Bounded analytic functions on the infinite polydisc

Kristian Seip

Norwegian University of Science and Technology (NTNU)
Fields Institute, August 13, 2009

Contents

The talk is a report on some recent work on Dirichlet series and bounded analytic functions on finite and infinite polydiscs.

- The first part is about the Bohnenblust-Hille inequality for homogeneous polynomials; it is based on joint work with A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes (arXiv:0904.3540v1, 2009)
- The second part is about boundary limit functions of elements in Hardy spaces of Dirichlet series; it is based on joint work with E. Saksman (Bull. London Math. Soc. 41 (2009).

What is the Bohnenblust-Hille inequality?

What is the Bohnenblust-Hille inequality?

Let $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ be an m-homogeneous polynomial in n complex variables.

What is the Bohnenblust-Hille inequality?

Let $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ be an m-homogeneous polynomial in n complex variables. Then trivially $\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|P\|_{\infty}$, where $\|P\|_{\infty}=\sup _{z \in \mathbb{D}^{n}}|P(z)|$.

What is the Bohnenblust-Hille inequality?

Let $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ be an m-homogeneous polynomial in n complex variables. Then trivially $\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|P\|_{\infty}$, where $\|P\|_{\infty}=\sup _{z \in \mathbb{D}^{n}}|P(z)|$.

- Is it possible to have a similar inequality

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{p}\right)^{\frac{1}{p}} \leq C\|P\|_{\infty}
$$

for some $p<2$ with C depending on m but not on n ?

What is the Bohnenblust-Hille inequality?

Let $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ be an m-homogeneous polynomial in n complex variables. Then trivially $\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|P\|_{\infty}$, where $\|P\|_{\infty}=\sup _{z \in \mathbb{D}^{n}}|P(z)|$.

- Is it possible to have a similar inequality

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{p}\right)^{\frac{1}{p}} \leq C\|P\|_{\infty}
$$

for some $p<2$ with C depending on m but not on n ?

Bohnenblust-Hille

YES, and $2 m /(m+1)$ is the smallest possible p.

What is the Bohnenblust-Hille inequality?

Let $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ be an m-homogeneous polynomial in n complex variables. Then trivially $\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|P\|_{\infty}$, where $\|P\|_{\infty}=\sup _{z \in \mathbb{D}^{n}}|P(z)|$.

- Is it possible to have a similar inequality

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{p}\right)^{\frac{1}{p}} \leq C\|P\|_{\infty}
$$

for some $p<2$ with C depending on m but not on n ?

Bohnenblust-Hille

YES, and $2 m /(m+1)$ is the smallest possible p.
It is of basic interest to know the asymptotic behavior of C when $p=2 m /(m+1)$ and $m \rightarrow \infty$.

A multilinear inequality

In 1930, Littlewood proved that for every bilinear form $B: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ we have

$$
\left(\sum_{i, j}\left|B\left(e^{i}, e^{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq \sqrt{2} \sup _{z, w \in \mathbb{D}^{n}}|B(z, w)|
$$

A multilinear inequality

In 1930, Littlewood proved that for every bilinear form
$B: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ we have

$$
\left(\sum_{i, j}\left|B\left(e^{i}, e^{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq \sqrt{2} \sup _{z, w \in \mathbb{D}^{n}}|B(z, w)| .
$$

This was extended to m-linear forms by Bohnenblust and Hille in 1931:

$$
\left(\sum_{i_{1}, \ldots, i_{m}}\left|B\left(e^{i_{1}}, \ldots, e^{i_{m}}\right)\right|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq \sqrt{2}^{m-1} \sup _{z^{i} \in \mathbb{D}^{n}}\left|B\left(z^{1}, \ldots, z^{m}\right)\right|
$$

The exponent $2 m /(m+1)$ is best possible.

The Bohnenblust-Hille inequality

Our result is that also the polynomial Bohnenblust-Hille inequality is hypercontractive:

Theorem (Defant, Frerick, Ortega-Cerdà, Ounaïes, Seip 2009)
Let m and n be positive integers larger than 1 . Then we have

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq e \sqrt{m}(\sqrt{2})^{m-1} \sup _{z \in \mathbb{D}^{n}}\left|\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}\right|
$$

for every m-homogeneous polynomial $\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ on \mathbb{C}^{n}.

The Bohnenblust-Hille inequality

Our result is that also the polynomial Bohnenblust-Hille inequality is hypercontractive:

Theorem (Defant, Frerick, Ortega-Cerdà, Ounaïes, Seip 2009)

Let m and n be positive integers larger than 1 . Then we have

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq e \sqrt{m}(\sqrt{2})^{m-1} \sup _{z \in \mathbb{D}^{n}}\left|\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}\right|
$$

for every m-homogeneous polynomial $\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ on \mathbb{C}^{n}.
The novelty here is the hypercontractivity, i.e., the constant grows exponentially with m; known since the work of Bohnenblust-Hille that the inequality holds with constant $m^{m / 2}$, modulo a factor of exponential growth.

Polarization

There is an obvious relationship between the multilinear and polynomial inequalities, which goes via a one-to-one correspondence between symmetric multilinear forms and homogeneous polynomials.

Polarization

There is an obvious relationship between the multilinear and polynomial inequalities, which goes via a one-to-one correspondence between symmetric multilinear forms and homogeneous polynomials.

Definition

We say that the m-linear form B is symmetric if $B\left(e^{i_{1}}, \ldots, e^{i_{m}}\right)=B\left(e^{i_{\sigma(1)}}, \ldots, e^{i_{\sigma}(m)}\right)$ for every index set $\left(i_{1}, \ldots, i_{m}\right)$ and every permutation σ of the set $\{1, \ldots, m\}$.

Polarization-continued

If we restrict a symmetric multilinear form to the diagonal $P(z)=B(z, \ldots, z)$, then P is a homogeneous polynomial.

Polarization-continued

If we restrict a symmetric multilinear form to the diagonal $P(z)=B(z, \ldots, z)$, then P is a homogeneous polynomial. Conversely: Given a homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ of degree m, we may define a symmetric m-multilinear form $B: \mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ so that $B(z, \ldots, z)=P(z)$.

Polarization-continued

If we restrict a symmetric multilinear form to the diagonal $P(z)=B(z, \ldots, z)$, then P is a homogeneous polynomial. Conversely: Given a homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ of degree m, we may define a symmetric m-multilinear form $B: \mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ so that $B(z, \ldots, z)=P(z)$. Namely, write

$$
P(z)=\sum_{i_{1} \leq \cdots \leq i_{m}} c\left(i_{1}, \ldots, i_{m}\right) z_{i_{1}} \cdots z_{i_{m}}
$$

and let B be the symmetric m-multilinear form such that $B\left(e^{i_{1}}, \cdots, e^{i_{m}}\right)=c\left(i_{1}, \ldots, i_{m}\right) /|i|$ when $i_{1} \leq \cdots \leq i_{m}$ and $|i|$ is the number of different indices that can be obtained from the index $i=\left(i_{1}, \ldots, i_{m}\right)$ by permutation.

