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What is the Bohnenblust–Hille inequality?

Let P(z) =
∑
|α|=m aαzα be an m-homogeneous polynomial in

n complex variables. Then trivially
(∑

|α|=m |aα|2
) 1

2 ≤ ‖P‖∞,
where ‖P‖∞ = supz∈Dn |P(z)|.

Is it possible to have a similar inequality( ∑
|α|=m

|aα|p
) 1

p ≤ C‖P‖∞

for some p < 2 with C depending on m but not on n?

Bohnenblust–Hille
YES, and 2m/(m + 1) is the smallest possible p.

It is of basic interest to know the asymptotic behavior of C
when p = 2m/(m + 1) and m→∞.
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A multilinear inequality

In 1930, Littlewood proved that for every bilinear form
B : Cn × Cn → C we have(∑

i,j

|B(ei ,ej)|4/3
)3/4

≤
√

2 sup
z,w∈Dn

|B(z,w)|.

This was extended to m-linear forms by Bohnenblust and Hille
in 1931:( ∑

i1,...,im

|B(ei1 , . . . ,eim )|
2m

m+1

)m+1
2m

≤
√

2
m−1

sup
z i∈Dn

|B(z1, . . . , zm)|.

The exponent 2m/(m + 1) is best possible.
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The Bohnenblust–Hille inequality

Our result is that also the polynomial Bohnenblust–Hille
inequality is hypercontractive:

Theorem (Defant, Frerick, Ortega-Cerdà, Ounaı̈es, Seip 2009)
Let m and n be positive integers larger than 1. Then we have( ∑

|α|=m

|aα|
2m

m+1
)m+1

2m ≤ e
√

m(
√

2)m−1 sup
z∈Dn

∣∣∣ ∑
|α|=m

aαzα
∣∣∣

for every m-homogeneous polynomial
∑
|α|=m aαzα on Cn.

The novelty here is the hypercontractivity, i.e., the constant
grows exponentially with m; known since the work of
Bohnenblust–Hille that the inequality holds with constant mm/2,
modulo a factor of exponential growth.
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Polarization

There is an obvious relationship between the multilinear and
polynomial inequalities, which goes via a one-to-one
correspondence between symmetric multilinear forms and
homogeneous polynomials.

Definition
We say that the m-linear form B is symmetric if
B(ei1 , ...,eim ) = B(eiσ(1) , ...,eiσ(m)) for every index set (i1, ..., im)
and every permutation σ of the set {1, ...,m}.
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Polarization—continued

If we restrict a symmetric multilinear form to the diagonal
P(z) = B(z, . . . , z), then P is a homogeneous polynomial.

Conversely: Given a homogeneous polynomial P : Cn → C of
degree m, we may define a symmetric m-multilinear form
B : Cn × · · · ×Cn → C so that B(z, . . . , z) = P(z). Namely, write

P(z) =
∑

i1≤···≤im

c(i1, . . . , im)zi1 · · · zim ,

and let B be the symmetric m-multilinear form such that
B(ei1 , · · · ,eim ) = c(i1, . . . , im)/|i | when i1 ≤ · · · ≤ im and |i | is
the number of different indices that can be obtained from the
index i = (i1, . . . , im) by permutation. (Note: |i | ≤ m!.)
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Harris’s lemma

Lemma (Harris 1975)
We have

sup
z i∈Dn

|B(z1, . . . , zm)| ≤ mm

m!
‖P‖∞.

Since the number of coefficients of B obtained from one
coefficient of P is bounded by m!, a direct application of Harris’s
lemma and the multilinear Bohnenblust–Hille inequality gives(

1
m!

)(m−1)/2m ( ∑
|α|=m

|aα|
2m

m+1
)m+1

2m ≤ mm

m!
‖P‖∞;

we obtain then the afore-mentioned constant mm/2, modulo an
exponential factor.
Therefore, to make the required improvement, one needs a
refinement of the argument via multilinear forms.
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Two lemmas

Lemma (Blei 1979)

For all sequences (ci)i where i = (i1, . . . , im) and ik = 1, . . . ,n,
we have( n∑

i1,...,im=1

|ci |
2m

m+1

)m+1
2m ≤

∏
1≤k≤m

[ n∑
ik=1

( ∑
i1,...,ik−1,ik+1,...,im

|ci |2
) 1

2
] 1

m
.

