0$, we have

$$
\mathbf{P}\left(\frac{\|x\|_{1}}{(\sqrt{2 / \pi}+\sqrt{2 \log \delta}) \sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2}} \geq 1\right) \leq \frac{1}{\delta}
$$

- Highlights the importance of the redundant constraint on Z :

$$
\|Z\|_{1} \leq\left(\sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2}\right)\left(\sum_{i=1}^{n}\left(Y_{i i}\right)^{1 / 2}\right)
$$

with equality when the SDP solution has rank one.

Testing the NSP

- Tightness: writing $S D P_{k}$ the optimal value of the relaxation, we have

$$
\frac{S D P_{k}-\epsilon}{g(X, \delta) h(Y, n, k, \delta)} \leq \alpha_{k} \leq S D P_{k}
$$

where

$$
g(X, \delta)=(\sqrt{2 / \pi}+\sqrt{2 \log \delta}) \sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2}
$$

and

$$
\begin{aligned}
h(Y, n, k, \delta)= & \max \left\{(\sqrt{2 \log 2 n}+\sqrt{2 \log \delta}) \max _{i=1, \ldots, n}\left(Y_{i i}\right)^{1 / 2}\right. \\
& \left.\frac{(\sqrt{2 / \pi}+\sqrt{2 \log \delta}) \sum_{i=1}^{n}\left(Y_{i i}\right)^{1 / 2}}{k}\right\}
\end{aligned}
$$

- Because $\sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2} \leq \sqrt{n}$ here, this is roughly

$$
\frac{S D P_{k}-\epsilon}{\max \left\{\sqrt{2 \log 2 n}, \sqrt{\frac{m}{k}} \sqrt{\frac{n}{m}} \sqrt{\frac{1}{k}}\right\} C \sqrt{n}} \leq \alpha_{k} \leq S D P_{k}
$$

Testing the NSP

Relaxation	ρ	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	Strong k	Weak k
LP	0.5	$\mathbf{0 . 2 7}$	$\mathbf{0 . 4 9}$	0.67	0.83	0.97	2	11
SDP	0.5	$\mathbf{0 . 2 7}$	$\mathbf{0 . 4 9}$	0.65	0.81	0.94	2	11
SDP low.	0.5	0.27	0.31	0.33	0.32	0.35	2	11
LP	0.6	$\mathbf{0 . 2 2}$	$\mathbf{0 . 4 1}$	0.57	0.72	0.84	2	12
SDP	0.6	$\mathbf{0 . 2 2}$	$\mathbf{0 . 4 1}$	0.56	0.70	0.82	2	12
SDP low.	0.6	0.22	0.29	0.31	0.32	0.36	2	12
LP	0.7	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 4 7}$	0.60	0.71	3	14
SDP	0.7	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 4 6}$	0.59	0.70	3	14
SDP low.	0.7	0.20	0.27	0.31	0.35	0.38	3	14
LP	0.8	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 3 7}$	$\mathbf{0 . 4 8}$	0.58	3	16
SDP	0.8	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 3 7}$	$\mathbf{0 . 4 8}$	0.58	3	16
SDP low.	0.8	0.15	0.23	0.28	0.33	0.38	3	16

Given ten sample Gaussian matrices of leading dimension $n=40$, we list median upper bounds on the values of α_{k} for various cardinalities k and matrix shape ratios ρ. We also list the asymptotic upper bound on both strong and weak recovery computed in Donoho \& Tanner (2008) and the lower bound on α_{k} obtained by randomization using the SDP solution (SDP low.).

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Limits of performance

- The SDP relaxation is tight for α_{1}.
- Based on results in Juditsky \& Nemirovski (2008), this also means that it can prove perfect recovery at cardinality $k=O\left(\sqrt{k^{*}}\right)$ when A satisfies RIP at the optimal rate $k=O\left(k^{*}\right)$.
- It cannot do better than $k=O\left(\sqrt{k^{*}}\right)$. (Counter-example by A. Nemirovski: feasible point of the SDP where $k=\sqrt{k^{*}}$ with objective greater than $1 / 2$ in testing the NSP).
- The LP relaxation in Juditsky \& Nemirovski (2008) guarantees the same $k=O\left(\sqrt{k^{*}}\right)$ when A satisfies RIP at $k=O\left(k^{*}\right)$. It also cannot do better than this rate.
- The same kind of argument shows that the DSCPA relaxation in d'Aspremont et al. (2007) cannot do better than $k=O\left(\sqrt{k^{*}}\right)$.

This means that all current convex relaxations for testing sparse recovery conditions achieve a maximum rate of $\mathrm{O}(\sqrt{\mathbf{m}})$..

Conclusion

- Good news: Tractable convex relaxations of sparse recovery conditions prove recovery at cardinality $k=O\left(\sqrt{k^{*}}\right)$ for any matrix satisfying NSP at the optimal rate $k=O\left(k^{*}\right)$.
- Bad news: Testing recovery conditions on deterministic matrices at the optimal rate $O(m)$ remains an open problem.

What next?

- Improved relaxations.
- Test weak recovery instead.
- Prove hardness of testing NSP and RIP beyond $O(\sqrt{m})$: optimization would do worst than sampling a few Gaussian variables?

References

Boyd, S., El Ghaoui, L., Feron, E. \& Balakrishnan, V. (1994), Linear Matrix Inequalities in System and Control Theory, SIAM.
Candes, E. (2008), 'The Restricted Isometry Property and Its Implications for Compressed Sensing', CRAS .
Candès, E. J. \& Tao, T. (2005), 'Decoding by linear programming', Information Theory, IEEE Transactions on 51(12), 4203-4215.
Candes, E. \& Recht, B. (2008), 'Exact matrix completion via convex optimization', preprint .
Christensen, K., Danon, L., Scanlon, T. \& Bak, P. (2002), 'Unified scaling law for earthquakes'.
Cohen, A., Dahmen, W. \& DeVore, R. (2009), 'Compressed sensing and best k-term approximation', Journal of the AMS 22(1), $211-231$.
d'Aspremont, A., El Ghaoui, L., Jordan, M. \& Lanckriet, G. R. G. (2007), 'A direct formulation for sparse PCA using semidefinite programming', SIAM Review 49(3), 434-448.
Donoho, D. \& Huo, X. (2001), 'Uncertainty principles and ideal atomic decomposition', IEEE Transactions on Information Theory 47(7), 2845-2862.
Donoho, D. L. \& Tanner, J. (2005), 'Sparse nonnegative solutions of underdetermined linear equations by linear programming', Proc. of the National Academy of Sciences 102(27), 9446-9451.
Donoho, D. \& Tanner, J. (2008), 'Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications', Arxiv preprint arXiv:0807.3590 .

Fazel, M., Hindi, H. \& Boyd, S. (2001), 'A rank minimization heuristic with application to minimum order system approximation', Proceedings American Control Conference 6, 4734-4739.
Goemans, M. \& Williamson, D. (1995), 'Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming', J. ACM 42, 1115-1145.
Juditsky, A. \& Nemirovski, A. (2008), 'On verifiable sufficient conditions for sparse signal recovery via ℓ_{1} minimization', ArXiv:0809.2650.
Nesterov, Y. (2007), 'Smoothing technique and its applications in semidefinite optimization', Mathematical Programming 110(2), 245-259.
Recht, B., Fazel, M. \& Parrilo, P. (2007), 'Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization', Arxiv preprint arXiv:0706.4138 .