Polarization-continued

If we restrict a symmetric multilinear form to the diagonal $P(z)=B(z, \ldots, z)$, then P is a homogeneous polynomial. Conversely: Given a homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ of degree m, we may define a symmetric m-multilinear form $B: \mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ so that $B(z, \ldots, z)=P(z)$. Namely, write

$$
P(z)=\sum_{i_{1} \leq \cdots \leq i_{m}} c\left(i_{1}, \ldots, i_{m}\right) z_{i_{1}} \cdots z_{i_{m}}
$$

and let B be the symmetric m-multilinear form such that $B\left(e^{i_{1}}, \cdots, e^{i_{m}}\right)=c\left(i_{1}, \ldots, i_{m}\right) /|i|$ when $i_{1} \leq \cdots \leq i_{m}$ and $|i|$ is the number of different indices that can be obtained from the index $i=\left(i_{1}, \ldots, i_{m}\right)$ by permutation. (Note: $|i| \leq m!$.)

Harris's lemma

Lemma (Harris 1975)
We have

$$
\sup _{z^{i} \in \mathbb{D}^{n}}\left|B\left(z^{1}, \ldots, z^{m}\right)\right| \leq \frac{m^{m}}{m!}\|P\|_{\infty}
$$

Harris's lemma

Lemma (Harris 1975)

We have

$$
\sup _{z^{i} \in \mathbb{D}^{n}}\left|B\left(z^{1}, \ldots, z^{m}\right)\right| \leq \frac{m^{m}}{m!}\|P\|_{\infty}
$$

Since the number of coefficients of B obtained from one coefficient of P is bounded by $m!$, a direct application of Harris's lemma and the multilinear Bohnenblust-Hille inequality gives

$$
\left(\frac{1}{m!}\right)^{(m-1) / 2 m}\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq \frac{m^{m}}{m!}\|P\|_{\infty}
$$

we obtain then the afore-mentioned constant $m^{m / 2}$, modulo an exponential factor.

Harris's lemma

Lemma (Harris 1975)

We have

$$
\sup _{z^{i} \in \mathbb{D}^{n}}\left|B\left(z^{1}, \ldots, z^{m}\right)\right| \leq \frac{m^{m}}{m!}\|P\|_{\infty}
$$

Since the number of coefficients of B obtained from one coefficient of P is bounded by $m!$, a direct application of Harris's lemma and the multilinear Bohnenblust-Hille inequality gives

$$
\left(\frac{1}{m!}\right)^{(m-1) / 2 m}\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq \frac{m^{m}}{m!}\|P\|_{\infty}
$$

we obtain then the afore-mentioned constant $m^{m / 2}$, modulo an exponential factor.
Therefore, to make the required improvement, one needs a refinement of the argument via multilinear forms.

Two lemmas

Lemma (Blei 1979)

For all sequences $\left(c_{i}\right)_{i}$ where $i=\left(i_{1}, \ldots, i_{m}\right)$ and $i_{k}=1, \ldots, n$, we have

$$
\left(\sum_{i_{1}, \ldots, i_{m}=1}^{n}\left|c_{i}\right|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq \prod_{1 \leq k \leq m}\left[\sum_{i_{k}=1}^{n}\left(\sum_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{m}}\left|c_{i}\right|^{2}\right)^{\frac{1}{2}}\right]^{\frac{1}{m}}
$$

Lemma (Bayart 2002)
For any homogeneous polynomial $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ on \mathbb{C}^{n} :

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq(\sqrt{2})^{m}\left\|\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}\right\|_{L^{1}\left(\mathbb{T}^{n}\right)} .
$$

The proof $1 / 3$

We write again the polynomial P as

$$
P(z)=\sum_{i_{1} \leq \cdots \leq i_{m}} c\left(i_{1}, \ldots, i_{m}\right) z_{i_{1}} \cdots z_{i_{m}}
$$

We have

$$
\sum_{i_{1} \leq \cdots \leq i_{m}}\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2 m /(m+1)} \leq \sum_{i_{1}, \ldots, i_{m}}\left(\frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|}{|i|^{1 / 2}}\right)^{2 m /(m+1)}
$$

By Blei's lemma, the last sum is bounded by

$$
\prod_{k=1}^{m}\left[\sum_{i_{k}=1}^{n}\left(\sum_{i k} \frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2}}{|i|}\right)^{1 / 2}\right]^{1 / m} \leq \sqrt{m} \prod_{k=1}^{m}\left[\sum_{i_{k}=1}^{n}\left(\sum_{i k}\left|i^{k}\right| \frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2}}{|i|^{2}}\right)^{1 / 2}\right]^{1 / m} .
$$

The proof $2 / 3$

We now freeze the variable i_{k} and group the terms to make a polynomial again:

$$
\left(\sum_{i^{k}}\left|i^{k}\right| \frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2}}{|i|^{2}}\right)^{1 / 2}=\left(\sum_{i^{k}}\left|i^{k}\right|\left|B\left(e^{i_{1}}, \ldots, e^{i_{m}}\right)\right|^{2}\right)^{1 / 2}=\left\|P_{k}\right\|_{2}
$$

where $P_{k}(z)$ is the polynomial $P_{k}(z)=B\left(z, \ldots, z, e^{i_{k}}, z, \ldots, z\right)$. Now we use Bayart's estimate and get

$$
\left(\sum_{i^{k}}\left|i^{k}\right| \frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2}}{|i|^{2}}\right)^{1 / 2} \leq \sqrt{2}^{m-1} \int_{\mathbb{T}^{n}}\left|B\left(z, \ldots, z, e^{i_{k}}, z, \ldots, z\right)\right|
$$

The proof $3 / 3$

We replace $e^{i_{k}}$ by $\lambda e^{i_{k}}$ with $|\lambda|=1$. We take $\tau_{k}(z)=\sum \lambda_{k}(z) e^{i_{k}}$ in such a way that

$$
\begin{aligned}
\sum_{i_{k}=1}^{n}\left(\sum_{i^{k}}\left|i^{k}\right| \frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|}{|i|^{2}}\right)^{1 / 2} & \leq \sqrt{2}^{m-1} \int_{\mathbb{T}^{n}} B\left(z, \ldots, \tau_{k}(z), \ldots, z\right) \\
& \leq e^{m} \sqrt{2}^{m-1}\|P\|_{\infty}
\end{aligned}
$$

where in the last step we used Harris's lemma. Finally,

$$
\sum_{i_{1} \leq \cdots \leq i_{m}}\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2 m /(m+1)} \leq e^{m} \sqrt{2}^{m-1} \sqrt{m}\|P\|_{\infty}
$$

