Testing the Nullspace Property using Semidefinite Programming

Alex d'Aspremont, Francis Bach, Laurent El Ghaoui

Princeton University, École Normale Supérieure/INRIA, U.C. Berkeley.

Support from NSF, DHS and Google.

Consider the following underdetermined linear system

where $A \in \mathbf{R}^{m \times n}$, with $n \gg m$.

Can we find the **sparsest** solution?

- **Signal processing:** We make a few measurements of a high dimensional signal, which admits a sparse representation in a well chosen basis (e.g. Fourier, wavelet). Can we reconstruct the signal exactly?
- **Coding:** Suppose we transmit a message which is corrupted by a few errors. How many errors does it take to start losing the signal?
- Statistics: Variable selection in regression (LASSO, etc).

Why sparsity?

- Sparsity is a proxy for **power laws**. Most results stated here on sparse vectors apply to vectors with a power law decay in coefficient magnitude.
- Power laws appear everywhere. . .
 - Zipf law: word frequencies in natural language follow a power law.
 - Ranking: pagerank coefficients follow a power law.
 - \circ Signal processing: 1/f signals
 - Social networks: node degrees follow a power law.
 - Earthquakes: Gutenberg-Richter power laws
 - River systems, cities, net worth, etc.

Frequency vs. word in Wikipedia (from Wikipedia).

Frequency vs. magnitude for earthquakes worldwide. Christensen, Danon, Scanlon & Bak (2002)

9% wavelet coefs.

Left: Original image.

Right: Same image reconstructed from 9% largest wavelet coefficients.

Getting the sparsest solution means solving

minimize
$$Card(x)$$

subject to $Ax = b$

which is a (hard) **combinatorial** problem in $x \in \mathbb{R}^n$.

A classic heuristic is to solve instead

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = b \end{array}$$

which is equivalent to an (easy) linear program.

The l_1 heuristic

We seek to solve

minimize
$$\mathbf{Card}(x)$$
 subject to $Ax = b$.

 Given an a priori bound on the solution, this can be formulated as a Mixed Integer Linear Program:

minimize
$$\mathbf{1}^T u$$
 subject to $Ax = b$ $|x| \leq Bu$ $u \in \{0, 1\}^n$.

This is a hard combinatorial problem. . .

l_1 relaxation

Assuming $|x| \leq 1$, we can replace:

$$Card(x) = \sum_{i=1}^{n} 1_{\{x_i \neq 0\}}$$

with

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Graphically, assuming $x \in [-1, 1]$ this is:

The l_1 norm is the largest convex lower bound on Card(x) in [-1,1].

l_1 relaxation

minimize
$$\mathbf{Card}(x)$$
 subject to $Ax = b$

becomes

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = b \end{array}$$

- Relax the constraint $u \in \{0,1\}^n$ as $u \in [0,1]^n$ in the MILP formulation.
- Can also be seen as a Lagrangian relaxation.
- Same trick can be generalized (cf. **minimum rank** semidefinite program by Fazel, Hindi & Boyd (2001)).

Example: fix A, draw many random sparse signals e and plot the probability of perfectly recovering e by solving

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = Ae \end{array}$$

in $x \in \mathbb{R}^n$ over 100 samples, with n = 50 and m = 30.

Donoho & Tanner (2005), Candès & Tao (2005):

For certain matrices A, when the solution e is sparse enough, the solution of the ℓ_1 -minimization problem is also the sparsest solution to Ax = Ae.

• This happens even when Card(e) = O(m) asymptotically in n when m = O(n), which is provably optimal.

Similar results exist for rank minimization.

- The ℓ_1 norm is replaced by the trace norm on matrices.
- Exact recovery results are detailed in Recht, Fazel & Parrilo (2007), Candes & Recht (2008), . . .

Explicit conditions on the matrix A for perfect recovery of all sparse signals e.

- Restricted Isometry Property (RIP) from Candès & Tao (2005).
- Nullspace Property (NSP) from Donoho & Huo (2001), Cohen, Dahmen & DeVore (2009), . . .

