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Notations

I Let ϕt,a for (t, a) ∈ T× D be defined by
ϕt,a(z) = t z−a

1−āz , z ∈ D.

I Let Möb= {ϕt,a : (t, a) ∈ T× D} denote the
bi-holomorphic automorphism group of the open unit
disc D.
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Homogeneous Operator

Definition
A bounded linear operator T on a complex separable Hilbert
space H whose spectrum is contained in D̄ is said to be
homogeneous if ϕ(T ) = U∗ϕTUϕ for some unitary operator
Uϕ and all ϕ ∈Möb.



Homogeneous
Operators, Jet

Construction and
Similarity

Shyam Roy

Introduction

The Jet
Construction

A Key Proposition

A concrete realization

Another Jet
Construction

Generality

A New Inner Product

The Key Proposition

Relation Between
Two Jet
Constructions

Steps of the proof

The Jet Construction

I A(α)(D) : the Hilbert space of holomorphic functions on
D whose reproducing kernel is (1− zw̄)−α, α > 0.

I M(α): the multiplication operator on A(α)(D).

I The reproducing kernel for the tensor product
A(α)(D)⊗ A(β)(D) is

B(α,β)(z,w) := (1− z1w̄1)−α(1− z2w̄2)−β,

for z = (z1, z2) ∈ D2 and w = (w1,w2) ∈ D2, α, β > 0.

I We set: A(α,β)(D2) ' A(α)(D)⊗ A(β)(D).
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A Key Proposition

Proposition (Dougalas, Misra, Varughese)

The compression of the operator M(α) ⊗ I to the

ortho-complement A(α,β)(D2)	 A(α,β)
n (D2) is homogeneous.

Here A(α,β)
n (D2) is defined by

{f ∈ A(α,β)(D2) : ∂2
`f |4 = 0 for 0 ≤ ` ≤ n}

where 4 := {(z , z) ∈ D2 : z ∈ D}.
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A concrete realization of A(α,β)(D2)	A(α,β)
n (D2)

I J(n)A(α,β)(D2) is defined by

{Jf :=
∑n

i=0 ∂
i
2f ⊗ ei : f ∈ A(α,β)(D2)}, where

ei , 0 ≤ i ≤ n, denotes the standard unit vectors in
Cn+1.

I The vector space J(n)A(α,β)(D2) inherits a Hilbert space
structure via the map J.

I J
(n)
0 A(α,β)(D2) := {Jf : Jf|4 = 0}.

A(α,β)
n (D2) is realized in the Hilbert space

J(n)A(α,β)(D2) as J
(n)
0 A(α,β)(D2).
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A Key Theorem

I J(n)A(α,β)(D2)|res4 is defined as the set

{f : f = g|res4 for some g ∈ J(n)A(α,β)(D2)}

Theorem (Douglas, Misra, Varughese)

The compression of M(α) ⊗ I to the ortho-complement of

the subspace J
(n)
0 A(α,β)(D2) is the multiplication operator on

the space J(n)A(α,β)(D2)|res4.
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Generalized Wilkins’ Operators

I M
(α,β)
n : the operator in the Theorem.

I A(α,β)(D2)	 A(α,β)
n (D2) is realized as

J(n)A(α,β)(D2)|res4.

I B
(α,β)
n : the reproducing kernel for the Hilbert space

J(n)A(α,β)(D2)|res4.

I Wn := {M(α,β)
n

∗
: α, β > 0}, n ≥ 0 : Generalized

Wilkins’ operators.
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Two Results on Wn

Proposition (Douglas, Misra, Varughese)

The set Wn is a subcollection of Bn+1(D).

Theorem (Misra, Shyam Roy)

The set Wn is a collection of irreducible homogeneous
operators in Bn+1(D).
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Some Generality

I K : a Hilbert space with an orthonormal basis {ei}.

I cK : a Hilbert space with an orthonormal basis {cei}
for 0 6= c ∈ C.

I Equivalently, 〈f , g〉K = |c |−2〈f , g〉cK for f , g ∈ K.

I H := ⊕m
j=0Hj , an orthogonal direct sum of Hilbert

spaces Hj .

I Hj has reproducing kernel Kj for 0 ≤ j ≤ m.

I Hη := ⊕m
j=0ηjHj .
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A New Inner Product

I 〈, 〉η : The inner product of the Hilbert space Hη,

I 〈
∑m

j=0 fj ,
∑m

j=0 gj〉η =
∑m

j=0 |ηj |−2〈fj , gj〉j

for fj , gj ∈ Hj , 0 6= ηj ∈ C, where 〈, 〉j is the inner

product for the Hilbert space Hj , 0 ≤ j ≤ m.

I
∑m

j=0 Kj is the reproducing kernel of H

I
∑m

j=0 |ηj |2Kj is the reproducing kernel of Hη.
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The Key Proposition

Proposition

The multiplication operators on the Hilbert spaces H and
Hη are similar via the map ι : Hη → H.
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Another Jet Construction

I Hol(D,Ck) : the space of all holomorphic functions
taking values in Ck , k ∈ N

I 2λj := 2λ−m + 2j , where λ ∈ R and m ∈ N with
2λ−m > 0, 0 ≤ j ≤ m.