The proof $3 / 3$

We replace $e^{i_{k}}$ by $\lambda e^{i_{k}}$ with $|\lambda|=1$. We take $\tau_{k}(z)=\sum \lambda_{k}(z) e^{i_{k}}$ in such a way that

$$
\begin{aligned}
\sum_{i_{k}=1}^{n}\left(\sum_{i^{k}}\left|i^{k}\right| \frac{\left|c\left(i_{1}, \ldots, i_{m}\right)\right|}{|i|^{2}}\right)^{1 / 2} & \leq \sqrt{2}^{m-1} \int_{\mathbb{T}^{n}} B\left(z, \ldots, \tau_{k}(z), \ldots, z\right) \\
& \leq e^{m} \sqrt{2}^{m-1}\|P\|_{\infty}
\end{aligned}
$$

where in the last step we used Harris's lemma. Finally,

$$
\sum_{i_{1} \leq \cdots \leq i_{m}}\left|c\left(i_{1}, \ldots, i_{m}\right)\right|^{2 m /(m+1)} \leq e^{m} \sqrt{2}^{m-1} \sqrt{m}\|P\|_{\infty}
$$

(The factor e^{m} can be reduced to e by use of a refined version of Harris's lemma.)

Consequences of the hypercontractive BH inequality

Our improvement of the polynomial Bohnenblust-Hille inequality may seem marginal, but it has several interesting consequences: It leads to precise asymptotic results regarding certain Sidon sets, Bohr radii, and absolute convergence of Dirichlet series.

Sidon sets

Definition

If G is an Abelian compact group and Γ its dual group, a subset of the characters $S \subset \Gamma$ is called a Sidon set if

$$
\sum_{\gamma \in S}\left|a_{\gamma}\right| \leq C\left\|\sum_{\gamma \in S} a_{\gamma} \gamma\right\|_{\infty}
$$

The smallest constant $C(S)$ is called the Sidon constant of S.

Sidon sets

Definition

If G is an Abelian compact group and Γ its dual group, a subset of the characters $S \subset \Gamma$ is called a Sidon set if

$$
\sum_{\gamma \in S}\left|a_{\gamma}\right| \leq C\left\|\sum_{\gamma \in S} a_{\gamma} \gamma\right\|_{\infty}
$$

The smallest constant $C(S)$ is called the Sidon constant of S.
We estimate the Sidon constant for homogeneous polynomials:

Definition

$S(m, n)$ is the smallest constant C such that the inequality
$\sum_{|\alpha|=m}\left|a_{\alpha}\right| \leq C\|P\|_{\infty}$ holds for every m-homogeneous
polynomial in n complex variables $P=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$.

The Sidon constant for homogeneous polynomials

Since the number of different monomials of degree m is $\binom{n+m-1}{m}$, Hölder's inequality gives:

Corollary

Let m and n be positive integers larger than 1 . Then

$$
S(m, n) \leq e \sqrt{m}(\sqrt{2})^{m-1}\binom{n+m-1}{m}^{\frac{m-1}{2 m}}
$$

The Sidon constant for homogeneous polynomials

Since the number of different monomials of degree m is $\binom{n+m-1}{m}$, Hölder's inequality gives:

Corollary

Let m and n be positive integers larger than 1 . Then

$$
S(m, n) \leq e \sqrt{m}(\sqrt{2})^{m-1}\binom{n+m-1}{m}^{\frac{m-1}{2 m}}
$$

(We also have the trivial estimate

$$
S(m, n) \leq \sqrt{\binom{n+m-1}{m}}
$$

so the corollary is of interest only when $\log n \gg m$.)

The n-dimensional Bohr radius

Definition

The n-dimensional Bohr radius K_{n} is the largest $r>0$ such that all polynomials $\sum_{\alpha} c_{\alpha} z^{\alpha}$ satisfy

$$
\sup _{z \in r \mathbb{D}^{n}} \sum_{\alpha}\left|c_{\alpha} z^{\alpha}\right| \leq \sup _{z \in \mathbb{D}^{n}}\left|\sum_{\alpha} c_{\alpha} z^{\alpha}\right|
$$

The n-dimensional Bohr radius

Definition

The n-dimensional Bohr radius K_{n} is the largest $r>0$ such that all polynomials $\sum_{\alpha} c_{\alpha} z^{\alpha}$ satisfy

$$
\sup _{z \in r \mathbb{D}^{n}} \sum_{\alpha}\left|c_{\alpha} z^{\alpha}\right| \leq \sup _{z \in \mathbb{D}^{n}}\left|\sum_{\alpha} c_{\alpha} z^{\alpha}\right|
$$

When $n=1$, this is the classical Bohr radius studied by H . Bohr in 1913; M. Riesz, I. Schur and F. Wiener proved that $K_{1}=1 / 3$.

The n-dimensional Bohr radius

Definition

The n-dimensional Bohr radius K_{n} is the largest $r>0$ such that all polynomials $\sum_{\alpha} c_{\alpha} z^{\alpha}$ satisfy

$$
\sup _{z \in r \mathbb{D}^{n}} \sum_{\alpha}\left|c_{\alpha} z^{\alpha}\right| \leq \sup _{z \in \mathbb{D}^{n}}\left|\sum_{\alpha} c_{\alpha} z^{\alpha}\right| .
$$

When $n=1$, this is the classical Bohr radius studied by H. Bohr in 1913; M. Riesz, I. Schur and F. Wiener proved that $K_{1}=1 / 3$.

When $n>1$, the precise value of K_{n} is unknown.

Problem

Determine the asymptotic behavior of K_{n} when $n \rightarrow \infty$.

Footnote on F. Wiener

The initial ' F ' is not a misprint: F. Wiener is the mathematician Friedrich Wilhelm Wiener, born in 1884, and probably a casualty of World War One. See Boas and Khavinson's biography http://arxiv.org/PS_cache/math/pdf/ 9901/9901035v1.pdf.

Asymptotic behavior of K_{n}

The problem was studied by Boas and Khavinson in 1997. They showed that

$$
\frac{1}{3} \sqrt{\frac{1}{n}} \leq K_{n} \leq 2 \sqrt{\frac{\log n}{n}}
$$

Asymptotic behavior of K_{n}

The problem was studied by Boas and Khavinson in 1997. They showed that

$$
\frac{1}{3} \sqrt{\frac{1}{n}} \leq K_{n} \leq 2 \sqrt{\frac{\log n}{n}}
$$

In 2006, Defant and Frerick showed that:

$$
c \sqrt{\frac{\log n}{n \log \log n}} \leq K_{n}
$$

Asymptotic behavior of K_{n}

The problem was studied by Boas and Khavinson in 1997. They showed that

$$
\frac{1}{3} \sqrt{\frac{1}{n}} \leq K_{n} \leq 2 \sqrt{\frac{\log n}{n}}
$$

In 2006, Defant and Frerick showed that:

$$
c \sqrt{\frac{\log n}{n \log \log n}} \leq K_{n}
$$

Theorem (DFOOS 2009)

The n-dimensional Bohr radius satisfies

$$
c \sqrt{\frac{\log n}{n}} \leq K_{n} \leq 2 \sqrt{\frac{\log n}{n}}
$$

Proof of theorem on the Bohr radius

We use a well known lemma of F. Wiener.
Lemma
Let P be a polynomial in n variables and $P=\sum_{m \geq 0} P_{m}$ its expansion in homogeneous polynomials. If $\|P\|_{\infty} \leq 1$, then $\left\|P_{m}\right\|_{\infty} \leq 1-\left|P_{0}\right|^{2}$ for every $m>0$.

