Extremals for families of commuting operators.

Stefan Richter

joint work with Carl Sundberg

University of Tennessee

August 2009

Topic: Dilation and extensions of d-tuples of commuting Hilbert space operators

Example for $d=1$:

Chm 1. (the Sz.-Nagy dilation theorem)
$T \in \mathcal{B}(\mathcal{H}),\|T\| \leq 1$
$\Rightarrow \exists V \in \mathcal{B}(\mathcal{K}), \quad \mathcal{H} \subseteq \mathcal{K}$,
$V \mathcal{H} \subseteq \mathcal{H}, \quad\left\|V^{*} x\right\|=\|x\|$,

$$
T=V \mid \mathcal{H}
$$

$V=$ co-isometric extension of T
$V=S^{*} \oplus U$,
S unilateral shift of some multiplicity,
U unitary

All Hilbert spaces in the following are supposed to be separable.
$d \in \mathbb{N}, \mathbb{B}^{d}=\left\{z \in \mathbb{C}^{d}:|z|<1\right\}$

Deft 2. (Agler) A family \mathcal{F} is a collection of d-tuples $T=\left(T_{1}, . ., T_{d}\right)$ of Hilbert space operators, $T_{i} \in \mathcal{B}(\mathcal{H})$ such that
(a) \mathcal{F} is bounded,
$\exists c>0 \forall T=\left(T_{1}, . ., T_{d}\right) \in \mathcal{F}:\left\|T_{i}\right\| \leq c \quad \forall i$
(b) restrictions to invariant subspaces
$T \in \mathcal{F}, \mathcal{M} \subseteq \mathcal{H}, T_{i} \mathcal{M} \subseteq \mathcal{M} \forall i \Rightarrow T \mid \mathcal{M} \in \mathcal{F}$
(c) direct sums
$T_{n} \in \mathcal{F} \Rightarrow \oplus_{n} T_{n} \in \mathcal{F}, \quad T_{n}=\left(T_{1 n}, . ., T_{d n}\right)$
(d) unital $*$-representations
$\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K}), \pi(I)=I$,
$T=\left(T_{1}, . ., T_{d}\right) \in \mathcal{F}$
$\Rightarrow \pi(T)=\left(\pi\left(T_{1}\right), . ., \pi\left(T_{d}\right)\right) \in \mathcal{F}$.

Examples:

$d=1$:

$\mathcal{F}=$ contractions, $T^{*} T \leq I$
isometries, $T^{*} T=I$
subnormal contractions
hyponormal contractions
$d \geq 1$:
$\mathcal{F}=$ contractions
commuting contractions
isometries
commuting isometries
$\mathcal{F}=$ commuting spherical contractions commuting row contractions (d-contractions) commuting spherical isometries

Defn 3. If $T=\left(T_{1}, . ., T_{d}\right), T_{i} \in \mathcal{B}(\mathcal{H})$, $S=\left(S_{1}, . ., S_{d}\right), S_{i} \in \mathcal{B}(\mathcal{K}), T, S \in \mathcal{F}$, then

$$
\begin{aligned}
T \leq S & \Leftrightarrow \mathcal{H} \subseteq \mathcal{K}, S \mathcal{H} \subseteq \mathcal{H}, T=S \mid \mathcal{H} \\
& \Leftrightarrow S=\left(\begin{array}{cc}
T & X \\
0 & Y
\end{array}\right) \\
& \Leftrightarrow S \text { extends } T .
\end{aligned}
$$

Defn 4. T is extremal for \mathcal{F}, $\Leftrightarrow S \geq T, S \in \mathcal{F} \Rightarrow S=\left(\begin{array}{cc}T & 0 \\ 0 & Y\end{array}\right)=T \oplus Y$.

We will write $T \in \operatorname{ext}(\mathcal{F})$

Thm 5. (Agler)
\mathcal{F} family, $T \in \mathcal{F} \Rightarrow \exists S \in \operatorname{ext}(\mathcal{F}) S \geq T$

Examples:

$\mathcal{F}_{c}=$ contractions $\Rightarrow \operatorname{ext}\left(F_{c}\right)=$ co-isometries If
$\|T\| \leq 1, x \neq 0, \quad S=\left(\begin{array}{cc}T & \varepsilon x \\ 0 & b\end{array}\right) \in \mathcal{B}(\mathcal{H} \oplus \mathbb{C})$
then $\|S\| \leq 1$ for suff. small $\varepsilon>0$
\Leftrightarrow
$|b|<1$ and $x \in \operatorname{ran} D_{*}, \quad D_{*}=\left(I-T T^{*}\right)^{1 / 2}$

Thus, nonextremal contractions have nontrivial rank 1 extensions.

