Extremals for families of commuting operators.

Stefan Richter

joint work with Carl Sundberg

University of Tennessee

August 2009

<u>Topic</u>: Dilations and extensions of d-tuples of commuting Hilbert space operators

Example for d = 1:

Thm 1. (the Sz.-Nagy dilation theorem) $T \in \mathcal{B}(\mathcal{H}), ||T|| \leq 1$ $\Rightarrow \exists V \in \mathcal{B}(\mathcal{K}), \quad \mathcal{H} \subseteq \mathcal{K},$ $V\mathcal{H} \subseteq \mathcal{H}, \quad ||V^*x|| = ||x||,$ $T = V|\mathcal{H}.$

V = co-isometric extension of T

 $V = S^* \oplus U,$

 ${\cal S}$ unilateral shift of some multiplicity, ${\cal U}$ unitary

.....

All Hilbert spaces in the following are supposed to be separable.

 $d \in \mathbb{N}$, $\mathbb{B}^d = \{z \in \mathbb{C}^d : |z| < 1\}$

Defn 2. (Agler) A family \mathcal{F} is a collection of *d*-tuples $T = (T_1, .., T_d)$ of Hilbert space operators, $T_i \in \mathcal{B}(\mathcal{H})$ such that

(a) \mathcal{F} is bounded, $\exists c > 0 \ \forall T = (T_1, ..., T_d) \in \mathcal{F} : ||T_i|| \le c \quad \forall i$

(b) restrictions to invariant subspaces $T \in \mathcal{F}, \mathcal{M} \subseteq \mathcal{H}, T_i \mathcal{M} \subseteq \mathcal{M} \ \forall i \Rightarrow T | \mathcal{M} \in \mathcal{F}$

(c) direct sums $T_n \in \mathcal{F} \Rightarrow \bigoplus_n T_n \in \mathcal{F}, \quad T_n = (T_{1n}, ..., T_{dn})$

(d) unital * -representations $\pi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K}), \pi(I) = I,$ $T = (T_1, ..., T_d) \in \mathcal{F}$ $\Rightarrow \pi(T) = (\pi(T_1), ..., \pi(T_d)) \in \mathcal{F}.$

Examples:

d = 1: $\mathcal{F} = \text{contractions}, T^*T \leq I$ isometries, $T^*T = I$ subnormal contractions hyponormal contractions

 $d \ge 1$: $\mathcal{F} = \text{contractions}$ commuting contractions isometries commuting isometries

 $\mathcal{F} = \text{commuting spherical contractions}$ commuting row contractions (d-contractions) commuting spherical isometries

Defn 3. If
$$T = (T_1, ..., T_d), T_i \in \mathcal{B}(\mathcal{H}),$$

 $S = (S_1, ..., S_d), S_i \in \mathcal{B}(\mathcal{K}), T, S \in \mathcal{F},$
then
 $T \leq S \Leftrightarrow \mathcal{H} \subseteq \mathcal{K}, S\mathcal{H} \subseteq \mathcal{H}, T = S|\mathcal{H}$
 $\Leftrightarrow S = \begin{pmatrix} T & X \\ 0 & Y \end{pmatrix}$
 $\Leftrightarrow S \text{ extends } T.$

Defn 4.
$$T$$
 is **extremal** for \mathcal{F} ,
 $\Leftrightarrow S \ge T, S \in \mathcal{F} \Rightarrow S = \begin{pmatrix} T & 0 \\ 0 & Y \end{pmatrix} = T \oplus Y.$

We will write $T \in ext(\mathcal{F})$

Thm 5. (Agler) \mathcal{F} family, $T \in \mathcal{F} \Rightarrow \exists S \in ext(\mathcal{F}) \ S \geq T$

Examples:

 $\mathcal{F}_c = \text{contractions} \Rightarrow \text{ext}(F_c) = \text{co-isometries}$ If

$$||T|| \leq 1, x \neq 0, \quad S = \begin{pmatrix} T & \varepsilon x \\ 0 & b \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathbb{C})$$

then $||S|| \leq 1$ for suff. small $\varepsilon > 0$

 \Leftrightarrow $|b| < 1 \text{ and } x \in \operatorname{ran} D_*, \quad D_* = (I - TT^*)^{1/2}$

Thus, nonextremal contractions have nontrivial rank 1 extensions.

Cor 6. (*Sz. Nagy*) Every contraction has a co-isometric extension. $\mathcal{F}_i = \text{isometries} \Rightarrow \text{ext}(F_i) = \text{unitaries}$

6

 $T \in \mathcal{F}_i \Rightarrow T = S \oplus U$

Thus, nonextremal isometries have nontrivial rank 1 extensions.

Cor 7. Every isometry is subnormal.

