Homogeneous Operators, Jet Construction and Similarity

Subrata Shyam Roy

Indian Statistical Institute, India

Multivariate Operator Theory Workshop Fields Institute, Toronto, Canada

August, 2009

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

・ロト ・ 聞 ・ ・ 聞 ・ ・ 聞 ・ ・ 日 ・

Notations

► Let
$$\varphi_{t,a}$$
 for $(t, a) \in \mathbb{T} \times \mathbb{D}$ be defined by $\varphi_{t,a}(z) = t \frac{z-a}{1-\overline{a}z}, z \in \mathbb{D}.$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

Introduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Notations

► Let
$$\varphi_{t,a}$$
 for $(t, a) \in \mathbb{T} \times \mathbb{D}$ be defined by $\varphi_{t,a}(z) = t \frac{z-a}{1-\overline{a}z}, z \in \mathbb{D}.$

▶ Let M"ob= { $\varphi_{t,a} : (t, a) \in \mathbb{T} \times \mathbb{D}$ } denote the bi-holomorphic automorphism group of the open unit disc \mathbb{D} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

Introduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Homogeneous Operator

Definition

A bounded linear operator T on a complex separable Hilbert space \mathcal{H} whose spectrum is contained in $\overline{\mathbb{D}}$ is said to be homogeneous if $\varphi(T) = U_{\varphi}^* T U_{\varphi}$ for some unitary operator U_{φ} and all $\varphi \in M\ddot{o}b$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

Introduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

▲^(α)(D) : the Hilbert space of holomorphic functions on D whose reproducing kernel is (1 − zw̄)^{-α}, α > 0. Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction

A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

・ロト ・ 聞 ト ・ 画 ト ・ 画 ・ うらぐ

▲^(α)(D) : the Hilbert space of holomorphic functions on D whose reproducing kernel is (1 − zw̄)^{-α}, α > 0.

• $M^{(\alpha)}$: the multiplication operator on $\mathbb{A}^{(\alpha)}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction

A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

- ▲^(α)(D) : the Hilbert space of holomorphic functions on D whose reproducing kernel is (1 − zw̄)^{-α}, α > 0.
- $M^{(\alpha)}$: the multiplication operator on $\mathbb{A}^{(\alpha)}(\mathbb{D})$.
- The reproducing kernel for the tensor product A^(α)(D) ⊗ A^(β)(D) is

$$B^{(\alpha,\beta)}(\mathbf{z},\mathbf{w}) := (1-z_1\bar{w_1})^{-\alpha}(1-z_2\bar{w_2})^{-\beta},$$

for
$$\mathbf{z} = (z_1, z_2) \in \mathbb{D}^2$$
 and $\mathbf{w} = (w_1, w_2) \in \mathbb{D}^2$, $\alpha, \beta > 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction

A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

- ▲^(α)(D) : the Hilbert space of holomorphic functions on D whose reproducing kernel is (1 − zw̄)^{-α}, α > 0.
- $M^{(\alpha)}$: the multiplication operator on $\mathbb{A}^{(\alpha)}(\mathbb{D})$.
- The reproducing kernel for the tensor product A^(α)(D) ⊗ A^(β)(D) is

$$B^{(\alpha,\beta)}(\mathbf{z},\mathbf{w}) := (1-z_1\bar{w_1})^{-\alpha}(1-z_2\bar{w_2})^{-\beta},$$

for
$$\mathbf{z} = (z_1, z_2) \in \mathbb{D}^2$$
 and $\mathbf{w} = (w_1, w_2) \in \mathbb{D}^2$, $\alpha, \beta > 0$.

• We set:
$$\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \simeq \mathbb{A}^{(\alpha)}(\mathbb{D}) \otimes \mathbb{A}^{(\beta)}(\mathbb{D}).$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction

A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

・ロト ・ 聞 ・ ・ 聞 ・ ・ 問 ・ ・ 日 ・

Proposition (Dougalas, Misra, Varughese) The compression of the operator $M^{(\alpha)} \otimes I$ to the ortho-complement $\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \ominus \mathbb{A}^{(\alpha,\beta)}_n(\mathbb{D}^2)$ is homogeneous.