Cor 6. (Sz. Nagy)
Every contraction has a co-isometric extension.
$\mathcal{F}_{i}=$ isometries $\Rightarrow \operatorname{ext}\left(F_{i}\right)=$ unitaries
$T \in \mathcal{F}_{i} \Rightarrow T=S \oplus U$
Thus, nonextremal isometries have nontrivial rank 1 extensions.

Cor 7. Every isometry is subnormal.

Commuting spherical isometries (A. Athavale)

$$
\begin{gathered}
\mathcal{F}_{s i}=\left\{T=\left(T_{1}, . ., T_{d}\right): T_{i} \leftrightarrow T_{j},\right. \\
\left.\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}=\|x\|^{2} \quad \forall x \in \mathcal{H}\right\} \\
\operatorname{ext}\left(\mathcal{F}_{s i}\right)=\left\{U=\left(U_{1}, . ., U_{d}\right): U_{i} \leftrightarrow U_{j}, U_{i}\right. \text { normal } \\
\left.\sum_{i=1}^{d}\left\|U_{i} x\right\|^{2}=\|x\|^{2} \quad \forall x \in \mathcal{H}\right\}
\end{gathered}
$$

$=$ commuting spherical unitaries

One direction in the proof follows AtteleLubin, JFA, 1996.

Cor 8. (Athavale, 91) Every commuting spherical isometry is jointly subnormal.

Thy 9. Let $T \in \mathcal{F}_{s i}$. Then
T has a nontrivial rank one extension in $\mathcal{F}_{\text {si }}$ if and only if
there exists $b \in \mathcal{B}_{d}$ such that the Koszul complex for $T-b$ is not exact at $\wedge^{1}(\mathcal{H})$.

OR equivalently
T has only trivial rank one extensions in $\mathcal{F}_{\text {si }}$ if and only if
whenever $b=\left(b_{1}, . ., b_{d}\right) \in \mathcal{B}_{d}, x_{1}, . ., x_{d} \in \mathcal{H}$ with $\left(T_{i}-b_{i}\right) x_{j}=\left(T_{j}-b_{j}\right) x_{i}$, then $\exists x \in \mathcal{H}$ such that $x_{i}=\left(T_{i}-b_{i}\right) x$.

Examples: If $d>1$, then $\left(M_{z}, H^{2}\left(\partial \mathcal{B}_{d}\right)\right)$ has no nontrivial rank one extensions in $\mathcal{F}_{s i}$.

If $S=\left(M_{z}, H^{2}(\partial \mathbb{D})\right)$, then $(S, 0, \ldots, 0) \in \mathcal{F}_{s i}$ has nontrivial rank one extensions in $\mathcal{F}_{s i}$.

Commuting spherical contractions
Drury 78, Mueller-Vasilescu 93, Arveson 98

$$
\begin{aligned}
& \mathcal{F}_{s c}=\left\{T=\left(T_{1}, . ., T_{d}\right): T_{i} \leftrightarrow T_{j},\right. \\
&\left.\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2} \leq\|x\|^{2} \quad \forall x \in \mathcal{H}\right\}
\end{aligned}
$$

$T \in \mathcal{F}_{s c} \Leftrightarrow \quad \sum_{i=1}^{d} T_{i}^{*} T_{i} \leq I, \quad$ commuting $\operatorname{ext}\left(\mathcal{F}_{s c}\right)=\left\{S^{*} \oplus U\right\}$
$U=$ commuting spherical unitary
$S=d$-shift of some multiplicity
$S=M_{z}$ on $H_{d}^{2}(\mathcal{D})=H_{d}^{2} \otimes \mathcal{D}$
$H_{d}^{2} \subseteq \mathrm{Hol}\left(\mathbb{B}^{d}\right)$, Drury-Arveson-Hardy space defined by reproducing kernel

$$
k_{w}(z)=\frac{1}{1-\langle z, w\rangle}, z, w \in \mathbb{B}^{d}
$$

Chm 10. (Richter-Sundberg) Let $T=\left(T_{1}, . . T_{d}\right)$ be a commuting operator tuple.