Proof of theorem on the Bohr radius

We use a well known lemma of F. Wiener.

Lemma

Let P be a polynomial in n variables and $P=\sum_{m \geq 0} P_{m}$ its expansion in homogeneous polynomials. If $\|P\|_{\infty} \leq 1$, then $\left\|P_{m}\right\|_{\infty} \leq 1-\left|P_{0}\right|^{2}$ for every $m>0$.

We assume that $\sup _{\mathbb{D}^{n}}\left|\sum a_{\alpha} z^{\alpha}\right| \leq 1$. Observe that for all z in $r \mathbb{D}^{n}$,

$$
\sum\left|a_{\alpha} z^{\alpha}\right| \leq\left|a_{0}\right|+\sum_{m>1} r^{m} \sum_{|\alpha|=m}\left|a_{\alpha}\right|
$$

End of proof

If we take into account the estimates

$$
\frac{(\log n)^{m}}{n} \leq m!\quad \text { and } \quad\binom{n+m-1}{m} \leq e^{m}\left(1+\frac{n}{m}\right)^{m}
$$

then we use the Sidon estimate and F. Wiener lemma:

$$
\sum_{m>1} r^{m} \sum_{|\alpha|=m}\left|a_{\alpha}\right| \leq \sum_{m>1} r^{m} e \sqrt{m}(2 \sqrt{e})^{m}\left(\frac{n}{\log n}\right)^{m / 2}\left(1-\left|a_{0}\right|^{2}\right)
$$

Choosing $r \leq \varepsilon \sqrt{\frac{\log n}{n}}$ with ε small enough, we obtain

$$
\sum\left|a_{\alpha} z^{\alpha}\right| \leq\left|a_{0}\right|+\left(1-\left|a_{0}\right|^{2}\right) / 2 \leq 1
$$

whenever $\left|a_{0}\right| \leq 1$.

Remark: What is the "Bohr subset" of \mathbb{D}^{n} ?

A more difficult problem would be to find the "Bohr subset" of \mathbb{D}^{n}, i.e., the set of points z in \mathbb{D}^{n} for which

$$
\sum_{\alpha}\left|c_{\alpha} z^{\alpha}\right| \leq \sup _{z \in \mathbb{D}^{n}}\left|\sum_{\alpha} c_{\alpha} z^{\alpha}\right|
$$

holds for all polynomials $\sum_{\alpha} c_{\alpha} z^{\alpha}$.

The BH inequality and Dirichlet Series

Recall that an ordinary Dirichlet series is a series of the form $\sum_{n \geq 1} a_{n} n^{-s}$, where the exponentials n^{-s} are positive for positive arguments s. The original work of Bohnenblust and Hille (1931) was motivated by a problem of Bohr from 1913 on the convergence of such series.

Convergence of Dirichlet series

In general, a Dirichlet series has several half-planes of convergence, as shown in the picture:

Figure: Convergence regions for Dirichlet series

Bohr's problem on absolute convergence

It is plain that $0 \leq A-C \leq 1$, and if $a_{n}=e^{i n^{\alpha}}$ with $0 \leq \alpha \leq 1$, then $C=1-\alpha$ and $A=1$.

Bohr's problem on absolute convergence

It is plain that $0 \leq \boldsymbol{A}-\boldsymbol{C} \leq 1$, and if $a_{n}=e^{i \eta^{\alpha}}$ with $0 \leq \alpha \leq 1$, then $C=1-\alpha$ and $A=1$.
The most interesting quantity is the difference $A-U$. Bohr proved that it does not exceed $1 / 2$, but he was unable to exhibit even one example such that $A-U>0$.

Bohr's problem on absolute convergence

It is plain that $0 \leq A-C \leq 1$, and if $a_{n}=e^{i n^{\alpha}}$ with $0 \leq \alpha \leq 1$, then $C=1-\alpha$ and $A=1$.
The most interesting quantity is the difference $A-U$. Bohr proved that it does not exceed $1 / 2$, but he was unable to exhibit even one example such that $A-U>0$. There was no progress on this problem before Bohnenblust and Hille solved it completely by giving examples such that $A-U=1 / 2$.

Bohr's problem on absolute convergence

It is plain that $0 \leq A-C \leq 1$, and if $a_{n}=e^{i \eta^{\alpha}}$ with $0 \leq \alpha \leq 1$, then $C=1-\alpha$ and $A=1$.
The most interesting quantity is the difference $A-U$. Bohr proved that it does not exceed $1 / 2$, but he was unable to exhibit even one example such that $A-U>0$. There was no progress on this problem before Bohnenblust and Hille solved it completely by giving examples such that $A-U=1 / 2$.
Alternate viewpoint: Bohr proved that the abscissa of uniform convergence is the same as the abscissa of boundedness and regularity, i.e. the infimum of those σ_{0} such that the function represented by the Dirichlet series is analytic and bounded in $\Re \boldsymbol{s}=\sigma>\sigma_{0}$. Thus we may instead look at \boldsymbol{A} for bounded analytic functions represented by Dirichlet series.

The Bohnenblust-Hille theorem on absolute convergence

Definition

The space \mathscr{H}^{∞} consists of those bounded analytic functions f in $\mathbb{C}_{+}=\{s=\sigma+\mathrm{i} t: \sigma>0\}$ such that f can be represented by an ordinary Dirichlet series $\sum_{n=1}^{\infty} a_{n} n^{-s}$ in some half-plane.

The Bohnenblust-Hille theorem can be rephrased as:

Theorem

The infimum of those $c>0$ such that

$$
\sum\left|a_{n}\right| n^{-c}<+\infty
$$

for every $\sum_{n=1}^{\infty} a_{n} n^{-s}$ in \mathscr{H}^{∞} equals $1 / 2$.

A refined version of the Bohnenblust-Hille theorem

Theorem

The supremum of the set of real numbers c such that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| n^{-\frac{1}{2}} \exp \{c \sqrt{\log n \log \log n}\}<\infty
$$

for every $\sum_{n=1}^{\infty} a_{n} n^{-s}$ in \mathscr{H}^{∞} equals $1 / \sqrt{2}$.
This is a refinement of a theorem of R. Balasubramanian, B. Calado, and H. Queffélec (2006). (Without the hypercontractive BH inequality, one does not catch the precise bound for the constant c.)

