
Multivariate Operator Theory Workshop
August 10-14, 2009

An overview of triangularizability results on collections
of compact operators

Bamdad R. Yahaghi
Department of Mathematics

University of Golestan
Gorgan, Iran



Outline of the talk
In this talk, we consider collections of compact (resp.

ep class) operators on arbitrary Banach (resp. Hilbert)
spaces. It is proved that a collection of triangularizable
compact operators on a real Banach (resp. Hilbert) space
is triangularizable if and only if the collection of induced
operators on the Taylor (resp. natural) complexification
of the real Banach (resp. Hilbert) space is triangulariz-
able. In view of this result and some easy-to-check facts
concerning the properties of induced operators acting on
the Taylor (resp. natural) complexification of real Banach
(Hilbert) spaces, we prove that every triangularizability
result on certain collections of compact operators on a
complex Banach (resp. Hilbert) space gives rise to its
counterpart on a real Banach (resp. Hilbert) space. We
use our main results to present new proofs as well as ex-
tensions of certain classical theorems (e.g., those due to
Kolchin, McCoy, and others) on arbitrary Banach (resp.
Hilbert) spaces. If time permits, I will show that the
notion of simultaneous triangularization for collections of
triangularizable compact operators on arbitrary Banach
spaces remains intact under taking certain limit opera-
tions. I will then use this result to prove an interesting
invariant subspace theorem.

o. Definitions and Notational
Conventions

Unless otherwise stated,

• X: A separable real or complex Banach space.



• By a subspace of X we always mean a closed subspace
of it. The subspaces {O}and X are called the trivial sub-
spaces of X.

• We use 13(X) (resp. 13o(X), 13oo(X)) to denote the set (in
fact the ideal) of bounded operators (resp. compact op-
erators, finite-rank operators) on X.

•V: A finite-dimensional vector space over a field F.

• We use 'c(V) to denote the set (in fact the algebra) of
linear transformations on V. Plainly, 'c(X) = 13(X) = 13o(X)
provided X is finite-dimensional.

• For a collection ~ of bounded operators (resp. linear
transformations), we use ~' to denote the commutant of
~; more precisely, ~' := {T E 13(X) : ST = TS for all S E ~}.

• A subspace M is invariant for a collection ~ of bounded
operators (resp. linear transformations) if TM C M for all
T E ~; M is hyperinvariant for a collection ~ of bounded
operators if TM C M for all T E ~ U ~/.

•A collection ~ of bounded operators (resp. linear trans-
formations) is called reducible if ~ = {O}or it has a non-
trivial invariant subspace. This definition is slightly un-
conventional, but it simplifies some of the statements in
what follows.

•A collection ~ of operators (resp. linear transformations)
is called simultaneously triangularizable or simply triangulariz-
able if there exists a maximal chain of subspaces of X each
of which is invariant for~. In case the underlying space



is finite-dimensional, it is easily seen that triangulariz-
ability of a family of linear transformations is equivalent
to the existence of a basis for the vector space such that
all transformations in the family have upper triangular
matrix representation with respect to that basis.

•Let R be a subring of a field F. By an R-algebra A in £ (V)
(resp. Mn(F)), we mean a subring of £(V) (resp. Mn(F))
that is closed under scalar multiplication by the elements
of the subring R. For a collection e in £(V) (resp. Mn(F)),
we use AlgR(e) to denote the R-algebra generated bye.
By Alg(e) we simply mean Algp(e).

•Plainly, a family ~ of linear operators (resp. linear trans-
formations) is triangularizable iff Sem(~), the semigroup gen-
erated by ~, is triangularizable; or iff Alg(~), the algebra gen-
erated by ~, is triangularizable. Also, for every family ~ of
bounded operators (resp. linear transformations)

i = (Alg(~))' = (Sem(~))/.
Thus ~ has a non-trivial hyperinvariant subspace iff Sem(~)
does, or iff Alg(~) does.