Candès & Tao (2005) and Cohen et al. (2009) show that these conditions are satisfied by certain classes of **random matrices**: Gaussian, Bernoulli, etc. (Donoho & Tanner (2005) use a geometric argument)

One small problem. . .

Testing these conditions on general matrices is **harder** than finding the sparsest solution to an underdetermined linear system for example.

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

• Given $0 < k \le n$, Candès & Tao (2005) define the **restricted isometry** constant $\delta_k(A)$ as smallest number δ such that

$$(1 - \delta) \|z\|_2^2 \le \|A_I z\|_2^2 \le (1 + \delta) \|z\|_2^2,$$

for all $z \in \mathbf{R}^{|I|}$ and any index subset $I \subset [1, n]$ of cardinality at most k, where A_I is the submatrix formed by extracting the columns of A indexed by I.

- The constant $\delta_k(A)$ measures how far sparse subsets of the columns of A are from being an isometry.
- Candès & Tao (2005): $\delta_k(A)$ controls **sparse recovery** using ℓ_1 -minimization.

Following Candès & Tao (2005), suppose the solution has cardinality k.

• If $\delta_{2k}(A) < 1$, we can recover the error e by solving:

minimize
$$Card(x)$$

subject to $Ax = Ae$

in the variable $x \in \mathbb{R}^n$, which is a **combinatorial** problem.

• If $\delta_{2k}(A) < \sqrt{2} - 1$, we can recover the error e by solving:

minimize
$$||x||_1$$
 subject to $Ax = Ae$

in the variable $x \in \mathbf{R}^n$, which is a **linear program**.

The constant $\delta_{2k}(A) < 1$ also **controls reconstruction error** when exact recovery does not occur, with

$$||x^* - e||_1 \le 2 \frac{1 + (\sqrt{2} - 1)\delta_{2k}(A)}{1 - \delta_{2k}(A)/(\sqrt{2} - 1)} \sigma_k(e)$$

where x^* is the solution to the ℓ_1 minimization problem and e is the original signal, with

$$\sigma_k(x) = \min_{\mathbf{Card}(u) \le k} \|u - e\|_1$$

denoting the **best possible approximation error**.

See Cohen et al. (2009) or Candes (2008) for simple proofs.

• The restricted isometry constant $\delta_k(A)$ can be computed by solving the following sparse eigenvalue problem

$$(1+\delta_k^{\max}) = \max \quad x^T(AA^T)x$$
 s. t.
$$\mathbf{Card}(x) \leq k$$

$$\|x\| = 1,$$

in $x \in \mathbf{R}^m$ (a similar problem gives δ_k^{\min} and $\delta_k(A) = \max\{\delta_k^{\min}, \delta_k^{\max}\}$).

• SDP relaxation in d'Aspremont, El Ghaoui, Jordan & Lanckriet (2007):

maximize
$$x^TAA^Tx$$
 subject to $\|x\|_2=1$ $\|\mathbf{Tr}(X)\|_2=1$ subject to $\|x\|_2=1$ $\mathbf{Tr}(X)=1$ $\mathbf{Tr}(X)=1$

Semidefinite relaxation

As in Goemans & Williamson (1995) for example, start from

maximize
$$x^T A x$$

subject to $||x||_2 = 1$
 $\mathbf{Card}(x) \le k$,

where $x \in \mathbf{R}^n$. Let $X = xx^T$ and write everything in terms of the matrix X

maximize
$$\mathbf{Tr}(AX)$$
 subject to $\mathbf{Tr}(X) = 1$ $\mathbf{Card}(X) \leq k^2$ $X = xx^T,$

Replace $X = xx^T$ by the equivalent $X \succeq 0$, $\mathbf{Rank}(X) = 1$

maximize
$$\mathbf{Tr}(AX)$$

subject to $\mathbf{Tr}(X) = 1$
 $\mathbf{Card}(X) \leq k^2$
 $X \succeq 0, \ \mathbf{Rank}(X) = 1,$

again, this is the same problem.

Semidefinite relaxation

We have made **some progress**:

- The objective $\mathbf{Tr}(AX)$ is now **linear** in X
- The (non-convex) constraint $||x||_2 = 1$ became a **linear** constraint $\mathbf{Tr}(X) = 1$.

