Algorithms for Large Scale
Structured Optimization Problems

Complexity of a first-order
augmented Lagrangian (A.L.)

method and A.L. based algorithms
for semidefinite programming

(Third Lecture)

Renato D.C. Monteiro
(Georgia Tech)

Fields 09 — Toronto
October 20-24, 2009



OUTLINE OF THIRD LECTURE

e Complexity of a first-order AL Method
— Problem of interest and its duals
— Exact augmented Lagrangian Method
— Background and objectives
— Termination Criteria
— Solving of A.L. subproblem
— Inexact augmented Lagrangian method
— Iteration-complexity

— Improving the complexity

e SDP algorithms based on the A.L. method
— Low-rank method (Burer and M.)

— Boundary point SDP method (Pohv-Rendl-
Wiegele)

— Newton-CG A.L. method (Zhao, Sun and
Toh)

® Other efficient methods



PROBLEM OF INTEREST AND ITS DUALS

Consider the convex program
(CP) " :=inf{f(x):h(x)=0, x € X},

where X C R" is a compact convex set and f : X — R
is convex and has L¢-Lipschitz-continuous gradient,

and h(x) = Ax — b for some A € R™*™ and b € R™.

Define the dual function d : ™ — R as

d(}) := min {ﬁ(x, A) = f(x) + )\Th(x)} (+)

The Lagrangian dual is

max{d(\) : A € ™M}

Note: The set of optimal sol’s X* of CP is nonempty.

Assumption: The set of Lagrange multipliers
A" :={ A" eR™M . d(N\") =%} £ 0,
p-augmented dual function: For p > 0, let

dy(A) = min { £,(x,3) == £(x) + ATh(x) + £ [B(x)|? ]

p-augmented dual: max{d,(\) : A € ™} has the
same optimal value and solution set as (x).



EXACT AUGMENTED LAGRANGIAN METHOD

Recall that

dy(N) = min {£,(x, ) == £() + ATh(x) + £ W)} ()

Proposition: d,(:) is concave and has 1/p-Lipschitz-
continuous gradient

Vd,(A) = h(x})
where x} denotes an arbitrary optimal sol. of (x).

Augmented Lagrangian Method: Steepest ascent
method applied to max) d,(\). For every k > 0:

X}, € Argmin,cx Lp(X, Ak)

)\k_|_1 = )\k + dep(Ak) — >\k + ph(X;k)

Remark: Can also be view as proximal point
method applied to the regular Lagrangian dual,

from which convergence follows.



BACKGROUND AND OBJECTIVES

Background: 1) The augmented Lagrangian method
is a classical alg. for nonlinear programming
[Bertsekas (04), Ruszczynski(06)].

2) Recently, it regained a lot of interest due to
its efficiency in solving large-scale SDPs and its
reformulations [Burer and Monteiro (03, 05), Burer
and Vandenbussche (2004), Jarre and Rendl (07),
Pohv, Rendl and Wiegele (2006), Zhao, Sun and
Toh (08)].

Goal: Study the complexity of a first-order inexact
A.L. method for (CP)

Issues:

® How accurately should the Lagrangian sub-
problem minycx £,(x, A\x) be solved? Which
algorithm to use for that?

e How to choose the penalty parameter p?

® What is the complexity for obtaining a near-
optimal solution of CP in terms of total # of

inner iterations?



TERMINATION CRITERIA

It is well-known that x* € X* and \* € A" if,
and only if, (X,\) = (x*,\*) satisfies

h(x) .= Ax —b =0,
VE(R)+ AT X € —Nx (%),

where Nx(x) :={se R": (s,x—x) <0, Vx € X}
denotes the normal cone of X at x

Definition: For (ep,eq) € 2, the pair (X, )\) €
X x 1™ is called an (¢p, €q)-primal-dual solution

of (CP) if

|h(%)]| < ep,
VE(X) + AT X € —Nx(X) + B(ea),

where B(n) :={x € R" : ||x|| < n} for every n > 0.