Commuting spherical isometries (A. Athavale)

$$\mathcal{F}_{si} = \{T = (T_1, ..., T_d) : T_i \leftrightarrow T_j, \\ \sum_{i=1}^d ||T_i x||^2 = ||x||^2 \quad \forall x \in \mathcal{H} \}$$

$$ext(\mathcal{F}_{si}) = \{ U = (U_1, .., U_d) : U_i \leftrightarrow U_j, U_i \text{ normal} \\ \sum_{i=1}^d \|U_i x\|^2 = \|x\|^2 \quad \forall x \in \mathcal{H} \}$$

= commuting spherical unitaries

One direction in the proof follows Attele-Lubin, JFA, 1996.

Cor 8. (Athavale, 91) Every commuting spherical isometry is jointly subnormal.

Thm 9. Let $T \in \mathcal{F}_{si}$. Then

T has a nontrivial rank one extension in \mathcal{F}_{si} if and only if

there exists $b \in \mathcal{B}_d$ such that the Koszul complex for T - b is not exact at $\Lambda^1(\mathcal{H})$.

OR equivalently

T has only trivial rank one extensions in \mathcal{F}_{si} if and only if

whenever $b = (b_1, .., b_d) \in \mathcal{B}_d$, $x_1, .., x_d \in \mathcal{H}$ with $(T_i - b_i)x_j = (T_j - b_j)x_i$, then $\exists x \in \mathcal{H}$ such that $x_i = (T_i - b_i)x$.

<u>Examples:</u> If d > 1, then $(M_z, H^2(\partial \mathcal{B}_d))$ has no nontrivial rank one extensions in \mathcal{F}_{si} .

If $S = (M_z, H^2(\partial \mathbb{D}))$, then $(S, 0, ..., 0) \in \mathcal{F}_{si}$ has nontrivial rank one extensions in \mathcal{F}_{si} .

Commuting spherical contractions

Drury 78, Mueller-Vasilescu 93, Arveson 98

$$\mathcal{F}_{sc} = \{T = (T_1, .., T_d) : T_i \leftrightarrow T_j, \\ \sum_{i=1}^d ||T_i x||^2 \le ||x||^2 \quad \forall x \in \mathcal{H} \}$$
$$T \in \mathcal{F}_{sc} \iff \sum_{i=1}^d T_i^* T_i \le I, \text{ commuting}$$
$$ext(\mathcal{F}_{sc}) = \{S^* \oplus U\}$$

U =commuting spherical unitary S = d-shift of some multiplicity

$$S = M_z$$
 on $H^2_d(\mathcal{D}) = H^2_d \otimes \mathcal{D}$

 $H_d^2 \subseteq$ Hol(\mathbb{B}^d), Drury-Arveson-Hardy space defined by reproducing kernel

$$k_w(z) = rac{1}{1-\langle z,w
angle}, \,\, z,w \in \mathbb{B}^d$$

Thm 10. (*Richter-Sundberg*) Let $T = (T_1, ...T_d)$ be a commuting operator tuple.

Then the following are equivalent

(a) $T \in ext(\mathcal{F}_{sc})$

(b) $T = S^* \oplus U$

(c) (1)
$$\sum_{i=1}^{d} T_i^* T_i = P = a$$
 projection
(2) If $x_1, ..., x_d \in \mathcal{H}$ with $T_i x_j = T_j x_i$,
 \vdots then $\exists x \in \mathcal{H}$ with $x_i = T_i x$.
(3) $\sum_{i=1}^{d} T_i T_i^* \geq I$.

(c2) says that the Koszul complex for T is exact at $\Lambda^1(\mathcal{H})$.

<u>Note 1:</u> For d = 1 (c) becomes

(1) $T^*T = P$, i.e. T is a partial isometry

(2) if $x_1 \in \mathcal{H}$, then $\exists x \in \mathcal{H}$ with $x_1 = Tx$, i.e. T is onto

(3) $TT^* \ge I$, so T is onto

Hence (1)&(2) or (1)&(3) are equivalent to T^* being an isometry.

For d > 1 let $T = M_z$ on $H^2(\partial \mathbb{B}^d)$, then (c1) and (c2) are satisfied, but (c3) is not.

If $\mathcal{M} = \{f \in H^2_d : f(0) = 0\}, P : H^2_d \to \mathcal{M}$ projection, then

$$T = PS^* | \mathcal{M}$$

satisfies (c1) and (c3), but not (c2). (c1) $\sum_{i=1}^{d} T_i^* T_i = P - \sum_i z_i \otimes z_i$ **Prop 12.** Let $T = (T_1, ..., T_d)$ be a commuting operator tuple such that

(1) $\sum_{i=1}^{d} T_i^* T_i = P = a$ projection

(2) If $x_1, ..., x_d \in \mathcal{H}$ with $T_i x_j = T_j x_i$, then $\exists x \in \mathcal{H}$ with $x_i = T_i x$.

