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1. Introduction

LetX be a compact metric space, and P an abelian
semigroup with identity 0 such that P−P is a group
G.

We also require that the semigroup act on the space
X such that for each n ∈ P there is a map ϕn : X →
X which is continuous and surjective.

The semigroup P is also a semigroup of endomor-
phisms αn on C(X) given by αn(f ) = f ◦ ϕn. Fur-
thermore, we assume there is a continuous map Ln :
C(X) → C(X) which act as a left inverse of αn, n ∈
P . The map Ln is the transfer operator.

We construct an operator algebra A(X,P) as fol-
lows: let A0 be the formal algebra generated by
C(X) and the symbols Sn, n ∈ P subject to the
relations

(1) Snf = αn(f )Sn and fSn = SnLn(f )

for all f ∈ C(X) and all n ∈ P .
The admissible representations of A0 are repre-

sentations ρ of A0 into the bounded operators on a
Hilbert space such that

(1) ρ restricted to C(X) is a ∗-representation;
(2) ρ(Sn) is an isometry;
(3) the representation ρ respects the relations (1).

The semicrossed product of Exel type is the com-
pletion of the algebraA0 with respect to the operator
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norm

||a|| = sup{||ρ(a)|| : ρ is an admissible representation

for a ∈ A0.
We can compare the (standard) semicrossed prod-

uct, with the semicrossed product of Exel type, by
looking at the groupoid associated with the C∗-envelope
of the semicrossed product. If we take a single map
ϕ (and the semigroup which it generates) which ad-
mits a transfer operator, then the groupoid asso-
ciated with the standard semicrossed product is a
transformation groupoid. Thus, there is a compact
metric space Y and a homeomorphism ψ : Y → Y
and a continuous surjection p : Y → X such that

Y
ψ−−→ Y

p

y p

y
X

ϕ−−→ X

(†)

The transformation groupoid G consists of triples

(y, n, z) with y, z ∈ Y, n ∈ Z

such that ψn(y) = z.
By contrast, the groupoid associated with the the

semicrossed product of Exel type consists of

(x, n, y) with x, y ∈ X, n ∈ Z

for which there exists nonnegative integers k, j with
k− j = n and ϕk(x) = ϕj(y). This is the Deaconu-
Renault groupoid.
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The difference between the two groupoids is a re-
flection of the fact that the there are two conditions
on representations which must be satisfied for the
Exel semicrossed products, whereas only one con-
dition for the standard crossed products. Further-
more, the condition that the representation respect
the transfer operator is especially restrictive.

The next logical question is, in what circumstances
does there exist a transfer operator? Indeed, such
operators do not generally exit for semigroups. Exel
and Renault considered the case where P is a semi-
group of local homeomorphism (with certain addi-
tional conditions).

I wanted to be able to work in a broader context.
Thus, for each n ∈ P, in addition to being contin-
uous and surjective, I assume that ϕn is locally in-
jective. Local injectivity, without requiring that the
map be open, is a natural generalization of the local
homeomorphism setting. But even for singly gener-
ated semigroups these conditions do not guarantee
the existence of a transfer operator.

Definition 1. We will say ω is a cocyle on a dy-
namical system (P , X) if

(1) ω is a function fromP×X → R, and ω(n, x) ≥
0 for all (n, x) ∈ P ×X ;

(2) for each y ∈ X, n ∈ P ,
∑

ϕn(x)=y ω(n, x) = 1;

(3) for each n ∈ P, the map x ∈ X → ω(n, x) is
continuous;
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(4) ω satisfies the cocycle identity:

ω(m + n, x) = ω(m,x)ω(n, ϕm(x)).

A dynamical system (P , X) will be called admissible
if it admits a cocycle.

The existence of a cocycle provides for a transfer
operator, by means of

Ln(f )(y) =
∑

ϕn(x)=y

ω(n, x)f (x), f ∈ C(X).

It is easy to check that this gives a left inverse of the
endomorphism αn.