Bohr's insight

Let $f(s)=\sum_{n \geq 1} a_{n} n^{-s}$ be a Dirichlet series. We factor each integer n into a product of prime numbers $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ and set $z=\left(p_{1}^{-s}, p_{2}^{-s}, \ldots\right)$. Then

$$
f(s)=\sum_{n=1}^{\infty} a_{n}\left(p_{1}^{-s}\right)^{\alpha_{1}} \cdots\left(p_{r}^{-s}\right)^{\alpha_{r}}=\sum a_{n} z_{1}^{\alpha_{1}} \cdots z_{r}^{\alpha_{r}}
$$

Bohr's correspondence is not just formal. The space \mathscr{H}^{∞} is isometric to the space $H^{\infty}\left(\mathbb{T}^{\infty}\right):=L^{\infty}\left(\mathbb{T}^{\infty}\right) \cap H^{2}\left(\mathbb{T}^{\infty}\right)$ (or $H^{\infty}\left(\mathbb{D}^{\infty}\right)$ which can be defined as the set of bounded analytic functions on $\mathbb{D}^{\infty} \cap c_{0}$), thanks to a classical result of Kronecker on diophantine approximation.

Bohr's insight-continued

Bohr's correspondence is an indispensable tool for proving nontrivial results about Dirichlet series.

Bohr's insight-continued

Bohr's correspondence is an indispensable tool for proving nontrivial results about Dirichlet series. The question about absolute convergence is an interesting example.

Bohr's insight-continued

Bohr's correspondence is an indispensable tool for proving nontrivial results about Dirichlet series. The question about absolute convergence is an interesting example.
Note, however: The Bohneblust-Hille inequality does not apply as easily as it did to the previous problem on the Bohr radius, because now we have "polydiscs" with different radii $p_{j}^{-\sigma}$ in each "variable"; in other words, the expansion into homogeneous polynomials is not so immediately applicable.

Bohr's insight-continued

Bohr's correspondence is an indispensable tool for proving nontrivial results about Dirichlet series. The question about absolute convergence is an interesting example.
Note, however: The Bohneblust-Hille inequality does not apply as easily as it did to the previous problem on the Bohr radius, because now we have "polydiscs" with different radii $p_{j}^{-\sigma}$ in each "variable"; in other words, the expansion into homogeneous polynomials is not so immediately applicable.
The proof of the refined version of the theorem of
Balasubramanian-Calado-Queffélec goes via the following beautiful result about Dirichlet polynomials; it combines the Bohnenblust-Hille inequality with probabilistic methods and methods from analytic number theory.

Estimates on coefficients of Dirichlet polynomials

For a Dirichlet polynomial

$$
Q(s)=\sum_{n=1}^{N} a_{n} n^{-s}
$$

we set $\|Q\|_{\infty}=\sup _{t \in \mathbb{R}}|Q(i t)|$ and $\|Q\|_{1}=\sum_{n=1}^{N}\left|a_{n}\right|$. Then $S(N)$ is the smallest constant C such that the inequality $\|Q\|_{1} \leq C\|Q\|_{\infty}$ holds for every Q.

Estimates on coefficients of Dirichlet polynomials

For a Dirichlet polynomial

$$
Q(s)=\sum_{n=1}^{N} a_{n} n^{-s}
$$

we set $\|Q\|_{\infty}=\sup _{t \in \mathbb{R}}|Q(i t)|$ and $\|Q\|_{1}=\sum_{n=1}^{N}\left|a_{n}\right|$. Then $S(N)$ is the smallest constant C such that the inequality $\|Q\|_{1} \leq C\|Q\|_{\infty}$ holds for every Q.

Theorem (Konyagin-Queffélec 2001, de la Bretèche 2008, DFOOS 2009)
We have

$$
S(N)=\sqrt{N} \exp \left\{\left(-\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log N \log \log N}\right\}
$$

when $N \rightarrow \infty$.

Historical account of the estimate for $S(N)$

The inequality

$$
S(N) \geq \sqrt{N} \exp \left\{\left(-\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log N \log \log N}\right\}
$$

was established by R. de la Bretèche, who also showed that

$$
S(N) \leq \sqrt{N} \exp \left\{\left(-\frac{1}{2 \sqrt{2}}+o(1)\right) \sqrt{\log N \log \log N}\right\}
$$

follows from an ingenious method developed by Konyagin and Queffélec. The same argument, using the hypercontractive BH inequality at a certain point, gives the sharp result.

More on the function theory of \mathscr{H}^{∞}

So far, our discussion has centered around the Bohnenblust-Hille inequality. In the remaining part of the talk, we will look at properties of boundary limit functions of elements in \mathscr{H}^{∞} and the related spaces \mathscr{H}^{p}. Now we do not use the Bohnenblust-Hille inequality, but the Bohr correspondence is still of basic importance.

Carlson's theorem

Suppose f is in \mathscr{H}^{∞}. By a direct computation, we get what is known as Carlson's theorem ${ }^{1}$:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(\sigma+i t)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n^{-2 \sigma}
$$

Carlson's theorem

Suppose f is in \mathscr{H}^{∞}. By a direct computation, we get what is known as Carlson's theorem ${ }^{1}$:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(\sigma+i t)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n^{-2 \sigma}
$$

Thus

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \leq\|f\|_{\infty}^{2}<\infty
$$

${ }^{1}$ Named after the Swedish mathematician Fritz Carlson (1888-1952).

Carlson's theorem

Suppose f is in \mathscr{H}^{∞}. By a direct computation, we get what is known as Carlson's theorem ${ }^{1}$:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(\sigma+i t)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n^{-2 \sigma}
$$

Thus

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \leq\|f\|_{\infty}^{2}<\infty
$$

Note that Cauchy-Schwarz gives $A \leq 1 / 2$, and thus we have a simple proof of Bohr's inequality $A-U \leq 1 / 2$.

[^0]
Ergodicity

We may think of the line $t \mapsto \sigma_{0}+i t$ as a quasi-periodic motion, or, more precisely, for each prime p, we associate a periodic motion on the circle of radius $p^{-\sigma_{0}}$:

$$
t \mapsto p^{-i t} p^{-\sigma_{0}}
$$

Thus we think of vertical translations as a motion on a system of circles, or, if you like, on an infinite-dimensional torus.

Ergodicity

We may think of the line $t \mapsto \sigma_{0}+$ it as a quasi-periodic motion, or, more precisely, for each prime p, we associate a periodic motion on the circle of radius $p^{-\sigma_{0}}$:

$$
t \mapsto p^{-i t} p^{-\sigma_{0}}
$$

Thus we think of vertical translations as a motion on a system of circles, or, if you like, on an infinite-dimensional torus. We use the product measure of the normalized arc length measures for the circles. Then the flow is ergodic (by the afore-mentioned approximation theorem of Kronecker), and we may use the Birkhoff-Khinchin ergodic theorem.