• If S is a multiplicative semigroup, a subset a of S is called
a semigroup ideal of S if JS, SJ E a whenever J E a and S E S.

~
• Let X be a real vector space. We use the symbol X
to denote X x X, the algebraic complexification of X, whose
construction resembles that of C from JR, as follows

(x, y) + (u, v) := (x + u, y + v), (a + ib)(x, y) := (ax - by, bx + ay),
~here x, y, u, v, E X and a, b E JR. It is easily verified that
X is a complex vector space into which X embeds via the
mapping x --* (x, 0). With that in mind, we can use the



fa~iliar notation z = x + iy to denote the vector z = (x, y)
in X. Thus, if z = x + iy, it is natural to define Re(z) := x
and Im(z) := y. Also, in _a natural way, by the conjugate of
an element z = x + iy of X, we mean the element z defined
by z:= x - iy .

•A norm 11.llx on X is called a reasonable complexification norm
provided that

IIRe(z ) IIx = IIRe(z ) II, IIzllx = IIzllx'
-for all z E X, where 11.11 denotes the norm of X. It is

not difficult to check that the norm II.IIT, called the Taylor
[complexification} norm of X, defined by

Ilx + iYIIT:= sup lIax + by II ,
a2+b2=1

where x, y E X, is iI!-fact the smallest reasonable complex-
ification norm on X. Let 9-Cbe a real Hilbert space. It is
easily seen that the norm defined by

Ilx + iyll := (lIxll2 + lIyIl2)1/2,
-is a reasonable complexification norm_on 9-Cwhich comes

from the following inner product on 9-C

(x + iy, u + iv) := (x, u) + i(y, u) - i(x, v) + (y, v).
-We call 9-Cthe natural complexification of 9-C.

1. Some elementary and preliminary lemmas



(i) Let V be a finite-dimensional vector space over a field F, and
S a semigroup in £ (V). If S is irreducible, then so is every nonzero
semigroup ideal of S.

(ii) Let X be a real or complex Banach space, and S a semigroup
in 23(X). If S is irreducible, then so is every nonzero semigroup
ideal of S.

If V is a vector space and N is a subspace of V, then
the quotient space VIN is the collection of cosets [x] = x +
N = {x+z: zEN} for x E V, with [x] + [y] defined as
[x + y] and A[x] defined as [Ax] for scalars A. If A is a linear
transformation on V and N is invariant under A, then the
quotient transformation A on VIN is defined by A[x] = [Ax]
for each x E V; (the invariance of N under A ensures that
A is well-defined on the cosets). If e is a collection of
linear transformations on V, and if M and N are invariant
subspaces for e with N properly contained in M, then the
collection of quotients of e with respect to {M,N} is the set of
all quotient transformations A on MIN. We say that a
property P is inherited by quotients if every collection of
quotients of a collection satisfying P also satisfies P.

• Lemma 1.2. (The Triangularization Lemma)
Let P be a set of properties of families of linear operators (resp.

linear transformations) each of which is inherited by quotients.
If every family of operators (resp. transformations) on a space of
dimension greater than one that satisfies P is reducible, then every
family satisfying P is triangularizable.

In what follows, we shall make frequent use of the fol-
lowing useful lemma.



(i) Let V be a finite-dimensional vector space over a field F, S
a semigroup in £ (V), and T a nonzero linear transformation in
£(V). If S is irreducible, then so is TSI:R where ~ = TV is the
range ofT.

(ii) Let X be a real or complex Banach space, S a semigroup in
13(X), and T a nonzero linear operator in 13(X). If S is irreducible,
then so is TSI:R where ~ = TX is the closure of the range of T.