Define a representation π : A0 → B(`2(X)) by:

π(f )ξ = fξ and π(Sn)ξ =
√
ω(n, x)ξ ◦ ϕn,

n ∈ P . More generally, given a character γ of G one
can define a representation πγ of A0 which acts as
before on functions in C(X) and on elements Sn by

πγ(Sn)ξ =< γ, n >
√
ω(n, x)ξ ◦ ϕn.

2. CSLI maps

Lemma 1. Let (X,ϕ) be a CSLI dynamical sys-
tem. Then for all x ∈ X, |ϕ−1(x)| <∞.

Corollary 1. The set {u ∈ X : |ϕ−1(u)| ≤ N}
is open.

The next two results concern singly generated semi-
groups. CSLI referes to continuous, surjective and
locally injective.
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Corollary 2. A necessary condition for a CSLI
system (X,ϕ) to admit a cocycle is: for every
y ∈ X there exists a point x ∈ ϕ−1(y) such that
ϕ is locally open at x.

Corollary 3. Let (X,ϕ) be a CSLI system. Then
the system admits a strictly positive cocycle if and
only if ϕ is a local homeomorphism.

The following is a CSLI map which does not admit
a cocycle:

Example 1. This is an example of a semigroup P =
N of a CSLI dynamical system which is not admissi-
ble.

Let ϕ : Πn∈ZTn → Πn∈ZTn where Tn = T = [0, 1),
as follows: for a point x = (xn) in the product space,
set

ϕ(x) = y where yn−1 = xn

for all n 6= 1 and y0 = 2x1 (mod1). Note that ϕ is a
local homeomorphism of Πn∈ZTn.

Let Z ⊂ Πn∈ZTn consist of those sequences x =
(xn) satisfying: for all n ≥ 1, 0 ≤ xn ≤ 1

2. Clearly
Z is closed, and ϕ(Z) ⊂ Z. We take

X = ∩∞n=0ϕ
n(Z),

where ϕ0 is the identity, and for n > 1, ϕn is the n-
fold composition of ϕ with itself. Then ϕ(X) = X.

Changing notation so ϕ refers to the restriction of
ϕ to X , the dynamical system (X,ϕ) is CSLI.
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To show that (X,ϕ) is not admissible, we suppose
to the contrary that ω is a cocycle for ϕ. Set

y0 = (. . . , 0, 0
0
,
1

2
,
1

2
, . . . )

where the underset 0 denotes the 0-th position in the
array. Note that ϕ−1(y0) = {y0,w0} where

w0 = (. . . , 0, 0
0
, 0,

1

2
,
1

2
, . . . ).

First we show that ω(y0) = 1. To this end, define

y(t) = (. . . , t, t
0
,
t

2
,
t

2
, . . . )

and note that, for t > 0, ϕ−1(y(t)) = {y(t)}. Hence
ω(y(t)) = 1 for t > 0. Since y(t) → y0 as t → 1
continuity of ω forces ω(y0) = 1.

Next we claim that ω(w0) = 1. To this end, we
define

u(t) = (. . . , t, t
0
,
1

2
− t,

1

2
− t, . . . )

for 0 < t < 1
2. To see that u(t) ∈ X, note first that

u(t) ∈ Z. Let n ∈ N, n ≥ 1 and set

w(t) = (. . . , t, t
0
,
t

2
, . . . ,

t

2
n

,
1

2
− t,

1

2
− t, . . . ).

Then w(t) ∈ Z and ϕn(w(t)) = u(t). Thus, u(t) ∈
ϕn(Z) for every n ≥ 0, so u(t) ∈ X. Now set n = 1.
The same argument shows that w(t) ∈ X, and fur-
thermore w(t) is the single inverse image of u(t).
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Thus, ω(w(t)) = 1. As t → 0, w(t) → w0. Con-
tinuity forces ω(w0) = 1. But the cocycle condition
ω(y0) + ω(w0) = 1 is violated, so no cocycle ex-
ists and the system (X,ϕ) is not admissible, and in
particular, ϕ is not a local homeomorphism.

Also, there are dynamical systems which are CSLI
but not local homeomorphisms, which are admissi-
ble.

Remark 1. Define the conditional expectation

E(f )(x) = α ◦ L(f )(x) =
∑

ϕ(u)=ϕ(x)

ω(u)f (u).