Ergodicity

We may think of the line $t \mapsto \sigma_{0}+i t$ as a quasi-periodic motion, or, more precisely, for each prime p, we associate a periodic motion on the circle of radius $p^{-\sigma_{0}}$:

$$
t \mapsto p^{-i t} p^{-\sigma_{0}}
$$

Thus we think of vertical translations as a motion on a system of circles, or, if you like, on an infinite-dimensional torus. We use the product measure of the normalized arc length measures for the circles. Then the flow is ergodic (by the afore-mentioned approximation theorem of Kronecker), and we may use the Birkhoff-Khinchin ergodic theorem. In particular, this gives us a fancier way of proving Carlson's theorem:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(\sigma+i t)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n^{-2 \sigma}
$$

Carlson's theorem on the boundary?

An interesting question raised by Hedenmalm (2003) is whether Carlson's theorem extends to the imaginary axis.

Carlson's theorem on the boundary?

An interesting question raised by Hedenmalm (2003) is whether Carlson's theorem extends to the imaginary axis.
To place it in context, I will mention a few related matters before we answer that question.

The Dirichlet-Hardy space \mathscr{H}^{2}

Definition

\mathscr{H}^{2} consists of all Dirichlet series $f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ for which

$$
\|f\|_{2}^{2}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

The Dirichlet-Hardy space \mathscr{H}^{2}

Definition

\mathscr{H}^{2} consists of all Dirichlet series $f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ for which

$$
\|f\|_{2}^{2}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

Since by Cauchy-Schwarz

$$
|f(s)|^{2} \leq\|f\|_{2}^{2} \sum_{n=1}^{\infty} n^{-2 \sigma}
$$

an f in \mathscr{H}^{2} is analytic in $\mathbb{C}_{1 / 2}^{+}=\{s=\sigma+$ it : $\sigma>1 / 2\}$. In particular, $\mathscr{H}^{\infty} \subset \mathscr{H}^{2}$ and $\|f\|_{2} \leq\|f\|_{\infty} . \mathscr{H}^{2}$ is, via the Bohr correspondence, the restriction of $H^{2}\left(\mathbb{D}^{\infty}\right)$ to $\mathbb{C}_{1 / 2}^{+}$.

Theorem on multipliers

A multiplier m is a holomorphic function in $\mathbb{C}_{1 / 2}^{+}$such that $m f$ is in \mathscr{H}^{2} whenever f is in \mathscr{H}^{2}. We denote the set of multipliers by \mathscr{M}. Every multiplier m defines a bounded operator on \mathscr{H}^{2}; the corresponding operator norm is denoted by $\|m\|_{\mathscr{M}}$.

Theorem on multipliers

A multiplier m is a holomorphic function in $\mathbb{C}_{1 / 2}^{+}$such that $m f$ is in \mathscr{H}^{2} whenever f is in \mathscr{H}^{2}. We denote the set of multipliers by \mathscr{M}. Every multiplier m defines a bounded operator on \mathscr{H}^{2}; the corresponding operator norm is denoted by $\|m\|_{\mathscr{M}}$.

Theorem (Hedenmalm-Lindqvist-Seip 97)

$$
\mathscr{M}=\mathscr{H}^{\infty} \text { and }\|m\|_{\mathscr{M}}=\sup _{\sigma>0}|m(\sigma+i t)| .
$$

The proof of this theorem makes of course essential use of the Bohr correspondence.

Reproducing kernel of \mathscr{H}^{2}

The reproducing kernel of \mathscr{H}^{2} is

$$
K_{w}(s)=\zeta(s+\bar{w})
$$

where ζ is the Riemann zeta-function defined in $\sigma>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}
$$

Thus, for f in \mathscr{H}^{2} and $\sigma>1 / 2$, we have

$$
f(s)=\langle f, \zeta(\cdot+\bar{s})\rangle
$$

A pointwise estimate

Since $\zeta(s)$ has a simple pole of residue 1 at 1 , we have

$$
\zeta(s+\bar{s}) \simeq \frac{1}{2 \sigma-1}+1
$$

so that

$$
|f(s)| \lesssim \frac{\|f\|_{2}}{\sqrt{\sigma-1 / 2}}
$$

as $\sigma \rightarrow 1 / 2$. This is the same estimate that governs the growth of functions in $H^{2}\left(\mathbb{C}_{1 / 2}^{+}\right)$.

A pointwise estimate

Since $\zeta(s)$ has a simple pole of residue 1 at 1 , we have

$$
\zeta(s+\bar{s}) \simeq \frac{1}{2 \sigma-1}+1
$$

so that

$$
|f(s)| \lesssim \frac{\|f\|_{2}}{\sqrt{\sigma-1 / 2}}
$$

as $\sigma \rightarrow 1 / 2$. This is the same estimate that governs the growth of functions in $H^{2}\left(\mathbb{C}_{1 / 2}^{+}\right)$.
Is there a more precise link to the latter space?

A basic inequality

The following estimate is a mean value inequality that appears in analytic number theory:

$$
\int_{y}^{y+T}|f(1 / 2+i t)|^{2} d t \leq C T\|f\|_{2}^{2} .
$$

A basic inequality

The following estimate is a mean value inequality that appears in analytic number theory:

$$
\int_{y}^{y+T}|f(1 / 2+i t)|^{2} d t \leq C T\|f\|_{2}^{2}
$$

So f is "locally" in $H^{2}\left(\mathbb{C}_{1 / 2}^{+}\right)$, or, if you like, $f(s) / s$ belongs to $H^{2}\left(\mathbb{C}_{1 / 2}^{+}\right)$.

Extension of "Carlson's theorem"?

Extension of "Carlson's theorem"?

For f in \mathscr{H}^{2}, we get

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(1 / 2+i t)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n^{-1}
$$

by first proving it for Dirichlet polynomials (trivial) and then extending it to general f using the basic inequality.

Extension of "Carlson's theorem"?

For f in \mathscr{H}^{2}, we get

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(1 / 2+i t)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n^{-1}
$$

by first proving it for Dirichlet polynomials (trivial) and then extending it to general f using the basic inequality. However, for \mathscr{H}^{∞}, Carlson's theorem does not extend:

Theorem (Saksman-Seip 2009)

There exists an f in \mathscr{H}^{∞} such that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(i t)|^{2} d t
$$

does not exist. For every $\varepsilon>0$ there is a singular inner function f in \mathscr{H}^{∞} such that $\|f\|_{2}<\varepsilon$.

Construction of counter-examples

Again we use the Bohr correspondence and move to a polydisc. We use a beautiful construction of Rudin ("Function Theory in Polydiscs", 1969):

- If ψ is positive, bounded, and lower semi-continuous on \mathbb{T}^{m}, then ψ is a. e. the radial boundary limit of the modulus of a function in $H^{\infty}\left(\mathbb{D}^{m}\right)$.