Fro_mthis point on, unless otherwise stated, the sym-
bol X stands for the Taylor complexification of the real
Banach space X, and 9-C for the natural complexification
of the real Hilbert spac~ 9-C. It i~ easily checked that
limn(xn + iYn) = x + iy in X (resp. 9-C) iff_limnXn =_x and
limnYn = Y in X (resp. in 9-C). Therefore, X (resp. 9-C) is a
complex Banach (resp. Hilbert] spac~. If T E 13iX) (resp.
T E 13 (9-C)), !hen the operator T E 13(X) (resp. T E 13(9-C))
defined by T(x -=±- iy) := Tx + iTy is a bounded operator and
furthermore /lTII = /lTII. As a matter of fact, the tilde
is a covariant functor from the category of real Banach
(resp. Hilbert) spaces into the category of complex Ba-
nach (resp. Hilbert) spaces.

The following proposition gathers some straightforward
facts concerning some properties of the Taylor (resp. nat-
ural) complexification of real Banach (resp. Hilbert) spaces
and operators acting on them which will be needed in
what follows.

• Proposition 1.4.



Let X (resp. JC) be a real Banach (resp. Hilbert) space, T E 13(X)- --(resp. T E 13(JC)), and T its extension to X (resp. JC). Then the
following hold. _ _

(i) rank(T) = rank(T) and dim ker(~) = dim ker T.
(ii) The operator T is compact iff T is compact.
(iii) IfM i~ a subspace of X (resp. JC), then M+iM is a subspace

of X (resp. JC). Conversely, if_M is a subset of X (resp. JC) such
that M + iM is a subspace of X (resp. JC), then M is a subspace
of X (resp. JC).

(iv) A chain e = {M}JYCEeis a maximal chain of subspace~ of X
iff e := {M + iM}JYCEeis a maximal chain of subspaces for X._

(v) The bounded opera!.-orT is a ep class operat~r on JC iff T is
a ep class operator on JC . Moreover, tr(T) = tr(T) provided that
T is a trace class operator on JC.

(vi) A subspace ~ is invariant under T iff the subspace M + iM
is invariant under T. _

(vii) If T is compact and_triangularizable, then a(T) = a(T).
Also, ifT is compact and a(T) C JR., then T is triangularizable and
a(T) _ a(T). Moreover, the compact triangularizable operators T
and T share the same set of eigenvalues counting multiplicity.

2. Main results

• Lemma 2.1
Let X (resp. JC) be a real Banach (resp. Hilbert) space, ~ a

family of triangularizable compact operators on X (resp. JC). Then
~ is triangularizable over X (resp. JC) iff the family~, the family



consisting of the extensi!!,ns of th~ members of l' to X (resp. JC),
is triangularizable over X (resp. JC).

With the preceding lemma at our disposal, we are now
ready to prove that every triangularizability result on cer-
tain collections of compact operators acting on a complex
Banach space gives rise to its counterpart on the same
certain collections of triangularizable compact operators
acting on a real Banach space. To state the result, we
need some definitions. Let P be a set of properties of op-
erators, e.g., properties of the rank, the nullity, the trace,
the spectrum , and/or the spectral radius of operator~
The property P is said to be admissible if the operator T
satisfies the property P whenever the operator T does.
For instance, in view of Proposition 1.4, properties of the
rank, the nullity, the trace, and the spectrum of oper-
ators are admissible properties of compact (trace class)
triangularizable operators. An operator satisfying a set
of properties, say P, of operators is called a P -operator. Let
Q be a set of properties of collections of operators, e.g.,
commutativity, consisting of (quasi)nilpotent operators,
being closed under multiplication (this would give rise to
the notion of semigroups of operators), etc. The property
Q is called admissible if~for each family l' of operators in
13(X), the family l' = {T : T E 1'} satisfies Q whenever the
family l' does. Roughly speaking, a set of properties of
operators (resp. collections of operators) is admissible if
it is preserved under taking the tilde operation. A fam-
ily that satisfies a property Q of collections of operators
is called a Q-family of operators. We note that every op-
erator satisfies the property 0, Le., the empty property,
and that every family of operators is an 0-family of oper-
ators! Moreover, the empty property is an admissible set
of properties of operators (resp. collections of operators)!