Here $\mathbb{A}_n^{(\alpha,\beta)}(\mathbb{D}^2)$ is defined by $\{f \in A^{(\alpha,\beta)}(\mathbb{D}^2) : \partial_2^{\ell} f_{|_{\triangle}} = 0 \text{ for } 0 \le \ell \le n\}$ where $\triangle := \{(z,z) \in \mathbb{D}^2 : z \in \mathbb{D}\}.$ Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction

A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A concrete realization of $\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \ominus \mathbb{A}^{(\alpha,\beta)}_n(\mathbb{D}^2)$

►
$$J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)$$
 is defined by
 $\{Jf := \sum_{i=0}^n \partial_2^i f \otimes e_i : f \in \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)\},$ where
 $e_i, 0 \le i \le n$, denotes the standard unit vectors in
 \mathbb{C}^{n+1} .

► The vector space J⁽ⁿ⁾A^(α,β)(D²) inherits a Hilbert space structure via the map J.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality

A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへの

A concrete realization of $\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \ominus \mathbb{A}^{(\alpha,\beta)}_n(\mathbb{D}^2)$

►
$$J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)$$
 is defined by
 $\{Jf := \sum_{i=0}^n \partial_2^i f \otimes e_i : f \in \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)\},$ where
 $e_i, 0 \le i \le n$, denotes the standard unit vectors in
 \mathbb{C}^{n+1} .

► The vector space J⁽ⁿ⁾A^(α,β)(D²) inherits a Hilbert space structure via the map J.

$$\blacktriangleright J_0^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) := \{ Jf : Jf_{|_{\triangle}} = 0 \}.$$

 $\mathbb{A}_{n}^{(\alpha,\beta)}(\mathbb{D}^{2})$ is realized in the Hilbert space $J^{(n)}\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^{2})$ as $J_{0}^{(n)}\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^{2})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality

Relation Between Two Jet

Steps of the proof

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A Key Theorem

►
$$J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)_{|\text{res} \bigtriangleup}$$
 is defined as the set
 $\{f : f = g_{|\text{res} \bigtriangleup} \text{ for some } g \in J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)\}$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

A Key Theorem

►
$$J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)_{|\text{res} \bigtriangleup}$$
 is defined as the set
 $\{f : f = g_{|\text{res} \bigtriangleup} \text{ for some } g \in J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)\}$

Theorem (Douglas, Misra, Varughese)

The compression of $M^{(\alpha)} \otimes I$ to the ortho-complement of the subspace $J_0^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)$ is the multiplication operator on the space $J^{(n)} \mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)_{|_{\mathrm{res}} \bigtriangleup}$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

• $M_n^{(\alpha,\beta)}$: the operator in the Theorem.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

• $M_n^{(\alpha,\beta)}$: the operator in the Theorem.

▶
$$\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \ominus \mathbb{A}^{(\alpha,\beta)}_n(\mathbb{D}^2)$$
 is realized as $\int^{(n)}\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)_{|\mathrm{res} \bigtriangleup}$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

• $M_n^{(\alpha,\beta)}$: the operator in the Theorem.

▶
$$\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \ominus \mathbb{A}^{(\alpha,\beta)}_n(\mathbb{D}^2)$$
 is realized as $\int^{(n)}\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)_{|\mathrm{res}\, \bigtriangleup}$.

 B^(α,β)_n: the reproducing kernel for the Hilbert space ∫⁽ⁿ⁾ A^(α,β)(D²)_{|res Δ}.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

• $M_n^{(\alpha,\beta)}$: the operator in the Theorem.