Then if ω is not strictly positive, the conditional ex-
pectation can be degenerate. Indeed, suppose ω(x) =
0 in a neighborhood U of a point x0. Suppose f is a
nonnegative function supported in U and that ϕ is
injective on U . Then for x ∈ X

E(f )(x) =
∑

ϕ(t)=ϕ(x)

f (t)ω(t)

= 0

since ω is zero where f is nonzero.
Thus, in some cases the conditional expectation as-

sociated to the cocycle is degenerate. However, it can
happen that the cocycle vanishes but that the con-
ditional expectation is nondegenerate

Definition 2. Let a1, . . . , ak be elements of an abelian
semigroup P . This set will be called independent if
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for any nonempty subset E ⊂ {1, . . . , k} and non-
negative integers n1, . . . , nk the relation∑

j∈E

njaj =
∑
j∈Ec

njaj

implies
n1 = · · · = nk = 0.

In case the complement Ec = ∅, we interpret the
right side of the equation to be zero.

LetP be an abelian semigroup isomorphic with Nk,
and let e1, . . . , ek be a set of independent generators
of P .

Proposition 1. Let P act on the compact metric
space X. Then the the action is admissible iff
each ϕej is an admissible action, 1 ≤ j ≤ k.

3. Divisible Semigroups

An abelian group G is divisible if the equation
mx = a (m ∈ N, a ∈ G) has a solution x ∈ G.
One could use the same definition for semigroups.
However, we want to consider examples such as the
semigroup P of positive dyadic rationals. Let D =
{ k

2n , k ∈ Z, n ∈ Z} be the group of dyadic ratio-
nals. This is not divisible, as the equation mx = a is
solvable for x ∈ D only for m a power of 2. Thus, for
our purposes an alternative definition is appropriate.

Definition 3. A sequence {dk} in a semigroup P
will be called a fundamental sequence if
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(1) there exists a sequence of integers nk > 1 such
that dk = nkdk+1, k ≥ 1, and

(2) For every d ∈ P there exists k ∈ N such that
dk divides d.

We say P is divisible if it contains a fundamental
sequence.

Proposition 2. Let P be a divisible semigroup of
CSLI maps on X. Then either all ϕd, d ∈ P , are
homeomorphisms, or else none is a homeomor-
phism.

Theorem 1. Let P be a divisible semigroup of
CSLI maps acting on a compact metric space X.
Suppose P separates the points of X. Then P
consists of homeomorphisms.

It is not a priori obvious that divisible semigroups
of CSLI maps which are not homeomorphisms ex-
ist. Before constructing the example, we remind the
reader of a construction which has been used to “cut
up” the real numbers to obtain a zero-dimensional
space, Z. For each dyadic rational d ∈ R, we re-
place d by two points d− and d+ so that d− < d+

and no point lies between d−, d+. Thus Z is an or-
dered set. Now we introduce a topology by taking
as a base B for the topology the sets [r+, s−] where
r < s are dyadic rationals. In this topology, every
“open interval” (a, b) = {x ∈ Z, a < x < b} is an
open set in the topology of Z.



SEMICROSSED PRODUCTS WITH TRANSFER OPERATORS 11

Observe that the complement of an interval [r+, s−]
is also open, so that [r+, s−] is closed, hence clopen.
One can show that the closed intervals [a, b], a <
b ∈ Z are compact. Thus Z is a locally compact
Hausdorff space, which is metrizable, as the base B
is countable.

Example 2. This is an example of a divisible semi-
group. We construct a compact metric space X =
X1 ∪X2 ∪X3, the union of three disjoint sets. Take

X1 = [0+,+∞]

the one-point compactification of the interval z ∈
Z : z ≥ 0+. Now we take X2, X3 both to be the
one-point compactifications of copies of (−∞, 0−] in
Z. To distinguish them, we use superscripts hat and
tilde. Thus,

X2 = [−∞̂, 0̂−] and X3 = [−∞̃, 0̃−].