• Proposition 2.2.
Let P and Q be sets of admissible properties of operators and

collections of operators, respectively. If every Q-family of compact
P-operators on a complex Banach (resp. Hilbert) space is triangu-
larizable, then so is every Q-family consisting of triangularizable
compact P-operators acting on a real Banach (resp. Hilbert) space.

Let X be a complex (resp. real) Banach space, and S a
subset of C (resp. ffi.). By an S-semigroup S of 13(X), we
mean a multiplicative semigroup of S bounded operators
that is closed under scalar multiplication by the elements
of S.

• Lemma 2.1 (Radjavi).
Let X be a complex (resp. real) Banach space and let S be a

uniformly closed ffi.+ -semigroup of compact triangularizable opera-
tors on X where ffi.+ denotes the set of positive real numbers. If S
contains an operator that is not quasinilpotent, then S contains a
nonzero finite-rank operator that is either idempotent or nilpotent.

• Theorem 2.2.
Let X be a complex (resp. real) Banach space of dimension

greater than 1, R a subring of ffi., and A an R-algebra of trian-
gularizable compact operators on X with spectra in R. Then A is
reducible.

• Corollary 2.3.
Let X be a complex (resp. real) Banach space, R a subring of ffi.,

and A an R-algebra of compact operators on X with spectra in R.
Then A is triangularizable iff every element of A is triangulariz-
able.

Part (i) of the following lemma is from Radjavi. Lemmas
2.4(ii), 2.5(ii), and 2.5(iv) below are slight generalizations
of results due to Radjavi.



• Lemma 2.4.
(i) Let 2::1 ai be an absolutely convergent series in C with lail <

1 for all i E N. Then
00

lim La? = o.
n

i=l

(ii) Let ai E C with lail = 1 (1 < i < m) be such that limn 2:;:1 ar =
c where c E C. Then c = m and ai = 1 for all 1 < i < m.

(iii) Let ai, bj E C with lail = Ibjl = 1 (1 < i < m, 1 < j < n) be
such that limk (2:;:1 a7 - 2:7=1bJ) = O. Then m = n and there is a
permutation a on m letters such that bi = a(}"(i) for all 1 < i < m .

• Lemma 2.5.
Let 2:~1 A-j and 2:~1 Pj be two absolutely convergent series in

C, and let mEN be given.
(i) If Aj, Pj E C \ {O} for all j E N, and

L Aj = L pj,
j=l j=l

for all kEN with k > m, then there is a permutation a on N such
that Pj = A(}"(j).

(ii) If for some C E C

for all kEN with k > m, then C is a nonnegative integer and
Aj = 0 or 1 for all j EN.



(Hi) If for some c E C
CX) CX)

L AJ = ck
-
m L Aj,

j=l j=l

for all kEN with k > m, then Aj = 0 or c for all j E N.
(iv) Let JC be a real or complex Hilbert space, and A E ep(JC).

Then A is quasinilpotent iff

tr(Ak) = 0,

for each kEN with k > m where mEN with m > p.

Recall that a semigroup (resp. algebra) of compact qua-
sinilpotent operators on a Banach space is called a Volterra
semigroup (resp. Volterra algebra). Here we give a new proof
of the following well-known theorem which is due to Rad-
javi extending Kaplansky's Theorem to trace class oper-
ators. It is worth mentioning that the original theorem
was established for complex Hilbert spaces only.

• Theorem 2.6.
Let JC be a real or complex Hilbert space, S a semigroup in e1 on

which trace is constant. Then the semigroup S is triangularizable.
In particular, if trace is zero on a semigroup S in e1, then the
algebra generated by S is a Volterra algebra of e1 operators.