▶
$$\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2) \ominus \mathbb{A}^{(\alpha,\beta)}_n(\mathbb{D}^2)$$
 is realized as $J^{(n)}\mathbb{A}^{(\alpha,\beta)}(\mathbb{D}^2)_{|\mathrm{res}\,\triangle}.$

 B^(α,β)_n: the reproducing kernel for the Hilbert space ∫⁽ⁿ⁾ A^(α,β)(D²)_{|res Δ}.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

・ロト ・ 聞 ・ ・ 聞 ・ ・ 問 ・ ・ 日 ・

Proposition (Douglas, Misra, Varughese) The set W_n is a subcollection of $B_{n+1}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

Proposition (Douglas, Misra, Varughese) The set W_n is a subcollection of $B_{n+1}(\mathbb{D})$.

Theorem (Misra, Shyam Roy)

The set \mathcal{W}_n is a collection of irreducible homogeneous operators in $B_{n+1}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• \mathcal{K} : a Hilbert space with an orthonormal basis $\{e_i\}$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

- \mathcal{K} : a Hilbert space with an orthonormal basis $\{e_i\}$.
- cK : a Hilbert space with an orthonormal basis {ce_i} for 0 ≠ c ∈ C.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

- \mathcal{K} : a Hilbert space with an orthonormal basis $\{e_i\}$.
- cK : a Hilbert space with an orthonormal basis {ce_i} for 0 ≠ c ∈ C.
- Equivalently, $\langle f,g \rangle_{\mathcal{K}} = |c|^{-2} \langle f,g \rangle_{c\mathcal{K}}$ for $f,g \in \mathcal{K}$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

- \mathcal{K} : a Hilbert space with an orthonormal basis $\{e_i\}$.
- cK : a Hilbert space with an orthonormal basis {ce_i} for 0 ≠ c ∈ C.
- Equivalently, $\langle f, g \rangle_{\mathcal{K}} = |c|^{-2} \langle f, g \rangle_{c\mathcal{K}}$ for $f, g \in \mathcal{K}$.
- → H := ⊕^m_{j=0} H_j, an orthogonal direct sum of Hilbert spaces H_j.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

- \mathcal{K} : a Hilbert space with an orthonormal basis $\{e_i\}$.
- cK : a Hilbert space with an orthonormal basis {ce_i} for 0 ≠ c ∈ C.
- ► Equivalently, $\langle f, g \rangle_{\mathcal{K}} = |c|^{-2} \langle f, g \rangle_{c\mathcal{K}}$ for $f, g \in \mathcal{K}$.
- *H* := ⊕^m_{j=0} *H_j*, an orthogonal direct sum of Hilbert spaces *H_j*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• \mathcal{H}_j has reproducing kernel K_j for $0 \le j \le m$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

- \mathcal{K} : a Hilbert space with an orthonormal basis $\{e_i\}$.
- cK : a Hilbert space with an orthonormal basis {ce_i} for 0 ≠ c ∈ C.
- ► Equivalently, $\langle f, g \rangle_{\mathcal{K}} = |c|^{-2} \langle f, g \rangle_{c\mathcal{K}}$ for $f, g \in \mathcal{K}$.
- *H* := ⊕^m_{j=0} *H_j*, an orthogonal direct sum of Hilbert spaces *H_j*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \mathcal{H}_j has reproducing kernel K_j for $0 \le j \le m$.
- $\blacktriangleright \mathcal{H}_{\boldsymbol{\eta}} := \oplus_{j=0}^{m} \eta_j \mathcal{H}_j.$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

• \langle , \rangle_{η} : The inner product of the Hilbert space \mathcal{H}_{η} ,

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• \langle, \rangle_{η} : The inner product of the Hilbert space \mathcal{H}_{η} ,

$$\blacktriangleright \left\langle \sum_{j=0}^{m} f_j, \sum_{j=0}^{m} g_j \right\rangle_{\eta} = \sum_{j=0}^{m} |\eta_j|^{-2} \langle f_j, g_j \rangle_j$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - わへで