SOLVING THE LAGRANGIAN SUBPROBLEM

Note that £,(-, \x) has M,-Lipschitz-continuous
gradient with M, := L¢ + p||A||?. Hence, the
A.L. subproblem d,(\x) = minyex £,(:, Ax) can be
solved by a first-order algorithm such as Nesterov’s
optimal method

An inexact A.L. method then consists of two types
of iterations:

@ the inner iterations for solving the subproblems
e the outer iterations to update A\,

The outer iteration is A\ 1 = \x + ph(xk), where xi
is an approximate solution of the k-th A.L. subpr.

Proposition: Assume that x; € X is such that
ﬁp(xk, >\k) — dp(>\k) S 7. Then,

2n
Ih(xik) — Vdp (M)l < "
Moreover, xix can be found by Nesterov’s optimal

oM
O <DX p)
U]

iterations, where Dx := max{||x — X|| : x,x € X}.

method in




INExAacT A.L. METHOD

I-AL Method: Given )\o € R™, (ep,€eqa) € RT .,
and {nx} C Ri4. Set k =0.

1)
2)

3)

find xx € X such that £,(xx, \x) —d,(A\k) < 1k

if |h(xx)|| > 3¢p/4, set Ak+1 = Ak + ph(xk),
increment k by 1 and go to step 1

find x € X such that £,(x, \x) —d,(A\x) <,

where
2 2
— mind P _€d
= min { 128’ 8M, }

Stop and output the pair (X7, 5\+) given by

%7 = Mx(X — ViL,(X,\)/M,)

AT = A+ ph(xh)

Proposition: If the method terminates, then it

outputs an (¢p, €q)-primal-dual solution of CP.



ITERATION COMPLEXITY

Proposition (Lan and M. (2008): Let

N = [16D% /(p2e2)]
where DA := miny«cax ||Ao — A*||. If

N-1

2
€
> me < 52—1;,
k=0

then an (ep, €q) -primal-dual solution of CP is found
within at most N outer iterations.

Theorem (Lan and M.): Assume Dj is known. If

3 1
Alie,  TAIZ 128N’ T T

then the I-AL method computes an (¢p, €¢q)-primal-

dual solution in at most O(Z,q) inner iterations,
where

7 38 1
Allz2D?¢ A L D l|A 2
pa o= D (JALDA | 181 Le) | (DalalyE |
€ EZ €Ep €d €d
P-d

and Dx = maxy, x,ex |[x1 — X2



Remark: It is possible to develop a scheme

which consists of guessing an upper bound t on
DA and then applying the I-AL algorithm with
DA replaced by t. Its overall complexity is the

same as in the above theorem.

Improving the complexity: Consider the per-
turbation problem

f*

’Y

= min{f, (x) := f(x) + %Hx —xo||? 1 h(x) = 0,x € X}.

where x¢ is a point in X and v :=¢4/(2Dx). Let
v p

Loy (x,A) == £(x) + 2 x = x0[* + ATh(x) + 5 [Ih(x)|

and

dpy(A) :=min Ly (x,A)  (¥)

xeX
Denote the set of optimal dual multipliers

associated with (x) by A~.



Exploiting strong-convexity:

Note that the function £, (-,\) has M, ,

Lipschitz continuous gradient with
M, = L¢ + pl|A[|* + 7

and it is y-strongly-convex.

Modifications:

e Use a variant of Nesterov’s optimal
method that takes advantage of the

strong convexity;

e Apply the “warm-start” strategy, by
which the approximate solution xj is
used as starting point for solving the
Lagrangian subproblem at the next

iteration.
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BETTER ITERATION-COMPLEXITY

Theorem: Assume that D, :=infy cax [[Ao — A7
is known. Then, the I-AL method applied to
the perturbed problem with

b= 4D7\ Lf—l—’y
ep(logT)% [A[2
2
Pen
— k=0....N—1
e 128N’ 0, !

where N := [16(D})?/(p*¢c2)] and

DxD) ||Al|?
T:_\/ xDAlIA[2 | /Dfo+\/DxA+4
€Ep€d €d €p

finds an (¢p, €q)-primal-dual solution of CP in

at most
O(T -log7 -loglogT)

inner iterations.