Proof. In view of Corollary 2.3, it suffices to show that the JR.-algebra A generated by S
consists of triangularizable operators with spectra in R To this end, suppose that tr(S) = {C}
for some C E IF. Suppose that A = C1SI + ...+ CkSk E A where kEN, Cj E JR.,Sj E S for each
j = 1, ... , k is given. Since tr(S) = {C}, it is easily seen that tr(Aj) = C(CI + ...+ Ck)j for all
j E N. If CI + ...+ Ck = 0 it follows from Lemma 2.5(iv) that A is quasinilpotent and hence it
is triangularizable. If C := CI + ...+ Ck 0:1 0, then tr( ~)j = C for all j E N. So it follows from
Lemma 2.5(ii), C is an integer, Alc is triangularizable, and that o-(~) C {O,I}. Hence A is
triangularizable and o-(A) C {O,c} where A = C1SI + ... +CkSk E A and c:= CI + ... +Ck E JR.(In
particular, o-(S) C {O,I} for all S E S). Thus A, and hence S, is triangularizable. For the rest,
in view of the preceding lemma, it is easily seen that the algebra A generated by S is indeed a
Volterra algebra of el operators. D



The following is a quick consequence of the preceding
lemma .

• Corollary 2.7.
Let }( be an arbitrary Hilbert space. If an algebra A in e1 is

spanned by its quasinilpotent members as a vector subspace of e1,
then the algebra A is a Volterra algebra of e1 operators, and there-
fore it is triangularizable.
Proof. Just note that the trace is zero on the algebra A, hence the preceding lemma applies.

o

Remarks.
1. By results of Fong and Sourour every compact (resp.

Hilbert-Schmidt, Le., e2) operator on an infinite dimen-
sional Hilbert space is a sum of two compact (resp. Hilbert-
Schmidt) quasinilpotent operators. This would imply that
the ideal of compact (resp. Hilbert-Schmidt) operators on
an infinite dimensional Hilbert space, which is obviously
irreducible, as a vector space, is spanned by its quasinilpo-
tent members. Therefore, the preceding corollary cannot
be generalized to algebras of compact (resp. ep, p > 1)
operators on infinite dimensional Banach (resp. Hilbert)
spaces.

2. A proof almost identical to that of the corollary (resp.
the preceding lemma) shows that the counterpart of the
corollary (resp. the preceding theorem) holds for alge-
bras (resp. semigroups) of finite rank operators on an
arbitrary Banach space.

A consequence of the preceding corollary is the following
which can be thought of as a generalization of Kolchin's
Theorem to e1 class operators on a real or complex Hilbert
space.



• Corollary 2.8.
(i) Let 9-C be a real or complex Hilbert space, :r a family of e1

operators on 9-C with the following properties: (a) every A E :r has
trace zero (resp. can be written as a linear combination of quasi-
nilpotent elements from the algebra generated by :r),.(b) if A and
B are in :r, then AB + A + B is in:r. Then:r is triangularizable.

(ii) Let 9-C be a real or complex Hilbert space and:r be a family of
e1 operators on 9-C such that every A in:r has trace zero (resp. can
be written as a linear combination of quasinilpotent elements from
the algebra generated by :r). Then, every semigroup of operators
of the form I + Q with Q E :r is triangularizable.

Remarks.
1. A proof identical to that of the corollary shows that

the counterpart of the corollary holds for collections of
finite rank operators on an arbitrary Banach space and
for collections of matrices in Mn(F) where F is a field
whose characteristic is zero or greater than n.

2. The proof of the corollary together with Radjavi's
Trace Theorem implies the following generalization of Kolchin'
Theorem in finite dimensions. Let n E N, F a field with
ch(F) > n/2 or = 0, and:r a family of triangularizable matrices
in Mn(F) with trace zero. Then, every semigroup of matrices of
the form I + A with A E :r is triangularizable .