But this is still a hard problem:

- The $\mathbf{Card}(X) \leq k^2$ is still non-convex.
- So is the constraint $\operatorname{\mathbf{Rank}}(X) = 1$.

We still need to relax the two non-convex constraints above:

- If $u \in \mathbb{R}^p$, $\mathbf{Card}(u) = q$ implies $||u||_1 \le \sqrt{q}||u||_2$. So we can replace $\mathbf{Card}(X) \le k^2$ by the weaker (but **convex**): $\mathbf{1}^T |X| \mathbf{1} \le k$.
- We simply drop the rank constraint

Semidefinite Programming

Semidefinite relaxation:

max.
$$x^TAx$$
 is bounded by $\mathbf{Tr}(AX)$ s.t. $\|x\|_2 = 1$ $\mathbf{Card}(x) \leq k$, $\mathbf{Tr}(X) = 1$ \mathbf{Tr}

This is a (convex) semidefinite program in the variable $X \in \mathbf{S}^n$ and can be solved efficiently (roughly $O(n^4)$ in this case).

Upper bound on δ_S using approximate sparse eigenvectors, for a Bernoulli matrix of dimension n=1000, p=750 (blue cicles).

Lower bound on δ_S using approximate sparse eigenvectors (black squares).

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Given $A \in \mathbb{R}^{m \times n}$ and k > 0, Donoho & Huo (2001) or Cohen et al. (2009) among others, define the **Nullspace Property** of the matrix A as

$$||x_T||_1 \le \alpha_k ||x||_1$$

for all vectors $x \in \mathbf{R}^n$ with Ax = 0 and index subsets $T \subset [1, n]$ with cardinality k, for some $\alpha_k \in [0, 1)$.

Once again, two thresholds:

- $\alpha_{2k} < 1$ means recovery is guaranteed by solving a ℓ_0 minimization problem.
- $\alpha_k < 1/2$ means recovery is guaranteed by solving a ℓ_1 minimization problem.

Cohen et al. (2009) show that $RIP(2k,\delta)$ implies NSP with $\alpha=(1+5\delta)/(2+2\delta)$, so the NSP is a **weaker** condition for sparse recovery.

By homogeneity, we have

$$\alpha_k = \max_{\{Ax=0, \|x\|_1=1\}} \max_{\{\|y\|_{\infty}=1, \|y\|_1 \le k\}} y^T x$$

An upper bound can be computed by solving

maximize
$$\begin{aligned} \mathbf{Tr}(Z) \\ \text{subject to} \quad & AXA^T = 0, \ \|X\|_1 \leq 1, \\ & \|Y\|_\infty \leq 1, \ \|Y\|_1 \leq k^2, \ \|Z\|_1 \leq k, \\ & \left(\begin{array}{cc} X & Z^T \\ Z & Y \end{array} \right) \succeq 0, \end{aligned}$$

which is a semidefinite program in $X, Y \in \mathbf{S}_n, Z \in \mathbf{R}^{n \times n}$.

- This is a standard semidefinite relaxation, except for the redundant constraint $||Z||_1 \le k$ which significantly improves performance. Extra column-wise redundant constraints further tighten it.
- Another LP-based relaxation was derived in Juditsky & Nemirovski (2008).

- Use an **elimination result** for LMIs in Boyd, El Ghaoui, Feron & Balakrishnan (1994, $\S 2.6.2$) to reduce the size of the problem and express it in terms of a matrix P where AP=0 with $P^TP=\mathbf{I}$.
- Compute the dual and using **binary search** to certify $\alpha_k \leq 1/2$, we solve

maximize
$$\lambda_{\min} \begin{pmatrix} P^T U_1 P & -\frac{1}{2} P^T (\mathbf{I} + U_4) \\ -\frac{1}{2} (\mathbf{I} + U_4^T) P & U_2 + U_3 \end{pmatrix}$$
 subject to $\|U_1\|_{\infty} + k^2 \|U_2\|_{\infty} + \|U_3\|_1 + k \|U_4\|_{\infty} \le 1/2$

in the variables $U_1, U_2, U_3 \in \mathbf{S}_n$ and $U_4 \in \mathbf{R}^{n \times n}$.