Lemma (Bayart 2002)

For any homogeneous polynomial P(z) =
∑
|α|=m

aαzα on Cn:

( ∑
|α|=m

|aα|2
) 1

2 ≤ (
√

2)m
∥∥∥ ∑
|α|=m

aαzα
∥∥∥

L1(Tn)
.



The proof 1/3

We write again the polynomial P as

P(z) =
∑

i1≤···≤im

c(i1, . . . , im)zi1 · · · zim .

We have∑
i1≤···≤im

|c(i1, . . . , im)|2m/(m+1) ≤
∑

i1,...,im

( |c(i1, . . . , im)|
|i |1/2

)2m/(m+1)

By Blei’s lemma, the last sum is bounded by
m∏

k=1

[ n∑
ik =1

(∑
ik

|c(i1, . . . , im)|2

|i |

)1/2]1/m
≤
√

m
m∏

k=1

[ n∑
ik =1

(∑
ik

|ik | |c(i1, . . . , im)|2

|i |2
)1/2]1/m

.



The proof 2/3

We now freeze the variable ik and group the terms to make a
polynomial again:(∑

ik
|ik | |c(i1, . . . , im)|2

|i |2
)1/2

=
(∑

ik
|ik ||B(ei1 , . . . ,eim )|2

)1/2
= ‖Pk‖2.

where Pk (z) is the polynomial Pk (z) = B(z, . . . , z,eik , z, . . . , z).
Now we use Bayart’s estimate and get(∑

ik
|ik | |c(i1, . . . , im)|2

|i |2
)1/2
≤
√

2
m−1
∫

Tn
|B(z, . . . , z,eik , z, . . . , z)|.



The proof 3/3

We replace eik by λeik with |λ| = 1. We take τk (z) =
∑
λk (z)eik

in such a way that

n∑
ik=1

(∑
ik
|ik | |c(i1, . . . , im)|

|i |2
)1/2

≤
√

2
m−1

∫
Tn

B(z, . . . , τk (z), . . . , z)

≤em
√

2
m−1
‖P‖∞,

where in the last step we used Harris’s lemma. Finally,∑
i1≤···≤im

|c(i1, . . . , im)|2m/(m+1) ≤ em
√

2
m−1√

m‖P‖∞.

(The factor em can be reduced to e by use of a refined version
of Harris’s lemma.)
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Consequences of the hypercontractive BH inequality

Our improvement of the polynomial Bohnenblust–Hille
inequality may seem marginal, but it has several interesting
consequences: It leads to precise asymptotic results regarding
certain Sidon sets, Bohr radii, and absolute convergence of
Dirichlet series.



Sidon sets

Definition
If G is an Abelian compact group and Γ its dual group, a subset
of the characters S ⊂ Γ is called a Sidon set if∑

γ∈S

|aγ | ≤ C‖
∑
γ∈S

aγγ‖∞

The smallest constant C(S) is called the Sidon constant of S.

We estimate the Sidon constant for homogeneous polynomials:

Definition
S(m,n) is the smallest constant C such that the inequality∑
|α|=m |aα| ≤ C‖P‖∞ holds for every m-homogeneous

polynomial in n complex variables P =
∑
|α|=m aαzα.
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The Sidon constant for homogeneous polynomials

Since the number of different monomials of degree m is(n+m−1
m

)
, Hölder’s inequality gives:

Corollary
Let m and n be positive integers larger than 1. Then

S(m,n) ≤ e
√

m(
√

2)m−1
(

n + m − 1
m

)m−1
2m

.

(We also have the trivial estimate

S(m,n) ≤

√(
n + m − 1

m

)
,

so the corollary is of interest only when log n� m.)
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The n-dimensional Bohr radius

Definition
The n-dimensional Bohr radius Kn is the largest r > 0 such that
all polynomials

∑
α cαzα satisfy

sup
z∈rDn

∑
α

|cαzα| ≤ sup
z∈Dn

∣∣∣∑
α

cαzα
∣∣∣.

When n = 1, this is the classical Bohr radius studied by H. Bohr
in 1913; M. Riesz, I. Schur and F. Wiener proved that K1 = 1/3.

When n > 1, the precise value of Kn is unknown.