I The operator Γj : A(2λj )(D) −→ Hol(D,Cm+1) by the
formula

(Γj f )(`) =

{(
`
j

)
1

(2λj )`−j
f (`−j) if ` ≥ j

0 if 0 ≤ ` < j ,

for f ∈ A(2λj )(D), 0 ≤ j ≤ m, where

(x)n := x(x + 1) · · · (x + n − 1).
(Γj f )(`) := the `-th component of the function Γj f
f (`−j) :=the (`− j)-th derivative of f .
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Construction of the Hilbert Space

I A(2λj )(D) := Γj(A(2λj )(D))

I We set: 〈Γj f , Γjg〉 = 〈f , g〉 for f , g ∈ A(2λj )(D).

I B(2λj ) : the reproducing kernel for the Hilbert space
A(2λj )(D).

I A(λ,µ)(D) := ⊕m
j=0µjA

(2λj )(D), 1 = µ0, µ1, . . . , µm > 0.

I B(λ,µ) =
∑m

j=0 µ
2
j B

(2λj ) : the reproducing kernel for

A(λ,µ)(D).

I M(λ,µ): the multiplication operator on the Hilbert space
A(λ,µ)(D).
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A Large Class of Irreducible Homogeneous
Operators

I H1,m+1(D) := {M(λ,µ)∗, λ > m
2 ,µ > 0} ⊆ Bm+1(D)

Theorem ( Koranyi, Misra)

The set H1,m+1(D) is the class of all irreducible
homogeneous operators in the Cowen-Douglas class whose
associated representations are multiplicity-free.
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Relation Between Two Jet Constructions

Theorem (Shyam Roy)

Up to unitary equivalence Wn ⊆ H1,n+1(D).

Irreducibility of members of H1,n+1(D) can be proved easily
by using irreducibility of members of Wn.

Theorem (Alternative proof)

The multiplication operator M(λ,µ) on the Hilbert space
A(λ,µ)(D) is irreducible.
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I Hη := A(λ,µ)(D), with ηj := µ(j)
µ0(j) for 0 ≤ j ≤ m.

I H := A(λ,µ0)(D)

I ι : Hη −→ H satisfies ιM(λ,µ) = M(λ,µ0)ι.

I ι∗, ι−1 : H −→ Hη are given by ι∗(f ) = ι−1(f ) = f for
f ∈ H.



Homogeneous
Operators, Jet

Construction and
Similarity

Shyam Roy

Introduction

The Jet
Construction

A Key Proposition

A concrete realization

Another Jet
Construction

Generality

A New Inner Product

The Key Proposition

Relation Between
Two Jet
Constructions

Steps of the proof

Steps of the proof

I Hη := A(λ,µ)(D), with ηj := µ(j)
µ0(j) for 0 ≤ j ≤ m.

I H := A(λ,µ0)(D)

I ι : Hη −→ H satisfies ιM(λ,µ) = M(λ,µ0)ι.

I ι∗, ι−1 : H −→ Hη are given by ι∗(f ) = ι−1(f ) = f for
f ∈ H.



Homogeneous
Operators, Jet

Construction and
Similarity

Shyam Roy

Introduction

The Jet
Construction

A Key Proposition

A concrete realization

Another Jet
Construction

Generality

A New Inner Product

The Key Proposition

Relation Between
Two Jet
Constructions

Steps of the proof

Steps of the proof

I Hη := A(λ,µ)(D), with ηj := µ(j)
µ0(j) for 0 ≤ j ≤ m.

I H := A(λ,µ0)(D)

I ι : Hη −→ H satisfies ιM(λ,µ) = M(λ,µ0)ι.

I ι∗, ι−1 : H −→ Hη are given by ι∗(f ) = ι−1(f ) = f for
f ∈ H.



Homogeneous
Operators, Jet

Construction and
Similarity

Shyam Roy

Introduction

The Jet
Construction

A Key Proposition

A concrete realization

Another Jet
Construction

Generality

A New Inner Product

The Key Proposition

Relation Between
Two Jet
Constructions

Steps of the proof

Steps of the proof

I Hη := A(λ,µ)(D), with ηj := µ(j)
µ0(j) for 0 ≤ j ≤ m.

I H := A(λ,µ0)(D)

I ι : Hη −→ H satisfies ιM(λ,µ) = M(λ,µ0)ι.

I ι∗, ι−1 : H −→ Hη are given by ι∗(f ) = ι−1(f ) = f for
f ∈ H.



Homogeneous
Operators, Jet

Construction and
Similarity

Shyam Roy

Introduction

The Jet
Construction

A Key Proposition

A concrete realization

Another Jet
Construction

Generality

A New Inner Product

The Key Proposition

Relation Between
Two Jet
Constructions

Steps of the proof

Steps of the proof

I If P is an orthogonal projection commuting with M(λ,µ)

then ιPι−1 is a orthogonal projection which commuting
with M(λ,µ0).

I M(λ,µ0) is unitarily equivalent to M
(α,β)
m

I M
(α,β)
m is irreducible.

I ιPι−1 is either 0 or I on H = A(λ,µ0)(D).

I P is either 0 or I on H = A(λ,µ0)(D).
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