 ⟨,⟩_η : The inner product of the Hilbert space H_η,
 ⟨∑_{j=0}^m f_j, ∑_{j=0}^m g_j⟩_η = ∑_{j=0}^m |η_j|⁻²⟨f_j, g_j⟩_j for f_i, g_i ∈ H_i, 0 ≠ η_i ∈ C, Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

⟨,⟩_η : The inner product of the Hilbert space H_η,
⟨∑_{j=0}^m f_j, ∑_{j=0}^m g_j⟩_η = ∑_{j=0}^m |η_j|⁻²⟨f_j, g_j⟩_j for f_j, g_j ∈ H_j, 0 ≠ η_j ∈ C, where ⟨,⟩_j is the inner product for the Hilbert space H_j, 0 ≤ j ≤ m.

• $\sum_{j=0}^{m} K_j$ is the reproducing kernel of \mathcal{H}

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality

A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

 \triangleright \langle, \rangle_{η} : The inner product of the Hilbert space \mathcal{H}_{η} .

•
$$\langle \sum_{j=0}^{m} f_j, \sum_{j=0}^{m} g_j \rangle_{\eta} = \sum_{j=0}^{m} |\eta_j|^{-2} \langle f_j, g_j \rangle_j$$

for $f_j, g_j \in \mathcal{H}_j, 0 \neq \eta_j \in \mathbb{C}$, where \langle, \rangle_j is the inner product for the Hilbert space $\mathcal{H}_j, 0 \leq j \leq m$.

•
$$\sum_{j=0}^{m} K_j$$
 is the reproducing kernel of \mathcal{H}

• $\sum_{j=0}^{m} |\eta_j|^2 K_j$ is the reproducing kernel of \mathcal{H}_{η} .

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

The Key Proposition

Proposition

The multiplication operators on the Hilbert spaces \mathcal{H} and \mathcal{H}_{η} are similar via the map $\iota : \mathcal{H}_{\eta} \to \mathcal{H}$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

Another Jet Construction

- ▶ Hol(D, C^k) : the space of all holomorphic functions taking values in C^k, k ∈ N
- ▶ $2\lambda_j := 2\lambda m + 2j$, where $\lambda \in \mathbb{R}$ and $m \in \mathbb{N}$ with $2\lambda m > 0$, $0 \le j \le m$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

Another Jet Construction

- ▶ Hol(D, C^k) : the space of all holomorphic functions taking values in C^k, k ∈ N
- ▶ $2\lambda_j := 2\lambda m + 2j$, where $\lambda \in \mathbb{R}$ and $m \in \mathbb{N}$ with $2\lambda m > 0$, $0 \le j \le m$.
- ► The operator Γ_j : A^(2λ_j)(D) → Hol(D, C^{m+1}) by the formula

$$(\Gamma_j f)(\ell) = \begin{cases} \binom{\ell}{j} \frac{1}{(2\lambda_j)_{\ell-j}} f^{(\ell-j)} & \text{if } \ell \ge j \\ 0 & \text{if } 0 \le \ell < j, \end{cases}$$

for $f \in \mathbb{A}^{(2\lambda_j)}(\mathbb{D})$, $0 \leq j \leq m$, where

$$\begin{aligned} &(x)_n := x(x+1)\cdots(x+n-1).\\ &(\Gamma_j f)(\ell) := \text{the } \ell\text{-th component of the function } \Gamma_j f\\ &f^{(\ell-j)} := \text{the } (\ell-j)\text{-th derivative of } f. \end{aligned}$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

$$\blacktriangleright \mathsf{A}^{(2\lambda_j)}(\mathbb{D}) := \mathsf{\Gamma}_j(\mathbb{A}^{(2\lambda_j)}(\mathbb{D}))$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

$$\blacktriangleright \mathbf{A}^{(2\lambda_j)}(\mathbb{D}) := \Gamma_j(\mathbb{A}^{(2\lambda_j)}(\mathbb{D}))$$