Problem
Determine the asymptotic behavior of Kn when n→∞.
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Footnote on F. Wiener

The initial ‘F’ is not a misprint: F. Wiener is the mathematician
Friedrich Wilhelm Wiener, born in 1884, and probably a
casualty of World War One. See Boas and Khavinson’s
biography http://arxiv.org/PS_cache/math/pdf/
9901/9901035v1.pdf.

http://arxiv.org/PS_cache/math/pdf/9901/9901035v1.pdf
http://arxiv.org/PS_cache/math/pdf/9901/9901035v1.pdf


Asymptotic behavior of Kn

The problem was studied by Boas and Khavinson in 1997.
They showed that

1
3

√
1
n
≤ Kn ≤ 2

√
log n

n
.

In 2006, Defant and Frerick showed that:

c

√
log n

n log log n
≤ Kn.

Theorem (DFOOS 2009)
The n-dimensional Bohr radius satisfies

c

√
log n

n
≤ Kn ≤ 2

√
log n

n
.
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Proof of theorem on the Bohr radius

We use a well known lemma of F. Wiener.

Lemma
Let P be a polynomial in n variables and P =

∑
m≥0 Pm its

expansion in homogeneous polynomials. If ‖P‖∞ ≤ 1, then
‖Pm‖∞ ≤ 1− |P0|2 for every m > 0.

We assume that supDn

∣∣∑aαzα
∣∣ ≤ 1. Observe that for all z in

rDn, ∑
|aαzα| ≤ |a0|+

∑
m>1

rm
∑
|α|=m

|aα|.
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End of proof

If we take into account the estimates

(log n)m

n
≤ m! and

(
n + m − 1

m

)
≤ em(1 +

n
m
)m
,

then we use the Sidon estimate and F. Wiener lemma:∑
m>1

rm
∑
|α|=m

|aα| ≤
∑
m>1

rme
√

m(2
√

e)m
( n

log n

)m/2
(1− |a0|2).

Choosing r ≤ ε
√

log n
n with ε small enough, we obtain∑
|aαzα| ≤ |a0|+ (1− |a0|2)/2 ≤ 1

whenever |a0| ≤ 1.



Remark: What is the “Bohr subset” of Dn?

A more difficult problem would be to find the “Bohr subset” of
Dn, i.e., the set of points z in Dn for which∑

α

|cαzα| ≤ sup
z∈Dn

∣∣∣∑
α

cαzα
∣∣∣

holds for all polynomials
∑

α cαzα.



The BH inequality and Dirichlet Series

Recall that an ordinary Dirichlet series is a series of the form∑
n≥1 ann−s, where the exponentials n−s are positive for

positive arguments s. The original work of Bohnenblust and
Hille (1931) was motivated by a problem of Bohr from 1913 on
the convergence of such series.



Convergence of Dirichlet series

In general, a Dirichlet series has several half-planes of
convergence, as shown in the picture:

Figure: Convergence regions for Dirichlet series



Bohr’s problem on absolute convergence

It is plain that 0 ≤ A− C ≤ 1, and if an = einα with 0 ≤ α ≤ 1,
then C = 1− α and A = 1.

The most interesting quantity is the difference A− U. Bohr
proved that it does not exceed 1/2, but he was unable to exhibit
even one example such that A−U > 0. There was no progress
on this problem before Bohnenblust and Hille solved it
completely by giving examples such that A− U = 1/2.
Alternate viewpoint: Bohr proved that the abscissa of uniform
convergence is the same as the abscissa of boundedness and
regularity, i.e. the infimum of those σ0 such that the function
represented by the Dirichlet series is analytic and bounded in
<s = σ > σ0. Thus we may instead look at A for bounded
analytic functions represented by Dirichlet series.
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The Bohnenblust–Hille theorem on absolute
convergence

Definition
The space H ∞ consists of those bounded analytic functions f
in C+ = {s = σ + i t : σ > 0} such that f can be represented by
an ordinary Dirichlet series

∑∞
n=1 ann−s in some half-plane.

The Bohnenblust–Hille theorem can be rephrased as:

Theorem
The infimum of those c > 0 such that∑

|an|n−c < +∞

for every
∑∞

n=1 ann−s in H ∞ equals 1/2.



A refined version of the Bohnenblust–Hille theorem

Theorem
The supremum of the set of real numbers c such that

∞∑
n=1

|an|n−
1
2 exp

{
c
√

log n log log n
}
<∞

for every
∑∞

n=1 ann−s in H ∞ equals 1/
√

2.

This is a refinement of a theorem of R. Balasubramanian,
B. Calado, and H. Queffélec (2006). (Without the
hypercontractive BH inequality, one does not catch the precise
bound for the constant c.)



Bohr’s insight

Let f (s) =
∑

n≥1 ann−s be a Dirichlet series. We factor each
integer n into a product of prime numbers n = pα1

1 · · · p
αr
r and

set z = (p−s
1 ,p−s

2 , . . .). Then

f (s) =
∞∑

n=1

an(p−s
1 )α1 · · · (p−s

r )αr =
∑

anzα1
1 · · · z

αr
r .

Bohr’s correspondence is not just formal. The space H ∞ is
isometric to the space H∞(T∞) := L∞(T∞) ∩ H2(T∞) (or
H∞(D∞) which can be defined as the set of bounded analytic
functions on D∞ ∩ c0), thanks to a classical result of Kronecker
on diophantine approximation.



Bohr’s insight—continued

Bohr’s correspondence is an indispensable tool for proving
nontrivial results about Dirichlet series.

The question about
absolute convergence is an interesting example.
Note, however: The Bohneblust–Hille inequality does not apply
as easily as it did to the previous problem on the Bohr radius,
because now we have “polydiscs” with different radii p−σj in
each “variable”; in other words, the expansion into
homogeneous polynomials is not so immediately applicable.
The proof of the refined version of the theorem of
Balasubramanian–Calado–Queffélec goes via the following
beautiful result about Dirichlet polynomials; it combines the
Bohnenblust–Hille inequality with probabilistic methods and
methods from analytic number theory.
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Estimates on coefficients of Dirichlet polynomials

For a Dirichlet polynomial

Q(s) =
N∑

n=1

ann−s,

we set ‖Q‖∞ = supt∈R |Q(it)| and |||Q|||1 =
∑N

n=1 |an|. Then
S(N) is the smallest constant C such that the inequality
|||Q|||1 ≤ C‖Q‖∞ holds for every Q.

Theorem (Konyagin–Queffélec 2001, de la Bretèche 2008,
DFOOS 2009)
We have

S(N) =
√

N exp
{(
− 1√

2
+ o(1)

)√
log N loglog N

}
when N →∞.
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Historical account of the estimate for S(N)

The inequality

S(N) ≥
√

N exp
{(
− 1√

2
+ o(1)

)√
log N loglog N

}
was established by R. de la Bretèche, who also showed that

S(N) ≤
√

N exp
{(
− 1

2
√

2
+ o(1)

)√
log N loglog N

}
follows from an ingenious method developed by Konyagin and
Queffélec. The same argument, using the hypercontractive BH
inequality at a certain point, gives the sharp result.



More on the function theory of H ∞

So far, our discussion has centered around the
Bohnenblust–Hille inequality. In the remaining part of the talk,
we will look at properties of boundary limit functions of
elements in H ∞ and the related spaces H p. Now we do not
use the Bohnenblust–Hille inequality, but the Bohr
correspondence is still of basic importance.



Carlson’s theorem

Suppose f is in H ∞. By a direct computation, we get what is
known as Carlson’s theorem1:

lim
T→∞

1
T

∫ T

0
|f (σ + it)|2 dt =

∞∑
n=1

|an|2n−2σ.

Thus
∞∑

n=1

|an|2 ≤ ‖f‖2∞ <∞.

Note that Cauchy-Schwarz gives A ≤ 1/2, and thus we have a
simple proof of Bohr’s inequality A− U ≤ 1/2.

1Named after the Swedish mathematician Fritz Carlson (1888-1952).
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Ergodicity

We may think of the line t 7→ σ0 + it as a quasi-periodic motion,
or, more precisely, for each prime p, we associate a periodic
motion on the circle of radius p−σ0 :

t 7→ p−itp−σ0 .

Thus we think of vertical translations as a motion on a system
of circles, or, if you like, on an infinite-dimensional torus.

We
use the product measure of the normalized arc length
measures for the circles. Then the flow is ergodic (by the
afore-mentioned approximation theorem of Kronecker), and we
may use the Birkhoff–Khinchin ergodic theorem. In particular,
this gives us a fancier way of proving Carlson’s theorem:

lim
T→∞

1
T

∫ T

0
|f (σ + it)|2 dt =

∞∑
n=1

|an|2n−2σ.
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Carlson’s theorem on the boundary?

An interesting question raised by Hedenmalm (2003) is whether
Carlson’s theorem extends to the imaginary axis.

To place it in context, I will mention a few related matters before
we answer that question.
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The Dirichlet–Hardy space H 2

Definition

H 2 consists of all Dirichlet series f (s) =
∑∞

n=1 ann−s for which

‖f‖22 =
∞∑

n=1

|an|2 <∞.

Since by Cauchy-Schwarz

|f (s)|2 ≤ ‖f‖22
∞∑

n=1

n−2σ,

an f in H 2 is analytic in C+
1/2 = {s = σ + it : σ > 1/2}. In

particular, H ∞ ⊂H 2 and ‖f‖2 ≤ ‖f‖∞. H 2 is, via the Bohr
correspondence, the restriction of H2(D∞) to C+

1/2.
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Theorem on multipliers

A multiplier m is a holomorphic function in C+
1/2 such that mf is

in H 2 whenever f is in H 2. We denote the set of multipliers by
M . Every multiplier m defines a bounded operator on H 2; the
corresponding operator norm is denoted by ‖m‖M .

Theorem (Hedenmalm–Lindqvist–Seip 97)

M = H ∞ and ‖m‖M = sup
σ>0
|m(σ + it)|.

The proof of this theorem makes of course essential use of the
Bohr correspondence.
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Reproducing kernel of H 2

The reproducing kernel of H 2 is

Kw (s) = ζ(s + w),

where ζ is the Riemann zeta-function defined in σ > 1 by

ζ(s) =
∞∑

n=1

n−s.

Thus, for f in H 2 and σ > 1/2, we have

f (s) = 〈f , ζ(·+ s)〉.



A pointwise estimate

Since ζ(s) has a simple pole of residue 1 at 1, we have

ζ(s + s) ' 1
2σ − 1

+ 1,

so that
|f (s)| . ‖f‖2√

σ − 1/2

as σ → 1/2. This is the same estimate that governs the growth
of functions in H2(C+

1/2).

Is there a more precise link to the latter space?
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A basic inequality

The following estimate is a mean value inequality that appears
in analytic number theory:∫ y+T

y
|f (1/2 + it)|2dt ≤ CT‖f‖22.

So f is “locally” in H2(C+
1/2), or, if you like, f (s)/s belongs to

H2(C+
1/2).
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Extension of “Carlson’s theorem”?

For f in H 2, we get

lim
T→∞

1
T

∫ T

0
|f (1/2 + it)|2 dt =

∞∑
n=1

|an|2n−1

by first proving it for Dirichlet polynomials (trivial) and then
extending it to general f using the basic inequality.
However, for H ∞, Carlson’s theorem does not extend:

Theorem (Saksman–Seip 2009)
There exists an f in H ∞ such that

lim
T→∞

1
T

∫ T

0
|f (it)|2dt

does not exist. For every ε > 0 there is a singular inner function
f in H ∞ such that ‖f‖2 < ε.
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Construction of counter-examples

Again we use the Bohr correspondence and move to a
polydisc. We use a beautiful construction of Rudin (“Function
Theory in Polydiscs”, 1969):

If ψ is positive, bounded, and lower semi-continuous on
Tm, then ψ is a. e. the radial boundary limit of the modulus
of a function in H∞(Dm).

Choose m = 2, so that we only deal with two “variables”, say
2−s and 3−s. Consider iR as a subset of T2, and cover it by an
open set E of measure < ε/2. Take as ψ a function being 1 on
E and ε outside E . The challenge is to prove that Rudin’s
construction leads to a function with radial limit 1 almost
everywhere on iR (a subset of T2 of measure 0).
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What about H p when p 6= 2,∞?

By the ergodic theorem, we may either define H p via Lp-norms
on polycircles or via Lp integral means on the imaginary axis
(Bayart 2002):

For F a polynomial and with m∞ Haar measure on T∞,

‖F‖Hp(D∞) :=

(∫
T∞
|F (τ)|p dm∞(τ)

)1/p

,

Hp(D∞) the closure of polynomials w.r.t this norm. Use the
Bohr correspondence f ↔ F and set ‖f‖H p := ‖F‖Hp(D∞).

For f a Dirichlet polynomial,

‖f‖pH p = lim
T→∞

1
T

∫ T

0
|f (it)|p dt ;

take again the closure of polynomials.
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The embedding problem for H p

By estimates of Cole and Gamelin (1986), f in H p satisfies

|f (σ + it)| ≤ C(σ − 1/2)1/p

for σ > 1/2, just as functions in Hp(C+
1/2).

Natural to ask:

Question
Fix an exponent p > 0, not an even integer. Does there exist a
constant Cp <∞ such that∫ 1

0

∣∣∣∣f (1
2

+ it
)∣∣∣∣p dt ≤ Cp‖f‖pH p

for every Dirichlet polynomial f ?

Trivial for p = 2k , k a positive integer, because we may apply
the case p = 2 to f k . The problem is probably very difficult.
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Embedding problem for p = 1 and weak factorization

For p = 1, the embedding would be implied by an extension to
T∞ of the Ferguson–Lacey weak factorization theorem. (The
problem of finding such an extension of the weak factorization
theorem was raised by H. Helson (2005).)



The embedding problem for H p—weak version

Question
Assume that 2 < q < p < 4. Is it true that(∫ 1

0

∣∣∣∣f (1
2

+ it
)∣∣∣∣q dt

)1/q

≤ Cq‖f‖H p

for every Dirichlet polynomial f ? Is this true at least for one
such pair of exponents?



Fatou theorems

Since iR has measure 0 when viewed as a subset of T∞, care
has to be taken if we want to speak about the restriction to iR of
a function in Lp(T∞). Set for τ = (τ1, τ2, . . .) ∈ T∞ and θ ≥ 0

bθ(τ) := (p−θ1 τ1,p−θ2 τ1, . . .).

The Kronecker flow on D∞:

Tt ((z1, z2, . . .)) := (p−it
1 z1,p−it

2 z2, . . .).

We equip T (z) := {Tt (z) : t ∈ R} with the natural linear
measure.

Theorem (Saksman–Seip 2009)

For every F in H∞(D∞) we may pick a representative F̃ for the
boundary function of F on T∞ such that
F̃ (τ) = limθ→0+ F (bθ(τ)) for a.e. τ ∈ T∞. In fact, for every
τ ∈ T∞, we have F̃ (τ ′) = limθ→0+ F (bθ(τ ′)) for a.e. τ ′ ∈ T (τ).
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Fatou theorem for H p

Set T∞1/2 := b1/2(T∞). We need to make sense of the restriction
F 7→ F |T∞1/2

as a map from Hp(D∞) to Lp(T∞1/2). For F a
polynomial, we must have

F |T∞1/2
(τ) = F (b1/2(τ)).

Write this as a Poisson integral and use that polynomials are
dense in Hp(D∞).

Theorem (Saksman–Seip 2009)

For every F in Hp(D∞) (p ≥ 2) we may pick a representative
F̃1/2 for the restriction F |T∞1/2

on T∞ such that

F̃1/2(τ) = limθ→1/2+ F (bθ(τ)) for a.e. τ ∈ T∞. In fact, for every
τ ∈ T∞, we have F̃1/2(τ ′) = limθ→1/2+ F (bθ(τ ′)) for a.e.
τ ′ ∈ T (τ).



“Strong” ergodic theorem only when p = 2, 4, 6, ...?

Arguing as for p = 2, we now get: If F is in Hp(D∞) (p ≥ 2) and
the embedding holds, then for every τ in T∞1/2

lim
T→∞

1
T

∫ T

0
|F̃ (Ttτ)|p dt = ‖F̃1/2‖

p
Lp(T∞).

Conversely, by the closed graph theorem (fix T = 1), the
embedding would follow from such a “strong” ergodic theorem.

So our “strong” variant of the Birkhoff–Khinchin ergodic
theorem for functions in Hp(D∞) is known to hold only when
p = 2,4,6, ...!
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A problem concerning Riesz projection on T∞

Riesz projection P+ (orthogonal projection from L2(T∞) to
H2(T∞)) is obviously unbounded on Lp for any p 6= 2, and
therefore the embedding problem can not be solved in the
standard way by interpolation.

Question
Is there a p > 2 such that P+ is bounded from L∞(T∞) to
Lp(T∞)?

I only know, by construction of an example, that any such p
must be a little less than 4 ...
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