Then the following are equivalent
(a) $T \in \operatorname{ext}\left(\mathcal{F}_{s c}\right)$
(b) $T=S^{*} \oplus U$
(c) (1) $\sum_{i=1}^{d} T_{i}^{*} T_{i}=P=$ a projection
(2) If $x_{1}, . ., x_{d} \in \mathcal{H}$ with $T_{i} x_{j}=T_{j} x_{i}$, then $\exists x \in \mathcal{H}$ with $x_{i}=T_{i} x$.
(3) $\sum_{i=1}^{d} T_{i} T_{i}^{*} \geq I$.
(c2) says that the Koszul complex for T is exact at $\wedge^{1}(\mathcal{H})$.

Note 1: For $d=1$ (c) becomes
(1) $T^{*} T=P$, i.e. T is a partial isometry
(2) if $x_{1} \in \mathcal{H}$, then $\exists x \in \mathcal{H}$ with $x_{1}=T x$, ie. T is onto
(3) $T T^{*} \geq I$, so T is onto

Hence (1)\&(2) or (1)\&(3) are equivalent to T^{*} being an isometry.

For $d>1$ let $T=M_{z}$ on $H^{2}\left(\partial \mathbb{B}^{d}\right)$, then (c1) and (c2) are satisfied, but (c3) is not.

If $\mathcal{M}=\left\{f \in H_{d}^{2}: f(0)=0\right\}, P: H_{d}^{2} \rightarrow \mathcal{M}$ projection, then

$$
T=P S^{*} \mid \mathcal{M}
$$

satisfies (cl) and (c3), but not (c2).
(ci) $\sum_{i=1}^{d} T_{i}^{*} T_{i}=P-\sum_{i} z_{i} \otimes z_{i}$

Prop 12. Let $T=\left(T_{1}, . . T_{d}\right)$ be a commiting operator tuple such that
(1) $\sum_{i=1}^{d} T_{i}^{*} T_{i}=P=$ a projection
(2) If $x_{1}, . ., x_{d} \in \mathcal{H}$ with $T_{i} x_{j}=T_{j} x_{i}$, then $\exists x \in \mathcal{H}$ with $x_{i}=T_{i} x$.

Then

$$
T=S^{*} \oplus V
$$

$S=d$-shift of some multiplicity
$V=$ spherical isometry

Commuting row contractions (d-contractions)

$$
\begin{aligned}
\mathcal{F}_{r c} & =\left\{T: T^{*} \in \mathcal{F}_{s c}\right\} \\
& =\left\{T: T_{i} \leftrightarrow T_{j}, \sum_{i=1}^{d}\left\|T_{i}^{*} x\right\|^{2} \leq\|x\|^{2} \forall x\right\} \\
& =\left\{T: T_{i} \leftrightarrow T_{j},\left\|\sum_{i=1}^{d} T_{i} x_{i}\right\|^{2} \leq \sum_{i=1}^{d}\left\|x_{i}\right\|^{2} \forall x_{i}\right\}
\end{aligned}
$$

$T \in \mathcal{F}_{r c}$
$\Leftrightarrow\left(T_{1}, . ., T_{d}\right): \mathcal{H} \oplus . . \oplus \mathcal{H} \rightarrow \mathcal{H}$ is contractive commutative
$\Rightarrow T^{*}=S^{*} \oplus U \mid \mathcal{H}$
(by Mueller/Vasilescu-Arveson)
$\Rightarrow T=P_{\mathcal{H}}\left(S \oplus U^{*}\right) \mid \mathcal{H}$,
$\mathcal{H}=$ co-invariant for $S \oplus U^{*}$

$$
\operatorname{ext}\left(F_{r c}\right)=?
$$

Lemma 13. Let $T \in \mathcal{F}_{r c} \cap \mathcal{B}(\mathcal{H})^{d}$, and let $D_{*}=\left(I-\sum_{i=1}^{d} T_{i} T_{i}^{*}\right)^{1 / 2}$.