Shows that the relaxation is rotation invariant.

• The complexity of computing the Euclidean projection $(x_0, y_0, z_0, w_0) \in \mathbf{R}^{3n}$ on

$$||x||_{\infty} + k^2 ||y||_{\infty} + ||z||_1 + k||w||_{\infty} \le \alpha$$

is bounded by $O(n \log n \log_2(1/\epsilon))$, where ϵ is the target precision in projecting.

• Using smooth optimization techniques as in Nesterov (2007), we get the following complexity bound:

$$O\left(\frac{n^4\sqrt{\log n}}{\epsilon}\right)$$

• In practice, this is still **slow**. Much slower than the LP relaxation in Juditsky & Nemirovski (2008). Slower also than a similar algorithm in d'Aspremont et al. (2007) to bound the RI constant.

- We can use **randomization** to generate certificates that $\alpha_k > 1/2$ and show that sparse recovery fails.
- Concentration result: let $X \in \mathbf{S}_n$, $x \sim \mathcal{N}(0, X)$ and $\delta > 0$, we have

$$\mathbf{P}\left(\frac{\|x\|_1}{(\sqrt{2/\pi} + \sqrt{2\log\delta})\sum_{i=1}^n (X_{ii})^{1/2}} \ge 1\right) \le \frac{1}{\delta}$$

ullet Highlights the importance of the redundant constraint on Z:

$$||Z||_1 \le \left(\sum_{i=1}^n (X_{ii})^{1/2}\right) \left(\sum_{i=1}^n (Y_{ii})^{1/2}\right)$$

with equality when the SDP solution has rank one.

• **Tightness:** writing SDP_k the optimal value of the relaxation, we have

$$\frac{SDP_k - \epsilon}{g(X, \delta)h(Y, n, k, \delta)} \le \alpha_k \le SDP_k$$

where

$$g(X, \delta) = (\sqrt{2/\pi} + \sqrt{2 \log \delta}) \sum_{i=1}^{n} (X_{ii})^{1/2}$$

and

$$h(Y, n, k, \delta) = \max\{ (\sqrt{2 \log 2n} + \sqrt{2 \log \delta}) \max_{i=1,...,n} (Y_{ii})^{1/2}, \frac{(\sqrt{2/\pi} + \sqrt{2 \log \delta}) \sum_{i=1}^{n} (Y_{ii})^{1/2}}{k} \}$$

• Because $\sum_{i=1}^{n} (X_{ii})^{1/2} \leq \sqrt{n}$ here, this is roughly

$$\frac{SDP_k - \epsilon}{\max\left\{\sqrt{2\log 2n}, \sqrt{\frac{m}{k}}\sqrt{\frac{n}{m}}\sqrt{\frac{1}{k}}\right\}C\sqrt{n}} \le \alpha_k \le SDP_k$$

Relaxation	ρ	$lpha_1$	$lpha_2$	α_3	$lpha_4$	$lpha_5$	Strong k	Weak $\it k$
LP	0.5	0.27	0.49	0.67	0.83	0.97	2	11
SDP	0.5	0.27	0.49	0.65	0.81	0.94	2	11
SDP low.	0.5	0.27	0.31	0.33	0.32	0.35	2	11
LP	0.6	0.22	0.41	0.57	0.72	0.84	2	12
SDP	0.6	0.22	0.41	0.56	0.70	0.82	2	12
SDP low.	0.6	0.22	0.29	0.31	0.32	0.36	2	12
LP	0.7	0.20	0.34	0.47	0.60	0.71	3	14
SDP	0.7	0.20	0.34	0.46	0.59	0.70	3	14
SDP low.	0.7	0.20	0.27	0.31	0.35	0.38	3	14
LP	0.8	0.15	0.26	0.37	0.48	0.58	3	16
SDP	0.8	0.15	0.26	0.37	0.48	0.58	3	16
SDP low.	0.8	0.15	0.23	0.28	0.33	0.38	3	16

Given ten sample Gaussian matrices of leading dimension n=40, we list median upper bounds on the values of α_k for various cardinalities k and matrix shape ratios ρ . We also list the asymptotic upper bound on both strong and weak recovery computed in Donoho & Tanner (2008) and the lower bound on α_k obtained by randomization using the SDP solution (SDP low.).