Construction of counter-examples

Again we use the Bohr correspondence and move to a polydisc. We use a beautiful construction of Rudin ("Function Theory in Polydiscs", 1969):

- If ψ is positive, bounded, and lower semi-continuous on \mathbb{T}^{m}, then ψ is a. e. the radial boundary limit of the modulus of a function in $H^{\infty}\left(\mathbb{D}^{m}\right)$.
Choose $m=2$, so that we only deal with two "variables", say 2^{-s} and 3^{-s}. Consider $i \mathbb{R}$ as a subset of \mathbb{T}^{2}, and cover it by an open set E of measure $<\varepsilon / 2$. Take as ψ a function being 1 on E and ε outside E. The challenge is to prove that Rudin's construction leads to a function with radial limit 1 almost everywhere on $i \mathbb{R}$ (a subset of \mathbb{T}^{2} of measure 0).

What about \mathscr{H}^{p} when $p \neq 2, \infty$?

By the ergodic theorem, we may either define \mathscr{H}^{p} via L^{p}-norms on polycircles or via L^{p} integral means on the imaginary axis (Bayart 2002):

What about \mathscr{H}^{p} when $p \neq 2, \infty$?

By the ergodic theorem, we may either define \mathscr{H}^{p} via L^{p}-norms on polycircles or via L^{p} integral means on the imaginary axis (Bayart 2002):

- For F a polynomial and with m_{∞} Haar measure on \mathbb{T}^{∞},

$$
\|F\|_{H^{p}\left(\mathbb{D}^{\infty}\right)}:=\left(\int_{\mathbb{T}^{\infty}}|F(\tau)|^{p} d m_{\infty}(\tau)\right)^{1 / p}
$$

$H^{P}\left(\mathbb{D}^{\infty}\right)$ the closure of polynomials w.r.t this norm. Use the Bohr correspondence $f \leftrightarrow F$ and set $\|f\|_{\mathscr{H}^{p}}:=\|F\|_{H^{p}\left(\mathbb{D}^{\infty}\right)}$.

What about \mathscr{H}^{p} when $p \neq 2, \infty$?

By the ergodic theorem, we may either define \mathscr{H}^{p} via L^{p}-norms on polycircles or via L^{p} integral means on the imaginary axis (Bayart 2002):

- For F a polynomial and with m_{∞} Haar measure on \mathbb{T}^{∞},

$$
\|F\|_{H p\left(\mathbb{D}^{\infty}\right)}:=\left(\int_{\mathbb{T}_{\infty}}|F(\tau)|^{p} d m_{\infty}(\tau)\right)^{1 / p}
$$

$H^{p}\left(\mathbb{D}^{\infty}\right)$ the closure of polynomials w.r.t this norm. Use the Bohr correspondence $f \leftrightarrow F$ and set $\|f\|_{\mathscr{C} P}:=\|F\|_{H^{(}\left(\mathbb{D}^{\infty}\right)}$.

- For f a Dirichlet polynomial,

$$
\|f\|_{\mathscr{H} P}^{p}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|f(i t)|^{p} d t ;
$$

take again the closure of polynomials.

The embedding problem for \mathscr{H}^{p}

By estimates of Cole and Gamelin (1986), f in \mathscr{H}^{p} satisfies

$$
|f(\sigma+i t)| \leq C(\sigma-1 / 2)^{1 / p}
$$

for $\sigma>1 / 2$, just as functions in $H^{p}\left(\mathbb{C}_{1 / 2}^{+}\right)$.

The embedding problem for \mathscr{H}^{p}

By estimates of Cole and Gamelin (1986), f in \mathscr{H}^{p} satisfies

$$
|f(\sigma+i t)| \leq C(\sigma-1 / 2)^{1 / p}
$$

for $\sigma>1 / 2$, just as functions in $H^{p}\left(\mathbb{C}_{1 / 2}^{+}\right)$. Natural to ask:

Question

Fix an exponent $p>0$, not an even integer. Does there exist a constant $C_{p}<\infty$ such that

$$
\int_{0}^{1}\left|f\left(\frac{1}{2}+i t\right)\right|^{p} d t \leq C_{p}\|f\|_{\mathscr{H} \mathscr{P}^{p}}^{p}
$$

for every Dirichlet polynomial f?

The embedding problem for \mathscr{H}^{p}

By estimates of Cole and Gamelin (1986), f in \mathscr{H}^{p} satisfies

$$
|f(\sigma+i t)| \leq C(\sigma-1 / 2)^{1 / p}
$$

for $\sigma>1 / 2$, just as functions in $H^{p}\left(\mathbb{C}_{1 / 2}^{+}\right)$. Natural to ask:

Question

Fix an exponent $p>0$, not an even integer. Does there exist a constant $C_{p}<\infty$ such that

$$
\int_{0}^{1}\left|f\left(\frac{1}{2}+i t\right)\right|^{p} d t \leq C_{p}\|f\|_{\mathscr{H} P}^{p}
$$

for every Dirichlet polynomial f ?
Trivial for $p=2 k, k$ a positive integer, because we may apply the case $p=2$ to f^{k}. The problem is probably very difficult.

Embedding problem for $p=1$ and weak factorization

For $p=1$, the embedding would be implied by an extension to \mathbb{T}^{∞} of the Ferguson-Lacey weak factorization theorem. (The problem of finding such an extension of the weak factorization theorem was raised by H. Helson (2005).)

The embedding problem for \mathscr{H}^{p}-weak version

Question

Assume that $2<q<p<4$. Is it true that

$$
\left(\int_{0}^{1}\left|f\left(\frac{1}{2}+i t\right)\right|^{q} d t\right)^{1 / q} \leq C_{q}\|f\|_{\mathscr{H} p}
$$

for every Dirichlet polynomial f ? Is this true at least for one such pair of exponents?

Fatou theorems

Since $i \mathbb{R}$ has measure 0 when viewed as a subset of \mathbb{T}^{∞}, care has to be taken if we want to speak about the restriction to $i \mathbb{R}$ of a function in $L^{p}\left(\mathbb{T}^{\infty}\right)$. Set for $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right) \in \mathbb{T}^{\infty}$ and $\theta \geq 0$

$$
b_{\theta}(\tau):=\left(p_{1}^{-\theta} \tau_{1}, p_{2}^{-\theta} \tau_{1}, \ldots\right)
$$

The Kronecker flow on $\overline{\mathbb{D}}^{\infty}$:

$$
T_{t}\left(\left(z_{1}, z_{2}, \ldots\right)\right):=\left(p_{1}^{-i t} z_{1}, p_{2}^{-i t} z_{2}, \ldots\right)
$$

We equip $T(z):=\left\{T_{t}(z): t \in \mathbb{R}\right\}$ with the natural linear measure.

Fatou theorems

Since $i \mathbb{R}$ has measure 0 when viewed as a subset of \mathbb{T}^{∞}, care has to be taken if we want to speak about the restriction to $i \mathbb{R}$ of a function in $L^{p}\left(\mathbb{T}^{\infty}\right)$. Set for $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right) \in \mathbb{T}^{\infty}$ and $\theta \geq 0$

$$
b_{\theta}(\tau):=\left(p_{1}^{-\theta} \tau_{1}, p_{2}^{-\theta} \tau_{1}, \ldots\right)
$$

The Kronecker flow on $\overline{\mathbb{D}}^{\infty}$:

$$
T_{t}\left(\left(z_{1}, z_{2}, \ldots\right)\right):=\left(p_{1}^{-i t} z_{1}, p_{2}^{-i t} z_{2}, \ldots\right)
$$

We equip $T(z):=\left\{T_{t}(z): t \in \mathbb{R}\right\}$ with the natural linear measure.

Theorem (Saksman-Seip 2009)

For every F in $H^{\infty}\left(\mathbb{D}^{\infty}\right)$ we may pick a representative \widetilde{F} for the boundary function of F on \mathbb{T}^{∞} such that $\widetilde{F}(\tau)=\lim _{\theta \rightarrow 0^{+}} F\left(b_{\theta}(\tau)\right)$ for a.e. $\tau \in \mathbb{T}^{\infty}$. In fact, for every $\tau \in \mathbb{T}^{\infty}$, we have $\widetilde{F}\left(\tau^{\prime}\right)=\lim _{\theta \rightarrow 0^{+}} F\left(b_{\theta}\left(\tau^{\prime}\right)\right)$ for a.e. $\tau^{\prime} \in T(\tau)$.

Fatou theorem for \mathscr{H}^{p}

Set $\mathbb{T}_{1 / 2}^{\infty}:=b_{1 / 2}\left(\mathbb{T}^{\infty}\right)$. We need to make sense of the restriction $\left.F \mapsto F\right|_{\mathbb{T}_{1 / 2}}$ as a map from $H^{p}\left(\mathbb{D}^{\infty}\right)$ to $L^{p}\left(\mathbb{T}_{1 / 2}^{\infty}\right)$. For F a polynomial, we must have

$$
\left.F\right|_{\mathbb{T}_{1 / 2}^{\infty}}(\tau)=F\left(b_{1 / 2}(\tau)\right) .
$$

Write this as a Poisson integral and use that polynomials are dense in $H^{p}\left(\mathbb{D}^{\infty}\right)$.

Theorem (Saksman-Seip 2009)

For every F in $H^{p}\left(\mathbb{D}^{\infty}\right)(p \geq 2)$ we may pick a representative $\widetilde{F}_{1 / 2}$ for the restriction $\left.F\right|_{\mathbb{T}_{1 / 2}^{\infty}}$ on \mathbb{T}^{∞} such that $\tilde{F}_{1 / 2}(\tau)=\lim _{\theta \rightarrow 1 / 2^{+}} F\left(b_{\theta}(\tau)\right)$ for a.e. $\tau \in \mathbb{T}^{\infty}$. In fact, for every $\tau \in \mathbb{T}^{\infty}$, we have $\widetilde{F}_{1 / 2}\left(\tau^{\prime}\right)=\lim _{\theta \rightarrow 1 / 2^{+}} F\left(b_{\theta}\left(\tau^{\prime}\right)\right)$ for a.e. $\tau^{\prime} \in T(\tau)$.

"Strong" ergodic theorem only when $p=2,4,6, \ldots ?$

Arguing as for $p=2$, we now get: If F is in $H^{p}\left(\mathbb{D}^{\infty}\right)(p \geq 2)$ and the embedding holds, then for every τ in $\mathbb{T}_{1 / 2}^{\infty}$

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\widetilde{F}\left(T_{t} \tau\right)\right|^{p} d t=\left\|\widetilde{F}_{1 / 2}\right\|_{L^{p}\left(\mathbb{T}^{\infty}\right)}^{p}
$$

Conversely, by the closed graph theorem (fix $T=1$), the embedding would follow from such a "strong" ergodic theorem.

"Strong" ergodic theorem only when $p=2,4,6, \ldots ?$

Arguing as for $p=2$, we now get: If F is in $H^{p}\left(\mathbb{D}^{\infty}\right)(p \geq 2)$ and the embedding holds, then for every τ in $\mathbb{T}_{1 / 2}^{\infty}$

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\widetilde{F}\left(T_{t} \tau\right)\right|^{p} d t=\left\|\widetilde{F}_{1 / 2}\right\|_{L^{p}\left(\mathbb{T}^{\infty}\right)}^{p}
$$

Conversely, by the closed graph theorem (fix $T=1$), the embedding would follow from such a "strong" ergodic theorem.

So our "strong" variant of the Birkhoff-Khinchin ergodic theorem for functions in $H^{p}\left(\mathbb{D}^{\infty}\right)$ is known to hold only when $p=2,4,6, \ldots$!

A problem concerning Riesz projection on \mathbb{T}^{∞}

A problem concerning Riesz projection on \mathbb{T}^{∞}

Riesz projection P_{+}(orthogonal projection from $L^{2}\left(\mathbb{T}^{\infty}\right)$ to $H^{2}\left(\mathbb{T}^{\infty}\right)$) is obviously unbounded on L^{p} for any $p \neq 2$, and therefore the embedding problem can not be solved in the standard way by interpolation.

A problem concerning Riesz projection on \mathbb{T}^{∞}

Riesz projection P_{+}(orthogonal projection from $L^{2}\left(\mathbb{T}^{\infty}\right)$ to $H^{2}\left(\mathbb{T}^{\infty}\right)$) is obviously unbounded on L^{p} for any $p \neq 2$, and therefore the embedding problem can not be solved in the standard way by interpolation.

Question

Is there a $p>2$ such that P_{+}is bounded from $L^{\infty}\left(\mathbb{T}^{\infty}\right)$ to $L^{p}\left(\mathbb{T}^{\infty}\right)$?

A problem concerning Riesz projection on \mathbb{T}^{∞}

Riesz projection P_{+}(orthogonal projection from $L^{2}\left(\mathbb{T}^{\infty}\right)$ to $H^{2}\left(\mathbb{T}^{\infty}\right)$) is obviously unbounded on L^{p} for any $p \neq 2$, and therefore the embedding problem can not be solved in the standard way by interpolation.

Question

Is there a $p>2$ such that P_{+}is bounded from $L^{\infty}\left(\mathbb{T}^{\infty}\right)$ to $L^{p}\left(\mathbb{T}^{\infty}\right)$?

I only know, by construction of an example, that any such p must be a little less than 4 ...

[^0]: ${ }^{1}$ Named after the Swedish mathematician Fritz Carlson (1888-1952).