Remark: Same complexity holds even if D} is

not known.
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LOW-RANK METHOD FOR SDP

Consider the SDP
(P) min{(C,,X): AX=b, X >0}
For a fixed integer 1 <r < n, we have:
X >0, rank(X)<r < X=VV' VR
Hence,

(Py) min{(C,X): AX=b, X >0, rank(X) <r},

0
(P;) min{(C,VV7T) : A(VVT) =b, V e R**"},

Proposition: V is a local (resp., global) mini-
mum of (P.) iff VV7T is a local (resp., global)

minimum of (P,).

=

e (P,) is equivalent to (P,) = (P);
e drawback of (P,) is its large number of

2

variables, namely n“ variables.
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Key idea: Choose r < n so that (P,) is still
equivalent to (P).

Theorem: (Barvinok 1995 and Pataki 1998)
If (P) has an optimal solution then it has one

whose rank r* satisfies
r'(r*+1) <2m.
As a consequence, if r > [v/2m| then (P,) is
equivalent to (P).
Implementation: (Burer and M. 2003)

e Augmented Lagrangian applied to (f’r)
The number of variables is relatively low,

namely nr < n?;

e r is chosen dynamically; generally, there is
no need to have r > [v/2m|;

e sparsity is nicely exploited.

13



Conclusions:

e Number of iterations is large since the
method is a first-order method, but the

work per iteration is relatively very low.

e No convergence proof is available to
support the method, but it never seems

to fail in practice.

e It performs very well in practice particu-
larly on problems where the dimension n
of X is very large (e.g., SDP relaxations

of maxcut problems).

Flops per Iteration:

O <rnz(S + nz(C —|—an >
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BOUNDARY POINT METH. (POHV ET AL.)

Consider the pair of dual SDPs:

(P) min by (D) max (C,X)
st. A*y —-S=C st. AX =Db
S>=0 X =0

Given X € 8™ and p > 0, the augmented Lagrangian
function £,(-,-;X) for (P) is

Lo(y,8;X) = bTy +(X,C— Ay +8) + L||C — A"y + S|
V(y,S) € ®™ x S, and the assoc. dual function is

d,(X) = min{L,(y,S; X) : (y,S) € R™ x S} (%)

Proposition: If dy € ™ such that A*y > C, then
val(P) = val(D) = max{d,(X) : X € §"}
Proposition: If (7,S) = ((X),S(X)) is the optimal

solution of (x), then Vd,(X) = C — A*y —S.

Augmented Lagrangian iteration: Given X € &%,
obtain (¥,S) = (§(X),S(X)) by solving (%) and set
X — X 4 p(C — A*y —9S).
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Dual viewpoint: The dual of
dy(X) = min{L,(y, S X) : (y,S) € R™ x S2}  (+)

is the problem

~ 1 -~ ~ ~
max{(C,X)——HX—XHz:AX:b,XtO} (k)
X 2p

Notation: For U € §", let U, denote the orthogonal
projection onto S} and U_ = (-U)4. Clearly,
U=U; -U_.

Proposition: For X € §", the following are equiva-
lent:

a) (Sf,g) and X are optimal sol’s of (x) and ()
b) if W:=X/p+C — A"y, then X = pW,, S = W_

and

y=(AA*)"1 [A (% +C+§) — ﬂ

Remark: Note that X,S > 0 and (X,S) = 0. The
method preserves this property while trying to
obtain AX = b and A*y + S = C.

16



Boundary Point Method: Choose p > 0, sequence
{mc} ] 0 and € > 0.

0) Set k =0 and Xg = Sg = 0;

1) Set S = Sy;
2) Compute
X ~
y = (4491 [.A (71{ +C + S) - %} (1)

W = Xy/p+C-A*y
and set S = W_ and X = pW .
3) if [|[AX — b|| > pnx, then go to step 2.
4) set (Xy41,Sk41) = (X,S), yky1 =y and k — k+1
5) if |C + Sk — A*yk|| > €, then go to 1); else stop.
Alternating direction viewpoint:
(1) <= § = argmin{L,(y, S; Xx) : y € R™}
S=W_ < S =argmin{£,(§,S;Xy) : S > 0}
X = pW_ <= X = Xy + p(C + S — A*y)
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Simplified Boundary Point Method: Choose p > 0
and ¢ > 0.

O) Set k = 0 and (YO7807X0) — (07070);

1) If max{[[AXyx — b}, ||C + Sk — A"yk|l} <€, then
stop.

2) Compute

X b
Yir1 = (AA*)T! [A (71{ + C + Sk) — ;} (1)
W = Xyi/p+C—-A"yri1

and set Syi11 = W_ and Xy = pW,.
3) Set k< k+ 1 and go to step 1).

Proposition: Assume that set of optimal solutions
of (P) is non-empty and that (P) satisfies the Slater
condition. Assume also that A* is one-to-one.
Then, {(yk,Sk,Xk)} converges to a primal-dual
optimal solution.

Work per iteration: Discarding the processing
of the factoriztion of AA*, storage is O(n?) and
number of flops is

O <n3 + nz(C) + in: nz(Ai)>
i=1

18



Conclusions:

Being a first-order method, its number of
iterations is usually large compared to second-
order methods but can be considerably lower
than that of the low-rank method on some
classes of SDP problems.

Its work per iteration and amount of storage is
at least O(n3) and O(n?), respectively, making
it prohibitively expensive for problems with
large variable matrix X (i.e., with n > 5,000).

It performs very well in practice particularly
on problems where the dimension n of X is not
so large (e.g., < 3,000). It is generally efficient
for problems with large m (i.e., the size of y).

It has been reported that the method en-
conters more difficulty on extremely sparse
or extremely dense problems or on instances

where either the optimal X or S has small rank.

Convergence proof is available to support the
method but no iteration-complexity is known
for it yet.
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NEWTON-CG A.L.. METHOD (ZHAO ET AL.)

Zhao et al.’s method is an implementation of the
augmented Lagrangian method. Consider the same
SDP as in the previous method and recall that

£,(y,8: Xi) i= bTy + (Xie,C — A%y +8) + £]|C — Ay + S|
=bTy + 55 (kS + Wi(y)[I* — [IXx]|?)
where Wy (y) := X — p(A*y — C). Hence,
dy(Xy) = min{L,(y, S Xy) : (y,S) € R™ x ST}
_ 1
= minLy(y) := bly + 2 W)+ 117 = 1Xxl1?) - (%)
Clearly, if yi is an optimal solution of (*) and
Sk = p~[Wk(FK)]-, then
Xkt1 = Xk + p(C — Ak — Sk) = [Wk(Fx)]+

A semi-smooth Newton-CG algorithm is used to
solve subproblem (x). The gradient of the o.f. of (x)
is

VyLk(y) = b — A[Wk(y)l+, Vye€R™,

which is almost everywhere Frechet-differentiable.

An approximate sol yy of (x) satisfying Ly (yx) —
d,(Xk) < nk is computed and then the update
Xk+1 = [Wk(yk)]+ is performed, where {7y} satisfies

20



Work per iteration:

e Each CG step is on the other of

O (ﬁynz +2 nz(Ai>>
i=1
where 3y = min{yy,n — vy}, 7y = rank[Wk(y)]-
and y is the current Newton iterate.

e Each Newton step requires a new eigenvalue

factorization.
Conclusions:

e Its work per iteration and amount of storage is
at least O(Byn?) and O(n?), respectively, making
it prohibitively expensive for problems with
large variable matrix X (i.e., with n > 5,000).

e It performs very well in practice particularly
on problems where the dimension n of X is not
so large (e.g., < 3,000). It is generally efficient
for problems with large m (i.e., the size of y).

e Convergence proof is available to support the
method but no iteration-complexity is known
for it yet.
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OTHER EFFICIENT METHODS

Methods based on barrier functions:

1) Toh and Kojima (2002), Toh (2004) and the
SPDA code developed by Kojima and his collabo-

rators.

These are IP methods based on iterative solvers,
applied to either an augmented system or its Schur

complement (normal) system.

2) Kocvara and Stingl (2003, 2005) - Modified
barrier method (PENNON)

For (Xy,o0x) € S™ X R4 4, it is based on the modified
barrier subproblem

min bty + (X, [0 (A*y — C+oxI) ™' —oxl])

which is solved by a Newton-CG approach. The
amount of work per iteration and storage is quite
similar to those for IP methods based on iterative

solvers.
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THANK YOU!
AND
THE END

23