• We set:
$$\langle \Gamma_j f, \Gamma_j g \rangle = \langle f, g \rangle$$
 for $f, g \in \mathbb{A}^{(2\lambda_j)}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

$$\blacktriangleright \mathsf{A}^{(2\lambda_j)}(\mathbb{D}) := \mathsf{\Gamma}_j(\mathbb{A}^{(2\lambda_j)}(\mathbb{D}))$$

- We set: $\langle \Gamma_j f, \Gamma_j g \rangle = \langle f, g \rangle$ for $f, g \in \mathbb{A}^{(2\lambda_j)}(\mathbb{D})$.
- ► B^(2λ_j) : the reproducing kernel for the Hilbert space A^(2λ_j)(D).

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

•
$$\mathbf{A}^{(2\lambda_j)}(\mathbb{D}) := \Gamma_j(\mathbb{A}^{(2\lambda_j)}(\mathbb{D}))$$

- We set: $\langle \Gamma_j f, \Gamma_j g \rangle = \langle f, g \rangle$ for $f, g \in \mathbb{A}^{(2\lambda_j)}(\mathbb{D})$.
- ► B^(2λ_j) : the reproducing kernel for the Hilbert space A^(2λ_j)(D).

$$\blacktriangleright \mathbf{A}^{(\lambda,\mu)}(\mathbb{D}) := \oplus_{j=0}^{m} \mu_j \mathbf{A}^{(2\lambda_j)}(\mathbb{D}), \ 1 = \mu_0, \mu_1, \dots, \mu_m > 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

•
$$\mathbf{A}^{(2\lambda_j)}(\mathbb{D}) := \Gamma_j(\mathbb{A}^{(2\lambda_j)}(\mathbb{D}))$$

- We set: $\langle \Gamma_j f, \Gamma_j g \rangle = \langle f, g \rangle$ for $f, g \in \mathbb{A}^{(2\lambda_j)}(\mathbb{D})$.
- ► B^(2λ_j) : the reproducing kernel for the Hilbert space A^(2λ_j)(D).

$$\blacktriangleright \mathsf{A}^{(\lambda,\boldsymbol{\mu})}(\mathbb{D}) := \oplus_{j=0}^{m} \mu_{j} \mathsf{A}^{(2\lambda_{j})}(\mathbb{D}), \ 1 = \mu_{0}, \mu_{1}, \dots, \mu_{m} > 0.$$

▶
$$\mathbf{B}^{(\lambda,\mu)} = \sum_{j=0}^{m} \mu_j^2 \mathbf{B}^{(2\lambda_j)}$$
: the reproducing kernel for $\mathbf{A}^{(\lambda,\mu)}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

・ロト ・ 聞 ・ ・ 聞 ・ ・ 聞 ・ ・ 日 ・

$$\blacktriangleright \mathsf{A}^{(2\lambda_j)}(\mathbb{D}) := \mathsf{\Gamma}_j(\mathbb{A}^{(2\lambda_j)}(\mathbb{D}))$$

- We set: $\langle \Gamma_j f, \Gamma_j g \rangle = \langle f, g \rangle$ for $f, g \in \mathbb{A}^{(2\lambda_j)}(\mathbb{D})$.
- ► B^(2λ_j) : the reproducing kernel for the Hilbert space A^(2λ_j)(D).

$$\blacktriangleright \mathsf{A}^{(\lambda,\boldsymbol{\mu})}(\mathbb{D}) := \oplus_{j=0}^{m} \mu_{j} \mathsf{A}^{(2\lambda_{j})}(\mathbb{D}), \ 1 = \mu_{0}, \mu_{1}, \dots, \mu_{m} > 0.$$

▶
$$\mathbf{B}^{(\lambda,\mu)} = \sum_{j=0}^{m} \mu_j^2 \mathbf{B}^{(2\lambda_j)}$$
: the reproducing kernel for $\mathbf{A}^{(\lambda,\mu)}(\mathbb{D})$.