Then

$$T = S^* \oplus V$$

S = d-shift of some multiplicity V = spherical isometry Commuting row contractions (d-contractions) $\mathcal{F}_{rc} = \{T : T^* \in \mathcal{F}_{sc}\}$ $= \{T : T_i \leftrightarrow T_j, \sum_{i=1}^d ||T_i^*x||^2 \le ||x||^2 \forall x\}$ $= \{T : T_i \leftrightarrow T_j, ||\sum_{i=1}^d T_i x_i||^2 \le \sum_{i=1}^d ||x_i||^2 \ \forall x_i\}$ $T \in \mathcal{F}_{rc}$ $\Leftrightarrow (T_1, ..., T_d) : \mathcal{H} \oplus ... \oplus \mathcal{H} \to \mathcal{H} \text{ is contractive commutative}}$

 $\Rightarrow T^* = S^* \oplus U | \mathcal{H}$ (by Mueller/Vasilescu-Arveson)

 $\Rightarrow T = P_{\mathcal{H}}(S \oplus U^*) | \mathcal{H},$ $\mathcal{H} = \text{co-invariant for } S \oplus U^*$

 $ext(F_{rc}) = ?$

Lemma 13. Let $T \in \mathcal{F}_{rc} \cap \mathcal{B}(\mathcal{H})^d$, and let $D_* = (I - \sum_{i=1}^d T_i T_i^*)^{1/2}$.

Then *T* has a nontrivial rank one extension in \mathcal{F}_{rc} , if and only if *T* has a nontrivial finite rank extension in \mathcal{F}_{rc} , if and only if $\exists b = (b_1, ..., b_d) \in \mathcal{B}_d, x_1, ..., x_d \in \mathcal{H}$ such that

(1)
$$\sum_{i=1}^{d} ||x_i||^2 \neq 0$$
,
(2) $(T_i - b_i)x_j = (T_j - b_j)x_i$ for all i, j , and
(3) $x_i \in \operatorname{ran} D_*$ for each i .

$$S_i = \begin{pmatrix} T_i & \varepsilon x_i \\ 0 & b_i \end{pmatrix}, \quad \varepsilon > 0 \text{ small}$$

<u>Rmk:</u> \exists non-extremals with only trivial finite rank extensions in \mathcal{F}_{rc} .

$$D_* = (I - \sum_{i=1}^d T_i T_i^*)^{1/2}$$

Thm 14. (easy) (a) If $D_* = 0$, then $T \in ext(F_{rc})$ spherical co-isometries

(b) If D_* is onto, then $T \notin ext(F_{rc})$.

(c) If D_* is a projection, then

 $T \notin ext(F_{rc})$ $\Leftrightarrow \exists x_1, ..., x_d \in ran \ D_*, \sum_{i=1}^d ||x_i||^2 > 0$ with $T_i x_j = T_j x_i$

(c) $\Rightarrow S \in \text{ext}(\mathcal{F}_{rc})$ - the d-shift $D_* = \text{projection onto constants}$

$$D_* = (I - \sum_{i=1}^d T_i T_i^*)^{1/2}$$

Thm 15. (*R*-*S*)
If
$$T \in \mathcal{F}_{rc}$$
 and if D_* has rank one, i.e.

 $D_* = u \otimes u$

for some $u \neq 0$, then $T \in ext(F_{rc}) \Leftrightarrow dim span\{u, T_1u, ..., T_du\} \geq 3$

$$S_i = \begin{pmatrix} T_i & A_i \\ 0 & B_i \end{pmatrix} \in \mathcal{F}_{rc} \Rightarrow$$

 $\operatorname{ran} A_i \subseteq \operatorname{ran} D_*$ and $T_i A_j - T_j A_i = A_j B_i - A_i B_j$ If $S = (M_z, H_d^2) =$ the *d*-shift, if \mathcal{M} is invariant for S, $\mathcal{M} \neq H_d^2$ then

$$T = P_{\mathcal{M}^{\perp}} S | \mathcal{M}^{\perp} \in \mathcal{F}_{rc},$$

and D_* has rank 1:

$$D_*^2 = I_{\mathcal{M}^{\perp}} - \sum_{i=1}^d P_{\mathcal{M}^{\perp}} S_i S_i^* P_{\mathcal{M}^{\perp}}$$
$$= P_{\mathcal{M}^{\perp}} (I - \sum S_i S_i^*) P_{\mathcal{M}^{\perp}}$$
$$= u \otimes u,$$

$$u = P_{\mathcal{M}^{\perp}} \mathbf{1} \neq \mathbf{0}$$

Cor 16. If $\mathcal{M} \neq H_d^2$, if

$$\mathcal{L} = \{a + \sum_{i=1}^d b_i z_i\},\$$

then $T = P_{\mathcal{M}^{\perp}}S|\mathcal{M}^{\perp} \notin ext(F_{rc})$ if and only if

dim
$$\mathcal{M} \cap \mathcal{L} \in \{d-1, d\}$$

In fact, in this case, if $T \notin ext(F_{rc})$, then

$$T_i = a_i I + b_i S$$

for some S with rank $(I - SS^*) = 1$.

The Theorem can be used to produce finite dimensional examples

 $T \in \text{ext}(F_{rc})$ but $D_* \neq$ a projection.