Then T has a nontrivial rank one extension in $\mathcal{F}_{r c}$, if and only if
T has a nontrivial finite rank extension in
$\mathcal{F}_{r c}$, if and only if
$\exists b=\left(b_{1}, \ldots, b_{d}\right) \in \mathcal{B}_{d}, x_{1}, \ldots, x_{d} \in \mathcal{H}$ such that
(1) $\sum_{i=1}^{d}\left\|x_{i}\right\|^{2} \neq 0$,
(2) $\left(T_{i}-b_{i}\right) x_{j}=\left(T_{j}-b_{j}\right) x_{i}$ for all i, j, and
(3) $x_{i} \in \operatorname{ran} D_{*}$ for each i.

$$
S_{i}=\left(\begin{array}{cc}
T_{i} & \varepsilon x_{i} \\
0 & b_{i}
\end{array}\right), \quad \varepsilon>0 \text { small }
$$

Rmk: \exists non-extremals with only trivial pinite rank extensions in $\mathcal{F}_{r c}$.

$$
D_{*}=\left(I-\sum_{i=1}^{d} T_{i} T_{i}^{*}\right)^{1 / 2}
$$

Chm 14. (easy)
(a) If $D_{*}=0$, then $T \in \operatorname{ext}\left(F_{r c}\right)$
spherical co-isometries
(b) If D_{*} is onto, then $T \notin \operatorname{ext}\left(F_{r c}\right)$.
(c) If D_{*} is a projection, then
$T \notin \operatorname{ext}\left(F_{r c}\right)$
$\Leftrightarrow \exists x_{1}, . ., x_{d} \in \operatorname{ran} D_{*}, \sum_{i=1}^{d}\left\|x_{i}\right\|^{2}>0$
with $T_{i} x_{j}=T_{j} x_{i}$
(c) $\Rightarrow S \in \operatorname{ext}\left(\mathcal{F}_{r c}\right)$ - the d-shift
$D_{*}=$ projection onto constants

$$
D_{*}=\left(I-\sum_{i=1}^{d} T_{i} T_{i}^{*}\right)^{1 / 2}
$$

Thy 15. (R-S)
If $T \in \mathcal{F}_{r c}$ and if D_{*} has rank one, ie.

$$
D_{*}=u \otimes u
$$

for some $u \neq 0$, then
$T \in \operatorname{ext}\left(F_{r c}\right) \Leftrightarrow \operatorname{dim} \operatorname{span}\left\{u, T_{1} u, . ., T_{d} u\right\} \geq 3$

$$
S_{i}=\left(\begin{array}{cc}
T_{i} & A_{i} \\
0 & B_{i}
\end{array}\right) \in \mathcal{F}_{r c} \Rightarrow
$$

$\operatorname{ran} A_{i} \subseteq \operatorname{ran} D_{*}$ and
$T_{i} A_{j}-T_{j} A_{i}=A_{j} B_{i}-A_{i} B_{j}$

If $S=\left(M_{z}, H_{d}^{2}\right)=$ the d-shift, if \mathcal{M} is invariant for $S, \mathcal{M} \neq H_{d}^{2}$ then

$$
T=P_{\mathcal{M}^{\perp}} S \mid \mathcal{M}^{\perp} \in \mathcal{F}_{r c},
$$

and D_{*} has rank 1 :

$$
\begin{aligned}
D_{*}^{2} & =I_{\mathcal{M}^{\perp}}-\sum_{i=1}^{d} P_{\mathcal{M}^{\perp}} S_{i} S_{i}^{*} P_{\mathcal{M}^{\perp}} \\
& =P_{\mathcal{M}^{\perp}}\left(I-\sum S_{i} S_{i}^{*}\right) P_{\mathcal{M}^{\perp}} \\
& =u \otimes u, \\
& u=P_{\mathcal{M}^{\perp}} 1 \neq 0
\end{aligned}
$$

Cor 16. If $\mathcal{M} \neq H_{d}^{2}$, if

$$
\mathcal{L}=\left\{a+\sum_{i=1}^{d} b_{i} z_{i}\right\},
$$

then $T=P_{\mathcal{M}^{\perp}} S \mid \mathcal{M}^{\perp} \notin \operatorname{ext}\left(F_{r c}\right)$ if and only if

$$
\operatorname{dim} \mathcal{M} \cap \mathcal{L} \in\{d-1, d\}
$$

In fact, in this case, if $T \notin \operatorname{ext}\left(F_{r c}\right)$, then

$$
T_{i}=a_{i} I+b_{i} S
$$

for some S with rank $\left(I-S S^{*}\right)=1$.

The Theorem can be used to produce finite dimensional examples

$$
T \in \operatorname{ext}\left(F_{r c}\right) \text { but } D_{*} \neq \text { a projection. }
$$