The set Z is not a group under addition, but there
is an action of the group D of dyadic rationals on Z,
as follows: let d ∈ D and define translation ϕd on Z
by

ϕd(x) =


d + x if x is not a dyadic rational;

(d + x)+ if x = r+ where r is a dyadic rational

(d + x)− if x = r− where r is a dyadic rational.
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It is easy to see that ϕd is continuous, as ϕ−1
d maps

basic open intervals to basic open intervals. Simi-
larly, ϕd is seen to be an open map. Since it is both
injective and surjective, it is a homeomorphism of Z.

Let P denote the positive dyadic rationals, and,
changing notation, let ϕd (d ∈ P) denote an action
of X , which we define as follows: ϕd leaves all three
points at infinity fixed. For x ∈ X1 ∪ X2 not a
point at infinity, we let ϕd(x) be defined as follows:
if x ∈ X2, x = ẑ for some z ∈ Z, and d ∈ P ,

ϕd(x) =

{
d̂ + z ∈ X2 if d + z ≤ 0−

d + z ∈ X1 if d + z ≥ 0+.

If x ∈ X1, then ϕd(x) is defined exactly as on Z.
ϕd acts similarly on X1 ∪ X3. Clearly, ϕd is surjec-
tive on X . And in the same way as with Z, one
sees that ϕd is continuous and open. Note that if
x ∈ [−d+, 0−] ⊂ Z that ϕd(x̂) = ϕd(x̃), so that
ϕd is not one-to-one. Thus, {ϕd : d ∈ P} is
a semigroup of local homeomorphisms on the com-
pact space X which are not homeomorphisms. Note
that the semigroup P has a fundamental sequence,
namely { 1

2n}n∈N, so that P is a divisible semigroup.
Next we show that the semigroup is admissible. To

simplify notation, when x ∈ X belongs to either X2

or X3, and there is no need to distinguish between
X2, X3, we will omit the superscripts hat and tilde.
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Define the cocycle ω on P ×X by

(2) ω(d, x) =

{
1, if x ≤ −d− or x ≥ 0+

1
2 if − d+ ≤ x ≤ 0−.

We do this for all d ∈ P and x ∈ X . We need to
show this is consistent with the cocycle identity. So
suppose e, f ∈ P with e+f = d. Suppose x ≤ −d−.
Then ω(e, x) = 1. Now we claim that ϕe(x) ≤ −f−.
For otherwise, we would have ϕe(x) ≥ −f+, hence
ϕf(ϕe(x)) ≥ ϕf(−f+) ≥ 0+. But then ϕd(x) =
ϕf(ϕe(x)) ≥ 0+ which contradicts that x ≤ −d−.
Thus, both ω(e, x) and ω(f, ϕe(x)) equal 1, as does
ω(d, x).

The case were x ≥ 0+ is easier, for then it is
clear that ω(e, x) and ω(f, ϕe(x)), and ω(d, x) are
all equal to 1.

Finally, let −d+ ≤ x ≤ 0−. Consider two cases: if
ϕe(x) ≥ 0+, then |ϕ−1

e (ϕe(x))| = 2, so that ω(e, x) =
1
2. As ϕe(x) ≥ 0+, ω(f, ϕe(x)) = 1. By definition
ω(d, x) = 1

2, so that the equality

ω(x, d) = ω(e, x)ω(f, ϕe(x))

holds. In the other case, ϕe(x) ≤ 0−, that is,

−d+ ≤ x ≤ ϕe(x) ≤ 0−.

Then ω(e, x) = 1. But ϕf(ϕe(x)) = ϕd(x) ≥ 0+ so
that both ω(f, ϕe(x)), and ω(d, x) = 1

2. So again the
cocyle identity

ω(d, x) = ω(e, x)ω(f, ϕe(x))
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holds.
Finally we need to observe that for arbitrary d ∈

P , the map
x→ ω(d, x)

is continuous. But observe that

{x : ω(d, x) =
1

2
} = [−d̂+, 0̂−] ∪ [−d̃+, 0̃−]

which is a clopen set. Thus, the set where the cocycle
is 1 is also clopen, and so the cocycle is continuous.

E-mail address: peters@iastate.edu