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Limits of performance

- The SDP relaxation is **tight** for α_1 .
- Based on results in Juditsky & Nemirovski (2008), this also means that it can prove perfect recovery at cardinality $k = O(\sqrt{k^*})$ when A satisfies RIP at the optimal rate $k = O(k^*)$.
- It cannot do better than $k = O(\sqrt{k^*})$. (Counter-example by A. Nemirovski: feasible point of the SDP where $k = \sqrt{k^*}$ with objective greater than 1/2 in testing the NSP).
- The LP relaxation in Juditsky & Nemirovski (2008) guarantees the same $k=O(\sqrt{k^*})$ when A satisfies RIP at $k=O(k^*)$. It also cannot do better than this rate.
- The same kind of argument shows that the DSCPA relaxation in d'Aspremont et al. (2007) cannot do better than $k = O(\sqrt{k^*})$.

This means that all current convex relaxations for testing sparse recovery conditions achieve a **maximum rate of O** $(\sqrt{\mathbf{m}})$. . .

Conclusion

- Good news: Tractable convex relaxations of sparse recovery conditions prove recovery at cardinality $k = O(\sqrt{k^*})$ for any matrix satisfying NSP at the optimal rate $k = O(k^*)$.
- **Bad news:** Testing recovery conditions on deterministic matrices at the optimal rate O(m) remains an open problem.

What next?

- Improved relaxations.
- Test weak recovery instead.
- Prove hardness of testing NSP and RIP beyond $O(\sqrt{m})$: optimization would do worst than sampling a few Gaussian variables?

References

- Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. (1994), Linear Matrix Inequalities in System and Control Theory, SIAM.
- Candes, E. (2008), 'The Restricted Isometry Property and Its Implications for Compressed Sensing', CRAS.
- Candès, E. J. & Tao, T. (2005), 'Decoding by linear programming', Information Theory, IEEE Transactions on 51(12), 4203-4215.
- Candes, E. & Recht, B. (2008), 'Exact matrix completion via convex optimization', preprint .
- Christensen, K., Danon, L., Scanlon, T. & Bak, P. (2002), 'Unified scaling law for earthquakes'.
- Cohen, A., Dahmen, W. & DeVore, R. (2009), 'Compressed sensing and best k-term approximation', Journal of the AMS 22(1), 211–231.
- d'Aspremont, A., El Ghaoui, L., Jordan, M. & Lanckriet, G. R. G. (2007), 'A direct formulation for sparse PCA using semidefinite programming', *SIAM Review* **49**(3), 434–448.
- Donoho, D. & Huo, X. (2001), 'Uncertainty principles and ideal atomic decomposition', *IEEE Transactions on Information Theory* **47**(7), 2845–2862.
- Donoho, D. L. & Tanner, J. (2005), 'Sparse nonnegative solutions of underdetermined linear equations by linear programming', *Proc. of the National Academy of Sciences* **102**(27), 9446–9451.
- Donoho, D. & Tanner, J. (2008), 'Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications', *Arxiv preprint* arXiv:0807.3590.
- Fazel, M., Hindi, H. & Boyd, S. (2001), 'A rank minimization heuristic with application to minimum order system approximation', *Proceedings American Control Conference* **6**, 4734–4739.
- Goemans, M. & Williamson, D. (1995), 'Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming', *J. ACM* **42**, 1115–1145.
- Juditsky, A. & Nemirovski, A. (2008), 'On verifiable sufficient conditions for sparse signal recovery via ℓ_1 minimization', ArXiv:0809.2650.
- Nesterov, Y. (2007), 'Smoothing technique and its applications in semidefinite optimization', *Mathematical Programming* **110**(2), 245–259.
- Recht, B., Fazel, M. & Parrilo, P. (2007), 'Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization', Arxiv preprint arXiv:0706.4138.