• Theorem 2.9.
Let 9-C be a real or complex Hilbert space, S an irreducible semi-

group of e1 operators, and j a nonzero semigroup ideal of S. Then
(i)

{A E AIglF(S U {I}) : tr(Aj) = {O}} = {O}.
(ii)

{A E AIglF(S U {I}) : p(Aj) = {O}} = {O}.



• Theorem 2.10.
Let 9{ be a real or complex Hilbert space, S an irreducible semi-

group of compact operators with p > 1, and J a nonzero semigroup
ideal of S. Then

(i)
{A E AlglF(S U {I}) : p(JAJ) = O} = {O}.

(ii)
{A E AlglF(S U {I}) : p(AJ) = O} = {O}.

The following extends Guralnick's Theorem, which is,
itself, an extension of a well-known theorem of McCoy, to
compact operators (resp. ep operators (p > 1)) on a real
or complex Banach (resp. Hilbert) space .

• Theorem 2.11.
(i) Let X be a real or complex Banach space, e a collection of

compact triangularizable operators, and mEN. Then e is trian-
gularizable iff (AB - BA)C is quasinilpotent for all A, BEe and
C E (Sem(e))m.

(ii) Let 9{ be a real or complex Hilbert space, e a collection of
triangularizable ep operators with p > 1, and mEN with m > p.
Then e is triangularizable ifftr((AB - BA)C) = 0 for all A, BEe
and C E (Sem(e))m.

We now use the Theorem 2.9 to prove the following re-
sult which is a slight generalization of Radjavi's '!race
Theorem. Although, in light of Theorem 2.6, the proof
presented here is standard but it applies to both real and
complex Hilbert spaces and it is different from the origi-
nal proof given by Radjavi.



• Theorem 2.12 (Radjavi's Trace Theorem).
Let J( be a real or complex Hilbert space, and ~ a family of tri-

angularizable ep operators with p > 1. Then ~ is triangularizable
if and only if trace is permutable on ~m for some integer m > p.

In finite dimensions, over general fields, Kaplansky showed
that a semigroup of the form scalar plus nilpotent is trian-
gularizable. In infinite dimensions, over complex Hilbert
spaces, Nordgren-Radjavi-Rosenthal showed that a stronger
result holds as follows. Below we give a new proof of the
stronger result which works on both real and complex Ba-
nach spaces. It is worth mentioning that the result below
does not hold in finite dimensions (e.g., if n > 1, and F
is a field such that ch(F) = 0 or ch(F) is not a divisor of
n, then every matrix in Mn(F) can be written as exI + N
where N is a matrix with tr(N) = 0).

• Theorem 2.13 (Nordgren-Radjavi-Rosenthal).
Let J( be an infinite-dimensional real or complex Hilbert space.

Then every semigroup S of operators of the form exI + N where
N is a trace class operator with tr( N) = 0 and with ex E IF is
triangularizable.

• Theorem 2.14
Let X be an arbitrary Banach space, ~i, ~ (i E N) nonempty

families of compact operators on X such that each family ~n (n E
N) is triangularizable and that limn dist(~n, f) = 0 for all f E ~.
Then ~ is triangularizable.

• Theorem 2.15.
Let X be a real or complex Banach space, An, A E 23(X), and

Kn, K E 23oo(X) (n E N) with rank(K) > 2. If s-limn An = A,
limn Kn = K, and {An, Kn} is triangularizable for each n E N,
then A has a nontrivial invariant subspace.



• Corollary 2.16.
(i) Let X be a real or complex Banach space, An, A E ~(X),

and K E ~oo(X) (n E N) with rank(K) > 2. If s-limn An = A, and
{An, K} is triangularizable for each n E N, then A has a nontrivial
invariant subspace.

(ii) Let 9-( be a real or complex Hilbert space, (CXi)iEN be an ortho-
normal basis for 9-(, and An, A E ~(9-(). If s-limn An = A, and for
each n E N there exists a permutation 7rn on N such that (CX7rn(i))iEN
is a triangularizing chain for An, then A has a nontrivial invariant
subspace.