• $M^{(\lambda,\mu)}$: the multiplication operator on the Hilbert space $\mathbf{A}^{(\lambda,\mu)}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

A Large Class of Irreducible Homogeneous Operators

$$\blacktriangleright H_{1,m+1}(\mathbb{D}) := \{ M^{(\lambda,\mu)^*}, \lambda > \frac{m}{2}, \mu > 0 \} \subseteq B_{m+1}(\mathbb{D})$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

A Large Class of Irreducible Homogeneous Operators

$$\blacktriangleright H_{1,m+1}(\mathbb{D}) := \{ M^{(\lambda,\mu)^*}, \lambda > \frac{m}{2}, \mu > 0 \} \subseteq B_{m+1}(\mathbb{D})$$

Theorem (Koranyi, Misra)

The set $H_{1,m+1}(\mathbb{D})$ is the class of all irreducible homogeneous operators in the Cowen-Douglas class whose associated representations are multiplicity-free.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

A Large Class of Irreducible Homogeneous Operators

$$\blacktriangleright H_{1,m+1}(\mathbb{D}) := \{ M^{(\lambda,\mu)^*}, \lambda > \frac{m}{2}, \mu > 0 \} \subseteq B_{m+1}(\mathbb{D})$$

Theorem (Koranyi, Misra)

The set $H_{1,m+1}(\mathbb{D})$ is the class of all irreducible homogeneous operators in the Cowen-Douglas class whose associated representations are multiplicity-free.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Theorem (Shyam Roy) Up to unitary equivalence $W_n \subseteq H_{1,n+1}(\mathbb{D})$. Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

Relation Between Two Jet Constructions

Theorem (Shyam Roy)

Up to unitary equivalence $\mathcal{W}_n \subseteq H_{1,n+1}(\mathbb{D})$.

Irreducibility of members of $H_{1,n+1}(\mathbb{D})$ can be proved easily by using irreducibility of members of \mathcal{W}_n . Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

Relation Between Two Jet Constructions

Theorem (Shyam Roy)

Up to unitary equivalence $\mathcal{W}_n \subseteq H_{1,n+1}(\mathbb{D})$.

Irreducibility of members of $H_{1,n+1}(\mathbb{D})$ can be proved easily by using irreducibility of members of \mathcal{W}_n .

Theorem (Alternative proof)

The multiplication operator $M^{(\lambda,\mu)}$ on the Hilbert space $\mathbf{A}^{(\lambda,\mu)}(\mathbb{D})$ is irreducible.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

$$\blacktriangleright \ \mathcal{H}_{\boldsymbol{\eta}} := \mathbf{A}^{(\lambda, \boldsymbol{\mu})}(\mathbb{D}), \text{ with } \eta_j := \frac{\boldsymbol{\mu}(j)}{\boldsymbol{\mu}_0(j)} \text{ for } 0 \leq j \leq m.$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

$$\blacktriangleright \mathcal{H}_{\boldsymbol{\eta}} := \mathbf{A}^{(\lambda, \boldsymbol{\mu})}(\mathbb{D}), \text{ with } \eta_j := \frac{\boldsymbol{\mu}(j)}{\boldsymbol{\mu}_0(j)} \text{ for } 0 \leq j \leq m.$$

$$\blacktriangleright \ \mathcal{H} := \mathbf{A}^{(\lambda, \mu_0)}(\mathbb{D})$$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ つ ・

$$\mathcal{H}_{\boldsymbol{\eta}} := \mathbf{A}^{(\lambda, \boldsymbol{\mu})}(\mathbb{D}), \text{ with } \eta_j := \frac{\boldsymbol{\mu}(j)}{\boldsymbol{\mu}_0(j)} \text{ for } 0 \leq j \leq m.$$

