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Outline of third lecture

• Complexity of a first-order AL Method

– Problem of interest and its duals

– Exact augmented Lagrangian Method

– Background and objectives

– Termination Criteria

– Solving of A.L. subproblem

– Inexact augmented Lagrangian method

– Iteration-complexity

– Improving the complexity

• SDP algorithms based on the A.L. method

– Low-rank method (Burer and M.)

– Boundary point SDP method (Pohv-Rendl-

Wiegele)

– Newton-CG A.L. method (Zhao, Sun and

Toh)

• Other efficient methods
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Problem of Interest and its duals

Consider the convex program

(CP) f∗ := inf{f(x) : h(x) = 0, x ∈ X},

where X ⊆ ℜn is a compact convex set and f : X→ ℜ

is convex and has Lf -Lipschitz-continuous gradient,

and h(x) = Ax− b for some A ∈ ℜm×n and b ∈ ℜm.

Define the dual function d : ℜm → ℜ as

d(λ) := min
x∈X

n

L(x, λ) := f(x) + λTh(x)
o

(∗)

The Lagrangian dual is

max{d(λ) : λ ∈ ℜm}

Note: The set of optimal sol’s X∗ of CP is nonempty.

Assumption: The set of Lagrange multipliers

Λ∗ := {λ∗ ∈ ℜm : d(λ∗) = f∗} 6= ∅,

ρ-augmented dual function: For ρ > 0, let

dρ(λ) := min
x∈X

n

Lρ(x, λ) := f(x) + λTh(x) +
ρ

2
‖h(x)‖2

o

ρ-augmented dual: max{dρ(λ) : λ ∈ ℜm} has the

same optimal value and solution set as (∗).
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Exact augmented Lagrangian method

Recall that

dρ(λ) := min
x∈X

n

Lρ(x, λ) := f(x) + λTh(x) +
ρ

2
‖h(x)‖2

o

(∗)

Proposition: dρ(·) is concave and has 1/ρ-Lipschitz-

continuous gradient

∇dρ(λ) = h(x∗

λ)

where x∗

λ
denotes an arbitrary optimal sol. of (∗).

Augmented Lagrangian Method: Steepest ascent

method applied to maxλ dρ(λ). For every k ≥ 0:

x∗

λk
∈ Argminx∈XLρ(x, λk)

λk+1 = λk + ρ∇dρ(λk) = λk + ρh(x∗

λk
)

Remark: Can also be view as proximal point

method applied to the regular Lagrangian dual,

from which convergence follows.
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Background and objectives

Background: 1) The augmented Lagrangian method

is a classical alg. for nonlinear programming

[Bertsekas (04), Ruszczynski(06)].

2) Recently, it regained a lot of interest due to

its efficiency in solving large-scale SDPs and its

reformulations [Burer and Monteiro (03, 05), Burer

and Vandenbussche (2004), Jarre and Rendl (07),

Pohv, Rendl and Wiegele (2006), Zhao, Sun and

Toh (08)].

Goal: Study the complexity of a first-order inexact

A.L. method for (CP)

Issues:

• How accurately should the Lagrangian sub-

problem minx∈X Lρ(x, λk) be solved? Which

algorithm to use for that?

• How to choose the penalty parameter ρ?

• What is the complexity for obtaining a near-

optimal solution of CP in terms of total # of

inner iterations?
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Termination Criteria

It is well-known that x∗ ∈ X∗ and λ∗ ∈ Λ∗ if,

and only if, (x̃, λ̃) = (x∗, λ∗) satisfies

h(x̃) := Ax̃ − b = 0,

∇f(x̃) + AT λ̃ ∈ −NX(x̃),

where NX(x̃) := {s ∈ ℜn : 〈 s,x − x̃ 〉 ≤ 0, ∀x ∈ X}
denotes the normal cone of X at x̃

Definition: For (ǫp, ǫd) ∈ ℜ2
++, the pair (x̃, λ̃) ∈

X × ℜm is called an (ǫp, ǫd)-primal-dual solution

of (CP) if

‖h(x̃)‖ ≤ ǫp,

∇f(x̃) + AT λ̃ ∈ −NX(x̃) + B(ǫd),

where B(η) := {x ∈ ℜn : ‖x‖ ≤ η} for every η ≥ 0.
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Solving the Lagrangian subproblem

Note that Lρ(·, λk) has Mρ-Lipschitz-continuous

gradient with Mρ := Lf + ρ‖A‖2. Hence, the

A.L. subproblem dρ(λk) = minx∈X Lρ(·, λk) can be

solved by a first-order algorithm such as Nesterov’s

optimal method

An inexact A.L. method then consists of two types

of iterations:

• the inner iterations for solving the subproblems

• the outer iterations to update λk

The outer iteration is λk+1 = λk + ρh(xk), where xk

is an approximate solution of the k-th A.L. subpr.

Proposition: Assume that xk ∈ X is such that

Lρ(xk, λk)− dρ(λk) ≤ η. Then,

‖h(xk)−∇dρ(λk)‖ ≤

s

2η

ρ

Moreover, xk can be found by Nesterov’s optimal

method in

O

 

DX

s

2Mρ

η

!

iterations, where DX := max{‖x− x̃‖ : x, x̃ ∈ X}.
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Inexact A.L. Method

I-AL Method: Given λ0 ∈ ℜm, (ǫp, ǫd) ∈ ℜ2
++

and {ηk} ⊆ ℜ++. Set k = 0.

1) find xk ∈ X such that Lρ(xk, λk)−dρ(λk) ≤ ηk

2) if ‖h(xk)‖ > 3ǫp/4, set λk+1 = λk + ρh(xk),

increment k by 1 and go to step 1

3) find x̃ ∈ X such that Lρ(x̃, λk) − dρ(λk) ≤ ζ,

where

ζ := min



ρǫ2p
128

,
ǫ2d

8Mρ

ff

4) Stop and output the pair (x̃+, λ̃+) given by

x̃+ := ΠX(x̃ −∇xLρ(x̃, λ̃)/Mρ)

λ̃+ := λ̃ + ρh(x̃+)

Proposition: If the method terminates, then it

outputs an (ǫp, ǫd)-primal-dual solution of CP.
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Iteration Complexity

Proposition (Lan and M. (2008): Let

N := ⌈16D2
Λ/(ρ2ǫ2p)⌉

where DΛ := minλ∗∈Λ∗ ‖λ0 − λ∗‖. If

N−1
X

k=0

ηk ≤
ρǫ2p

128
,

then an (ǫp, ǫd) -primal-dual solution of CP is found

within at most N outer iterations.

Theorem (Lan and M.): Assume DΛ is known. If

ρ =
4D

3

4

Λ
ǫ
1

4

d

‖A‖
1

4 ǫp
+

Lf

‖A‖2
, ηk :=

ρǫ2p

128N
, k = 0, . . . ,N− 1,

then the I-AL method computes an (ǫp, ǫd)-primal-

dual solution in at most O(Ipd) inner iterations,

where

Ipd :=

2

6

6

6

DX

0

@

‖A‖
7

4 D
3

4

Λ

ǫpǫ
3

4

d

+
‖A‖

ǫp
+

Lf

ǫd

1

A+

„

DΛ‖A‖

ǫd

« 1

2

3

7

7

7

,

and DX = maxx1,x2∈X ‖x1 − x2‖

8



Remark: It is possible to develop a scheme

which consists of guessing an upper bound t on

DΛ and then applying the I-AL algorithm with

DΛ replaced by t. Its overall complexity is the

same as in the above theorem.

Improving the complexity: Consider the per-

turbation problem

f∗γ := min{fγ(x) := f(x) +
γ

2
‖x − x0‖2 : h(x) = 0,x ∈ X}.

where x0 is a point in X and γ := ǫd/(2DX). Let

Lρ,γ(x, λ) := f(x) +
γ

2
‖x − x0‖2 + λTh(x) +

ρ

2
‖h(x)‖2

and

dρ,γ(λ) := min
x∈X

Lρ,γ(x, λ) (∗)

Denote the set of optimal dual multipliers

associated with (∗) by Λ∗

γ.
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Exploiting strong-convexity:

Note that the function Lρ,γ(·, λ) has Mρ,γ-

Lipschitz continuous gradient with

Mρ,γ := Lf + ρ‖A‖2 + γ

and it is γ-strongly-convex.

Modifications:

• Use a variant of Nesterov’s optimal

method that takes advantage of the

strong convexity;

• Apply the “warm-start” strategy, by

which the approximate solution xk is

used as starting point for solving the

Lagrangian subproblem at the next

iteration.

10



Better iteration-complexity

Theorem: Assume that Dγ
Λ := infλγ∈Λ∗

γ
‖λ0 − λ∗‖

is known. Then, the I-AL method applied to

the perturbed problem with

ρ :=
4Dγ

Λ

ǫp(log T )
1

2

+
Lf + γ

‖A‖2
,

ηk :=
ρǫ2p

128N
, k = 0, . . . ,N − 1,

where N := ⌈16(Dγ
Λ)2/(ρ2ǫ2p)⌉ and

T :=

s

DXDγ
Λ‖A‖2

ǫpǫd
+

r

DXLf

ǫd
+

s

DX‖A‖
ǫp

+ 4

finds an (ǫp, ǫd)-primal-dual solution of CP in

at most

O(T · log T · log log T )

inner iterations.

Remark: Same complexity holds even if Dγ
Λ is

not known.
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Low-rank method for SDP

Consider the SDP

(P) min { 〈C, ,X 〉 : AX = b, X � 0}

For a fixed integer 1 ≤ r ≤ n, we have:

X � 0, rank(X) ≤ r ⇐⇒ X = VVT, V ∈ ℜn×r

Hence,

(Pr) min { 〈C,X 〉 : AX = b, X � 0, rank(X) ≤ r },
m

(P̃r) min { 〈C,VVT 〉 : A (VVT) = b, V ∈ ℜn×r },

Proposition: V is a local (resp., global) mini-

mum of (P̃r) iff VVT is a local (resp., global)

minimum of (Pr).

• (P̃n) is equivalent to (Pn) = (P);

• drawback of (P̃n) is its large number of

variables, namely n2 variables.
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Key idea: Choose r ≪ n so that (Pr) is still

equivalent to (P).

Theorem: (Barvinok 1995 and Pataki 1998)

If (P) has an optimal solution then it has one

whose rank r∗ satisfies

r∗(r∗ + 1) ≤ 2m.

As a consequence, if r ≥ ⌊
√

2m⌋ then (Pr) is

equivalent to (P).

Implementation: (Burer and M. 2003)

• Augmented Lagrangian applied to (P̃r).

The number of variables is relatively low,

namely nr ≪ n2;

• r is chosen dynamically; generally, there is

no need to have r ≥ ⌊
√

2m⌋;

• sparsity is nicely exploited.
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Conclusions:

• Number of iterations is large since the

method is a first-order method, but the

work per iteration is relatively very low.

• No convergence proof is available to

support the method, but it never seems

to fail in practice.

• It performs very well in practice particu-

larly on problems where the dimension n

of X is very large (e.g., SDP relaxations

of maxcut problems).

Flops per Iteration:

O

(

r nz(S) + nz(C) +
m
∑

i=1

nz(Ai)

)
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Boundary Point Meth. (Pohv et al.)

Consider the pair of dual SDPs:

(P) min bTy

s.t. A∗y− S = C

S � 0

(D) max 〈C,X 〉

s.t. AX = b

X � 0

Given X ∈ Sn and ρ > 0, the augmented Lagrangian

function Lρ(·, ·;X) for (P) is

Lρ(y,S;X) := bTy + 〈X,C−A∗y + S 〉+
ρ

2
‖C−A∗y + S‖2

∀(y,S) ∈ ℜm × Sn
+
, and the assoc. dual function is

dρ(X) = min{Lρ(y,S;X) : (y,S) ∈ ℜm × Sn
+} (∗)

Proposition: If ∃y ∈ ℜm such that A∗y ≻ C, then

val(P) = val(D) = max{dρ(X) : X ∈ Sn}

Proposition: If (ỹ, S̃) = (ỹ(X), S̃(X)) is the optimal

solution of (∗), then ∇dρ(X) = C−A∗ỹ − S̃.

Augmented Lagrangian iteration: Given X ∈ Sn,

obtain (ỹ, S̃) = (ỹ(X), S̃(X)) by solving (∗) and set

X← X + ρ(C−A∗ỹ − S̃).
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Dual viewpoint: The dual of

dρ(X) = min{Lρ(y,S;X) : (y,S) ∈ ℜm × Sn
+} (∗)

is the problem

max
X̃



〈C, X̃ 〉 −
1

2ρ
‖X̃−X‖2 : AX̃ = b, X̃ � 0

ff

(∗∗)

Notation: For U ∈ Sn, let U+ denote the orthogonal

projection onto Sn
+

and U− = (−U)+. Clearly,

U = U+ −U−.

Proposition: For X ∈ Sn, the following are equiva-

lent:

a) (ỹ, S̃) and X̃ are optimal sol’s of (∗) and (∗∗)

b) if W := X/ρ + C−A∗ỹ, then X̃ = ρW+, S̃ = W−

and

ỹ = (AA∗)−1

»

A

„

X

ρ
+ C + S̃

«

−
b

ρ

–

Remark: Note that X̃, S̃ � 0 and 〈 X̃, S̃ 〉 = 0. The

method preserves this property while trying to

obtain AX̃ = b and A∗ỹ + S̃ = C.
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Boundary Point Method: Choose ρ > 0, sequence

{ηk} ↓ 0 and ǫ > 0.

0) Set k = 0 and X0 = S0 = 0;

1) Set S̃ = Sk;

2) Compute

ỹ = (AA∗)−1

»

A

„

Xk

ρ
+ C + S̃

«

−
b

ρ

–

(1)

W = Xk/ρ + C−A∗ỹ

and set S̃ = W− and X̃ = ρW+.

3) if ‖AX̃− b‖ > ρηk, then go to step 2.

4) set (Xk+1,Sk+1) = (X̃, S̃), yk+1 = ỹ and k← k+1

5) if ‖C + Sk −A∗yk‖ > ǫ, then go to 1); else stop.

Alternating direction viewpoint:

(1) ⇐⇒ ỹ = argmin{Lρ(y, S̃;Xk) : y ∈ ℜm}

S̃ = W− ⇐⇒ S̃ = argmin{Lρ(ỹ,S;Xk) : S � 0}

X̃ = ρW+ ⇐⇒ X̃ = Xk + ρ(C + S̃−A∗ỹ)
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Simplified Boundary Point Method: Choose ρ > 0

and ǫ > 0.

0) Set k = 0 and (y0,S0,X0) = (0,0, 0);

1) If max{‖AXk − b‖, ‖C + Sk − A
∗yk‖} ≤ ǫ, then

stop.

2) Compute

yk+1 = (AA∗)−1

»

A

„

Xk

ρ
+ C + Sk

«

−
b

ρ

–

(1)

W = Xk/ρ + C−A∗yk+1

and set Sk+1 = W− and Xk+1 = ρW+.

3) Set k← k + 1 and go to step 1).

Proposition: Assume that set of optimal solutions

of (P) is non-empty and that (P) satisfies the Slater

condition. Assume also that A∗ is one-to-one.

Then, {(yk,Sk,Xk)} converges to a primal-dual

optimal solution.

Work per iteration: Discarding the processing

of the factoriztion of AA∗, storage is O(n2) and

number of flops is

O

 

n3 + nz(C) +
m
X

i=1

nz(Ai)

!
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Conclusions:

• Being a first-order method, its number of

iterations is usually large compared to second-

order methods but can be considerably lower

than that of the low-rank method on some

classes of SDP problems.

• Its work per iteration and amount of storage is

at least O(n3) and O(n2), respectively, making

it prohibitively expensive for problems with

large variable matrix X (i.e., with n ≥ 5, 000).

• It performs very well in practice particularly

on problems where the dimension n of X is not

so large (e.g., ≤ 3,000). It is generally efficient

for problems with large m (i.e., the size of y).

• It has been reported that the method en-

conters more difficulty on extremely sparse

or extremely dense problems or on instances

where either the optimal X or S has small rank.

• Convergence proof is available to support the

method but no iteration-complexity is known

for it yet.
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Newton-CG A.L. method (Zhao et al.)

Zhao et al.’s method is an implementation of the

augmented Lagrangian method. Consider the same

SDP as in the previous method and recall that

Lρ(y,S;Xk) := bTy + 〈Xk,C−A∗y + S 〉+ ρ

2
‖C−A∗y + S‖2

= bTy + 1
2ρ

`

‖ρS + Wk(y)‖2 − ‖Xk‖
2
´

where Wk(y) := Xk − ρ(A∗y −C). Hence,

dρ(Xk) = min{Lρ(y,S;Xk) : (y,S) ∈ ℜm × Sn
+}

= min
y

Lk(y) := bTy +
1

2ρ

`

‖[Wk(y)]+‖
2 − ‖Xk‖

2
´

(∗)

Clearly, if ỹk is an optimal solution of (*) and

S̃k = ρ−1[Wk(ỹk)]−, then

Xk+1 = Xk + ρ(C−Aỹk − S̃k) = [Wk(ỹk)]+

A semi-smooth Newton-CG algorithm is used to

solve subproblem (∗). The gradient of the o.f. of (∗)

is

∇yLk(y) = b−A[Wk(y)]+, ∀y ∈ ℜm,

which is almost everywhere Frechet-differentiable.

An approximate sol yk of (∗) satisfying Lk(yk) −

dρ(Xk) ≤ ηk is computed and then the update

Xk+1 = [Wk(yk)]+ is performed, where {ηk} satisfies
P

∞

k=0 ηk <∞.
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Work per iteration:

• Each CG step is on the other of

O

 

βyn2 +
m
X

i=1

nz(Ai)

!

where βy = min{γy,n− γy}, γy = rank[Wk(y)]−

and y is the current Newton iterate.

• Each Newton step requires a new eigenvalue

factorization.

Conclusions:

• Its work per iteration and amount of storage is

at least O(βyn2) and O(n2), respectively, making

it prohibitively expensive for problems with

large variable matrix X (i.e., with n ≥ 5, 000).

• It performs very well in practice particularly

on problems where the dimension n of X is not

so large (e.g., ≤ 3,000). It is generally efficient

for problems with large m (i.e., the size of y).

• Convergence proof is available to support the

method but no iteration-complexity is known

for it yet.
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Other efficient methods

Methods based on barrier functions:

1) Toh and Kojima (2002), Toh (2004) and the

SPDA code developed by Kojima and his collabo-

rators.

These are IP methods based on iterative solvers,

applied to either an augmented system or its Schur

complement (normal) system.

2) Kocvara and Stingl (2003, 2005) - Modified

barrier method (PENNON)

For (Xk, σk) ∈ Sn ×ℜ++, it is based on the modified

barrier subproblem

min
y

bTy +
˙

Xk, [σ2
k(A∗y−C + σkI)−1 − σkI]

¸

which is solved by a Newton-CG approach. The

amount of work per iteration and storage is quite

similar to those for IP methods based on iterative

solvers.
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THANK YOU!

AND

THE END
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