$$\mathcal{H} := \mathbf{A}^{(\lambda, \boldsymbol{\mu}_0)}(\mathbb{D})$$

•
$$\iota : \mathcal{H}_{\eta} \longrightarrow \mathcal{H}$$
 satisfies $\iota M^{(\lambda, \mu)} = M^{(\lambda, \mu_0)} \iota$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ つ ・

$$\blacktriangleright \ \mathcal{H}_{\boldsymbol{\eta}} := \mathbf{A}^{(\lambda, \boldsymbol{\mu})}(\mathbb{D}), \text{ with } \eta_j := \frac{\boldsymbol{\mu}(j)}{\boldsymbol{\mu}_0(j)} \text{ for } 0 \leq j \leq m.$$

$$\blacktriangleright \ \mathcal{H} := \mathbf{A}^{(\lambda, \boldsymbol{\mu}_0)}(\mathbb{D})$$

•
$$\iota : \mathcal{H}_{\eta} \longrightarrow \mathcal{H}$$
 satisfies $\iota M^{(\lambda, \mu)} = M^{(\lambda, \mu_0)} \iota$.

•
$$\iota^*, \iota^{-1} : \mathcal{H} \longrightarrow \mathcal{H}_{\eta}$$
 are given by $\iota^*(f) = \iota^{-1}(f) = f$ for $f \in \mathcal{H}$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

If P is an orthogonal projection commuting with M^(λ,μ) then ιPι⁻¹ is a orthogonal projection which commuting with M^(λ,μ₀). Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

Introduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

・ロト ・ 聞 ・ ・ 聞 ・ ・ 聞 ・ ・ 日 ・

If P is an orthogonal projection commuting with M^(λ,µ) then ιPι⁻¹ is a orthogonal projection which commuting with M^(λ,µ0).

• $M^{(\lambda,\mu_0)}$ is unitarily equivalent to $M_m^{(\alpha,\beta)}$

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

- ▶ If *P* is an orthogonal projection commuting with $M^{(\lambda,\mu)}$ then $\iota P \iota^{-1}$ is a orthogonal projection which commuting with $M^{(\lambda,\mu_0)}$.
- $M^{(\lambda, \mu_0)}$ is unitarily equivalent to $M_m^{(lpha, eta)}$
- $M_m^{(\alpha,\beta)}$ is irreducible.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

・ロト ・ 聞 ト ・ 画 ト ・ 画 ・ うらぐ

- ▶ If *P* is an orthogonal projection commuting with $M^{(\lambda,\mu)}$ then $\iota P \iota^{-1}$ is a orthogonal projection which commuting with $M^{(\lambda,\mu_0)}$.
- $M^{(\lambda,\mu_0)}$ is unitarily equivalent to $M_m^{(lpha,eta)}$
- $M_m^{(\alpha,\beta)}$ is irreducible.
- $\iota P\iota^{-1}$ is either 0 or I on $\mathcal{H} = \mathbf{A}^{(\lambda, \mu_0)}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

- ▶ If *P* is an orthogonal projection commuting with $M^{(\lambda,\mu)}$ then $\iota P \iota^{-1}$ is a orthogonal projection which commuting with $M^{(\lambda,\mu_0)}$.
- $M^{(\lambda, \mu_0)}$ is unitarily equivalent to $M_m^{(lpha, eta)}$
- $M_m^{(\alpha,\beta)}$ is irreducible.
- $\iota P \iota^{-1}$ is either 0 or I on $\mathcal{H} = \mathbf{A}^{(\lambda, \mu_0)}(\mathbb{D})$.
- *P* is either 0 or *I* on $\mathcal{H} = \mathbf{A}^{(\lambda, \mu_0)}(\mathbb{D})$.

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions Steps of the proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへで

Homogeneous Operators, Jet Construction and Similarity

Shyam Roy

ntroduction

The Jet Construction A Key Proposition A concrete realization

Another Jet Construction

Generality A New Inner Product The Key Proposition

Relation Between Two Jet Constructions

Steps of the proof

THANK YOU.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで