Operator Algebras of Functions

Meghna Mittal University of Houston

This is a joint work with Vern Paulsen

August 14, 2009

Quantized Function Theory: Overview

- Quantized Function Theory: Overview
- ► Goal of the talk

- Quantized Function Theory: Overview
- ► Goal of the talk

- Quantized Function Theory: Overview
- ► Goal of the talk

- Quantized Function Theory: Overview
- Goal of the talk

- Quantized Function Theory: Overview
- Goal of the talk
- Operator Algebra of Functions, General Theory

- Quantized Function Theory: Overview
- Goal of the talk
- Operator Algebra of Functions, General Theory
- Quantized Function Theory: Formal

- Quantized Function Theory: Overview
- Goal of the talk
- Operator Algebra of Functions, General Theory
- Quantized Function Theory: Formal
- ▶ Main Result

- Quantized Function Theory: Overview
- Goal of the talk
- Operator Algebra of Functions, General Theory
- Quantized Function Theory: Formal
- ▶ Main Result
- Accomplish Goals

- Quantized Function Theory: Overview
- Goal of the talk
- Operator Algebra of Functions, General Theory
- Quantized Function Theory: Formal
- ▶ Main Result
- Accomplish Goals
- Examples

Domain:

$$G = \{z : ||F_k(z)|| < 1 \ \forall \ k \in I\}$$
 – open subset of C^N .

where I is some indexing set and $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k} : k \in I\}$ is a set of **analytic** functions.

Domain:

$$G = \{z : ||F_k(z)|| < 1 \ \forall \ k \in I\}$$
 – open subset of C^N .

where I is some indexing set and $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k} : k \in I\}$ is a set of **analytic** functions.

Quantized version of a domain:

$$\mathcal{Q}(G) = \{T : \sigma(T) \subseteq G \text{ and } ||F_k(T)|| \le 1 \ \forall k \in I\}$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

Domain:

$$G = \{z : ||F_k(z)|| < 1 \ \forall \ k \in I\}$$
 – open subset of C^N .

where I is some indexing set and $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k} : k \in I\}$ is a set of **analytic** functions.

Quantized version of a domain:

$$\mathcal{Q}(G) = \{T : \sigma(T) \subseteq G \text{ and } ||F_k(T)|| \le 1 \ \forall k \in I\}$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

Domain:

$$G = \{z : ||F_k(z)|| < 1 \ \forall \ k \in I\}$$
 – open subset of C^N .

where I is some indexing set and $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k} : k \in I\}$ is a set of **analytic** functions.

Quantized version of a domain:

$$\mathcal{Q}(G) = \{T : \sigma(T) \subseteq G \text{ and } ||F_k(T)|| \le 1 \ \forall k \in I\}$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

Algebra:

$$H^{\infty}_{\mathcal{R}}(G) = \{ f \in H^{\infty}(G) : \|f\|_{\mathcal{R}} < \infty \}$$
 where

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T \in \mathcal{Q}(G)\}.$$

Domain:

$$G = \{z : ||F_k(z)|| < 1 \ \forall \ k \in I\}$$
 – open subset of C^N .

where I is some indexing set and $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k} : k \in I\}$ is a set of **analytic** functions.

Quantized version of a domain:

$$\mathcal{Q}(G) = \{T : \sigma(T) \subseteq G \text{ and } ||F_k(T)|| \le 1 \ \forall k \in I\}$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

Algebra:

$$H^{\infty}_{\mathcal{R}}(G) = \{ f \in H^{\infty}(G) : \|f\|_{\mathcal{R}} < \infty \}$$
 where

 $||f||_{\mathcal{R}} = \sup\{||f(T)|| : T \in \mathcal{Q}(G)\}$. Similarly, define norm on $M_n(H_{\mathcal{R}}^{\infty}(G))$.

Domain:

$$G = \{z : ||F_k(z)|| < 1 \ \forall \ k \in I\}$$
 – open subset of C^N .

where I is some indexing set and $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k} : k \in I\}$ is a set of **analytic** functions.

Quantized version of a domain:

$$\mathcal{Q}(G) = \{T : \sigma(T) \subseteq G \text{ and } ||F_k(T)|| \le 1 \ \forall k \in I\}$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

Algebra:

$$H^{\infty}_{\mathcal{R}}(G) = \{ f \in H^{\infty}(G) : ||f||_{\mathcal{R}} < \infty \} \text{ where}$$

 $||f||_{\mathcal{R}} = \sup\{||f(T)|| : T \in \mathcal{Q}(G)\}$. Similarly, define norm on $M_n(H_{\mathcal{R}}^{\infty}(G))$.

An example of "Abstract Operator Algebras of Functions."

1. Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra?

- 1. Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra?
- 2. Is it possible to sup over only commuting matrices and achieve the same norm?(RFD)

- 1. Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra?
- 2. Is it possible to sup over only commuting matrices and achieve the same norm?(RFD)
- 3. Is $H_{\mathcal{R}}^{\infty}(G)$ a multiplier algebra of some RKHS?

- 1. Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra?
- 2. Is it possible to sup over only commuting matrices and achieve the same norm?(RFD)
- 3. Is $H_{\mathcal{R}}^{\infty}(G)$ a multiplier algebra of some RKHS?
- 4. Is it possible to give a unified proof of Agler-type factorization result for $H^{\infty}_{\mathcal{R}}(G)$?

- 1. Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra?
- Is it possible to sup over only commuting matrices and achieve the same norm?(RFD)
- 3. Is $H_{\mathcal{R}}^{\infty}(G)$ a multiplier algebra of some RKHS?
- 4. Is it possible to give a unified proof of Agler-type factorization result for $H^{\infty}_{\mathcal{R}}(G)$?

The last question or rather slight variant of it has been partially answered.

- 1. Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra?
- Is it possible to sup over only commuting matrices and achieve the same norm?(RFD)
- 3. Is $H_{\mathcal{R}}^{\infty}(G)$ a multiplier algebra of some RKHS?
- 4. Is it possible to give a unified proof of Agler-type factorization result for $H^{\infty}_{\mathcal{R}}(G)$?

The last question or rather slight variant of it has been partially answered. For finite indexing set I, it has been considered by Ambrozie-Timotin, Ball-Bolotnikov when $F_k's$ are matrix-valued polynomials.

Definition

Definition

Given set X, A is an operator algebra of functions on X if

1. A is a subalgebra of the algebra of functions on X,

Definition

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,

Definition

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,
- 3. for each n $M_n(\mathcal{A})$ is equipped with a norm $\|.\|_{M_n(\mathcal{A})}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,

Definition

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,
- 3. for each n $M_n(\mathcal{A})$ is equipped with a norm $\|.\|_{M_n(\mathcal{A})}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,
- 4. for each $x \in X$, the evaluation functional, $\pi_x : A \to \mathbb{C}$, given by $\pi_x(f) = f(x)$ is bounded.

Definition

Given set X, A is an operator algebra of functions on X if

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,
- 3. for each n $M_n(\mathcal{A})$ is equipped with a norm $\|.\|_{M_n(\mathcal{A})}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,
- 4. for each $x \in X$, the evaluation functional, $\pi_x : A \to \mathbb{C}$, given by $\pi_x(f) = f(x)$ is bounded.

Proposition

Let \mathcal{A} be an operator algebra of functions on X, then $\mathcal{A} \subseteq \ell^{\infty}(X)$, and for every n and every $(f_{i,j}) \in M_n(\mathcal{A})$, we have $\|(f_{ij})\|_{\infty} \leq \|(f_{ij})\|_{M_n(\mathcal{A})}$ and $\|\pi_X\|_{cb} = 1$

Definition

A function $f: X \to \mathbb{C}$ is called a BPW limit of A, if there exists a net $f_{\lambda} \in A$, $f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$ We let \tilde{A} denote the set of functions that are BPW limits from A.

Definition

A function $f: X \to \mathbb{C}$ is called a BPW limit of \mathcal{A} , if there exists a net $f_{\lambda} \in \mathcal{A}$, $f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$ We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A} .

An operator algebra of functions \mathcal{A} is called BPW complete if $\mathcal{A} = \tilde{\mathcal{A}}$, as sets.

Definition

A function $f: X \to \mathbb{C}$ is called a BPW limit of A, if there exists a net $f_{\lambda} \in A$, $f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$ We let \tilde{A} denote the set of functions that are BPW limits from A.

An operator algebra of functions \mathcal{A} is called BPW complete if $\mathcal{A}=\tilde{\mathcal{A}},$ as sets.

Theorem

If we equip $\tilde{\mathcal{A}}$ with the family of norms given by $\|(f_{ij})\| = \inf\{C: \|(f_{ij}^{\lambda})\|_{\mathcal{A}} \leq C, \ f_{ij}^{\lambda} \to f_{ij} \ \text{ptw} \}, \ \text{then} \ \tilde{\mathcal{A}} \ \text{is a BPW}$ complete local operator algebra of functions.

Definition

A function $f: X \to \mathbb{C}$ is called a BPW limit of \mathcal{A} , if there exists a net $f_{\lambda} \in \mathcal{A}$, $f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$ We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A} .

An operator algebra of functions \mathcal{A} is called BPW complete if $\mathcal{A}=\tilde{\mathcal{A}},$ as sets.

Theorem

If we equip $\tilde{\mathcal{A}}$ with the family of norms given by $\|(f_{ij})\| = \inf\{C: \|(f_{ij}^{\lambda})\|_{\mathcal{A}} \leq C, \ f_{ij}^{\lambda} \to f_{ij} \text{ ptw }\}, \text{ then } \tilde{\mathcal{A}} \text{ is a BPW complete local operator algebra of functions.}$

We call $\tilde{\mathcal{A}}$ the BPW completion of \mathcal{A} .

Theorem

If A is an operator algebra of functions on the set X, then

Theorem

If A is an operator algebra of functions on the set X, then

1. $\tilde{\mathcal{A}}$ is RFD operator algebra.

Theorem

If A is an operator algebra of functions on the set X, then

- 1. $\tilde{\mathcal{A}}$ is RFD operator algebra.
- 2. $\tilde{\mathcal{A}}$ is a dual operator algebra and if (f_{ij}^{λ}) is a bounded net in \mathcal{A} , then $(f_{ii}^{\lambda}) \stackrel{wk*}{\rightarrow} (f_{ij}) \Leftrightarrow (f_{ii}^{\lambda}) \rightarrow (f_{ij})$ ptw on X.

Theorem

If A is an operator algebra of functions on the set X, then

- 1. $\tilde{\mathcal{A}}$ is RFD operator algebra.
- 2. $\tilde{\mathcal{A}}$ is a dual operator algebra and if (f_{ij}^{λ}) is a bounded net in \mathcal{A} , then $(f_{ij}^{\lambda}) \stackrel{wk*}{\to} (f_{ij}) \Leftrightarrow (f_{ij}^{\lambda}) \to (f_{ij})$ ptw on X.
- 3. \exists a Hilbert space, \mathcal{H} and \mathcal{H} -valued RKHS, \mathcal{L} such that $\tilde{\mathcal{A}} = \mathcal{M}(\mathcal{L})$ complete isometric, wk*-isomorphism.

Definition

Let $G \subseteq \mathbb{C}^N$ be an open set. If there exists a set of matrix-valued functions, $F_k = (f_{k,i,j}) : G^- \to M_{m_k,n_k}, k \in I$ whose components are analytic functions on G, and $G = \{z \in \mathbb{C}^N : ||F_k(z)|| < 1, k \in I\}$ then we call G a analytically presented domain,

Definition

Let $G \subseteq \mathbb{C}^N$ be an open set. If there exists a set of matrix-valued functions, $F_k = (f_{k,i,j}) : G^- \to M_{m_k,n_k}, k \in I$ whose components are analytic functions on G, and

 $G = \{z \in \mathbb{C}^N : ||F_k(z)|| < 1, k \in I\}$ then we call G a analytically presented domain, we call the set of functions

 $\mathcal{R} = \{F_k : G^- o M_{m_k,n_k}, \ k \in I\}$ a analytic presentation of G,

Definition

Let $G \subseteq \mathbb{C}^N$ be an open set. If there exists a set of matrix-valued functions, $F_k = (f_{k,i,j}) : G^- \to M_{m_k,n_k}, k \in I$ whose components are analytic functions on G, and

 $G = \{z \in \mathbb{C}^N : ||F_k(z)|| < 1, k \in I\}$ then we call G a analytically presented domain, we call the set of functions

 $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k}, \ k \in I\}$ a analytic presentation of G, and we call the algebra, \mathcal{A} generated by the component functions and the constant function, the algebra of the presentation.

Definition

Let $G \subseteq \mathbb{C}^N$ be an open set. If there exists a set of matrix-valued functions, $F_k = (f_{k,i,j}) : G^- \to M_{m_k,n_k}, k \in I$ whose components are analytic functions on G, and

 $G = \{z \in \mathbb{C}^N : ||F_k(z)|| < 1, k \in I\}$ then we call G a analytically presented domain, we call the set of functions

 $\mathcal{R} = \{F_k : G^- \to M_{m_k,n_k}, \ k \in I\}$ a analytic presentation of **G**, and we call the algebra, \mathcal{A} generated by the component functions and the constant function, the algebra of the presentation.

Definition

We say $\mathcal R$ is separating analytic presentation of G if $\mathcal A$ separates points of G.

The quantized version of G is defined to be

$$\mathcal{Q}(G) = \{T: \sigma(T) \subseteq G \text{ and } \|F_k(T)\| \leq 1, k \in I\},$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

The quantized version of G is defined to be

$$\mathcal{Q}(G) = \{T: \sigma(T) \subseteq G \text{ and } \|F_k(T)\| \leq 1, k \in I\},$$

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

Definition

Let $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be the homomorphism of the algebra of the presentation. Then we call π an admissible representation provided that $\|(\pi(f_{k,i,j}))\| \leq 1$ for all $k \in I$.

Let
$$(f_{ij}) \in M_n(A)$$
, set

$$\|(f_{ij})\|_u = \sup\{\|(\pi(f_{ij}))\| : \pi \text{ an admissible representation}\}$$

Let
$$(f_{ij}) \in M_n(A)$$
, set

$$\|(f_{ij})\|_u = \sup\{\|(\pi(f_{ij}))\| : \pi \text{ an admissible representation}\}$$

Let
$$(f_{ij}) \in M_n(H^{\infty}(G))$$
, set

$$\|(f_{ij})\|_{\mathcal{R}} = \sup\{\|(f_{ij}(T))\| : T \in \mathcal{Q}(G)\}.$$

We denote
$$H^{\infty}_{\mathcal{R}}(G) = \{ f \in H^{\infty}(G) : \|f\|_{\mathcal{R}} < \infty \}.$$

Let
$$(f_{ij}) \in M_n(A)$$
, set

$$\|(f_{ij})\|_u = \sup\{\|(\pi(f_{ij}))\| : \pi \text{ an admissible representation}\}$$

Let
$$(f_{ij}) \in M_n(H^{\infty}(G))$$
, set

$$\|(f_{ij})\|_{\mathcal{R}} = \sup\{\|(f_{ij}(T))\| : T \in \mathcal{Q}(G)\}.$$

We denote
$$H_{\mathcal{R}}^{\infty}(G) = \{ f \in H^{\infty}(G) : ||f||_{\mathcal{R}} < \infty \}.$$

Remark

Note that $\|.\|_{\mathcal{R}} \leq \|.\|_u$ and consequently, $\mathcal{A} \subseteq H^{\infty}_{\mathcal{R}}(G)$ completely contractively.

Theorem

Let G be an analytically presented domain with presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$, let \mathcal{A} be the algebra of the presentation and let $P = (p_{ij}) \in M_{m,n}(\mathcal{A})$, where m, n are arbitrary. Then the following are equivalent:

- (i) $||P||_u < 1$,
- (ii) there exists an integer I, matrices of scalars C_j , $1 \le j \le I$ with $\|C_j\| < 1$ and admissible block diagonal matrices $D_j(z), 1 \le j \le I$, which are of compatible sizes and are such that

$$P(z) = C_1 D_1(z) \cdots C_l D_l(z).$$

(iii) there exists a positive, invertible matrix $R \in M_m$ and matrices $P_0, P_k \in M_{m,r_k}(\mathcal{A}), k \in K$, where $K \subseteq I$ is a finite set, such that

$$I_m - P(z)P(w)^* = R + P_0(z)P_0(w)^* + \sum_{k \in K} P_k(z)(I - F_k(z)F_k(w)^*)^{(q_k)}P_k(w)^*$$

where $r_k = q_k m_k$ and $z = (z_1, ..., z_N), w = (w_1, ..., w_N) \in G$.

Theorem

Let G be an analytically presented domain with a separating analytic presentation $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$, let \mathcal{A} be the algebra of the presentation and let $\widetilde{\mathcal{A}}$ be the BPW-completion of \mathcal{A} . Then

Theorem

Let G be an analytically presented domain with a separating analytic presentation $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$, let \mathcal{A} be the algebra of the presentation and let $\widetilde{\mathcal{A}}$ be the BPW-completion of \mathcal{A} . Then

1. $\tilde{A} = H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and hence $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra.

Theorem

Let G be an analytically presented domain with a separating analytic presentation $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$, let \mathcal{A} be the algebra of the presentation and let $\widetilde{\mathcal{A}}$ be the BPW-completion of \mathcal{A} . Then

- 1. $\tilde{A} = H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and hence $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra.
- 2. Norms the same if we use finite dimensional representations, since $H^{\infty}_{\mathcal{R}}(G)$ is RFD.

Theorem

Let G be an analytically presented domain with a separating analytic presentation $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$, let \mathcal{A} be the algebra of the presentation and let $\widetilde{\mathcal{A}}$ be the BPW-completion of \mathcal{A} . Then

- 1. $\tilde{A} = H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and hence $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra.
- 2. Norms the same if we use finite dimensional representations, since $H^{\infty}_{\mathcal{R}}(G)$ is RFD.
- 3. $\exists \mathcal{H}$ -valued RKHS, \mathcal{L} such that $H_{\mathcal{R}}^{\infty}(G) = \mathcal{M}(\mathcal{L})$ complete isometric, wk*-isomorphism.

Theorem

Let G be an analytically presented domain with a separating analytic presentation $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$, let \mathcal{A} be the algebra of the presentation and let $\widetilde{\mathcal{A}}$ be the BPW-completion of \mathcal{A} . Then

- 1. $\tilde{A} = H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and hence $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra.
- 2. Norms the same if we use finite dimensional representations, since $H^{\infty}_{\mathcal{R}}(G)$ is RFD.
- 3. $\exists \mathcal{H}$ -valued RKHS, \mathcal{L} such that $H^{\infty}_{\mathcal{R}}(G) = \mathcal{M}(\mathcal{L})$ complete isometric, wk*-isomorphism.
- 4. $P = (p_{i,j}) \in M_{m,n}(H^{\infty}_{\mathcal{R}}(G))$ and $||P||_{\mathcal{R}} \leq 1$ if and only if there exists K operator-valued analytic functions $R_k : G \to B(\mathcal{H}_k \otimes C^{m_k}, \mathbb{C}^m)$ such that

$$I - P(z)P(w)^* = \sum_{k=1}^K R_k(z)[(I_m - F_k(z)F_k(w)^*) \otimes I_{\mathcal{H}_k}]R_k(w)^*.$$

when $I = \{1, \dots, K\}.$

Goals accomplished

- ▶ Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra? YES
- Is it possible to sup over only commuting matrices and achieve the same norm? YES
- ▶ Is $H^{\infty}_{\mathcal{R}}(G)$ a multiplier algebra of some RKHS? YES
- ▶ Is it possible to give a unified proof of Agler-type factorization result for $H^{\infty}_{\mathcal{R}}(G)$? YES

Goals accomplished

- ▶ Is $H^{\infty}_{\mathcal{R}}(G)$ a dual operator algebra? YES
- Is it possible to sup over only commuting matrices and achieve the same norm? YES but with some mild hypotheses.
- ▶ Is $H_R^\infty(G)$ a multiplier algebra of some RKHS? YES
- ▶ Is it possible to give a unified proof of Agler-type factorization result for $H^{\infty}_{\mathcal{R}}(G)$? YES

1. Polydisk: $G = \mathbb{D}^N$, $I = \{1, \dots, N\}$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$

1. Polydisk: $G = \mathbb{D}^N, I = \{1, \dots, N\}$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$ and $\mathcal{Q}(\mathbb{D}^N) = \{T : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \|T_i\| \le 1 \ \forall \ 1 \le i \le N\}$.

1. Polydisk: $G = \mathbb{D}^N, I = \{1, \dots, N\}$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$ and $\mathcal{Q}(\mathbb{D}^N) = \{T : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \|T_i\| \le 1 \ \forall \ 1 \le i \le N\}$.

The algebra of the presentation is the algebra of polynomials and clearly separates points of G.

1. Polydisk: $G = \mathbb{D}^N, I = \{1, \dots, N\}$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$ and $\mathcal{Q}(\mathbb{D}^N) = \{T : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \|T_i\| \le 1 \ \forall \ 1 \le i \le N\}$.

The algebra of the presentation is the algebra of polynomials and clearly separates points of G.

 $H^{\infty}_{\mathcal{R}}(G)$: Schur-Agler algebra.

1. Polydisk: $G = \mathbb{D}^N, I = \{1, \dots, N\}$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$ and $\mathcal{Q}(\mathbb{D}^N) = \{T : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \|T_i\| \le 1 \ \forall \ 1 \le i \le N\}$.

The algebra of the presentation is the algebra of polynomials and clearly separates points of G.

 $H^{\infty}_{\mathcal{R}}(G)$: Schur-Agler algebra.

In this case,

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T_i \in M_n \text{ and } T \in Q(\mathbb{D}^N)\}$$

where $T = (T_1, \dots, T_N)$ is a commuting tuple of matrices.

1. Polydisk: $G = \mathbb{D}^N$, $I = \{1, \dots, N\}$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$ and $\mathcal{Q}(\mathbb{D}^N) = \{T : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \|T_i\| \le 1 \ \forall \ 1 \le i \le N\}.$

The algebra of the presentation is the algebra of polynomials and clearly separates points of G.

 $H^{\infty}_{\mathcal{R}}(G)$: Schur-Agler algebra. In this case.

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T_i \in M_n \text{ and } T \in Q(\mathbb{D}^N)\}$$

where $T=(T_1,\cdots,T_N)$ is a commuting tuple of matrices. <u>Factorization theorem:</u> $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists$ positive definite functions, K_m such that

$$1 - f(z)\overline{f(w)} = \sum_{m=1}^{N} (1 - z_m \overline{w_m}) K_m(z, w)$$

$$\mathcal{Q}(\mathbb{B}^N) = \{ T = (T_1, \dots, T_N) : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \sum_{l=1}^N T_l T_l^* \leq 1 \}.$$

$$\mathcal{Q}(\mathbb{B}^N) = \{ T = (T_1, \dots, T_N) : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \sum_{l=1}^N T_l T_l^* \leq 1 \}.$$

The **algebra of the presentation** is the algebra of polynomials and separates points of G..

$$Q(\mathbb{B}^N) = \{ T = (T_1, \dots, T_N) : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \sum_{l=1}^N T_l T_l^* \leq 1 \}.$$

The **algebra of the presentation** is the algebra of polynomials and separates points of G..

 $H^\infty_\mathcal{R}(G)$: Drury-Arveson algebra.

$$\mathcal{Q}(\mathbb{B}^N) = \{ T = (T_1, \dots, T_N) : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \sum_{l=1}^N T_l T_l^* \leq 1 \}.$$

The **algebra of the presentation** is the algebra of polynomials and separates points of G..

 $H^{\infty}_{\mathcal{R}}(G)$: Drury-Arveson algebra.

Again in this case,

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T_i \in M_n \text{ and } T \in Q(\mathbb{B}^N)\}$$

where $T = (T_1, \dots, T_N)$ is a commuting tuple of matrices.

$$\mathcal{Q}(\mathbb{B}^N) = \{ T = (T_1, \dots, T_N) : \sigma(T) \subseteq \mathbb{D}^N \text{ and } \sum_{l=1}^N T_l T_l^* \leq 1 \}.$$

The algebra of the presentation is the algebra of polynomials and separates points of G..

 $H^{\infty}_{\mathcal{R}}(G)$: Drury-Arveson algebra.

Again in this case,

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T_i \in M_n \text{ and } T \in Q(\mathbb{B}^N)\}$$

where $T=(T_1,\cdots,T_N)$ is a commuting tuple of matrices. <u>Factorization theorem:</u> $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists$ positive definite function, K such that

$$1 - f(z)\overline{f(w)} = (1 - \langle z, w \rangle)K(z, w)$$

$$\mathcal{Q}(\mathbb{A}_r) = \{T : ||T|| \le 1, ||rT^{-1}|| \le 1 \text{ and } \sigma(T) \subseteq \mathbb{A}_r\}.$$

$$\mathcal{Q}(\mathbb{A}_r) = \{T : ||T|| \le 1, ||rT^{-1}|| \le 1 \text{ and } \sigma(T) \subseteq \mathbb{A}_r\}.$$

The **algebra of the presentation** is the algebra of Laurent polynomials and separates points of G.

$$\mathcal{Q}(\mathbb{A}_r) = \{T : ||T|| \le 1, ||rT^{-1}|| \le 1 \text{ and } \sigma(T) \subseteq \mathbb{A}_r\}.$$

The algebra of the presentation is the algebra of Laurent polynomials and separates points of G. In this case,

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T \in M_n \text{ and } T \in Q(\mathbb{A}_r)\}$$

where $T = (T_1, \dots, T_N)$ is a commuting tuple of matrices.

$$\mathcal{Q}(\mathbb{A}_r) = \{T : \|T\| \le 1, \|rT^{-1}\| \le 1 \text{ and } \sigma(T) \subseteq \mathbb{A}_r\}.$$

The algebra of the presentation is the algebra of Laurent polynomials and separates points of G. In this case,

$$||f||_{\mathcal{R}} = \sup\{||f(T)|| : T \in M_n \text{ and } T \in Q(\mathbb{A}_r)\}$$

where $T=(T_1,\cdots,T_N)$ is a commuting tuple of matrices. <u>Factorization theorem:</u> $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists$ positive definite functions, K_1 , K_2 such that

$$1 - f(z)\overline{f(w)} = (1 - z\overline{w})K_1(z, w) + (1 - r^2z^{-1}\overline{w}^{-1})K_2(z, w)$$

$$G = \mathbb{H} = \{ z \in C^N : Re(z_k) > 0 \ \forall \ k \in I \}, \text{ where } z = (z_1, \dots, z_N) \text{ and } I = \{1, \dots, N\}.$$

$$G = \mathbb{H} = \{z \in C^N : Re(z_k) > 0 \ \forall \ k \in I\}, \text{ where } z = (z_1, \dots, z_N) \text{ and } I = \{1, \dots, N\}.$$

Define
$$F_k: G \to \mathbb{C}$$
 via $F_k(z) = \frac{z_k - 1}{z_k + 1}$

$$G = \mathbb{H} = \{z \in C^N : Re(z_k) > 0 \ \forall \ k \in I\}, \text{ where } z = (z_1, \dots, z_N) \text{ and } I = \{1, \dots, N\}.$$

Define $F_k:G o\mathbb{C}$ via $F_k(z)=rac{z_k-1}{z_k+1}$ and

$$Q(G) = \{T : \sigma(T) \in \mathbb{H} \text{ and } \|(T_k - 1)(T_k + 1)^{-1}\| \le 1 \ \forall \ k \in I\},$$

where $T = (T_1, \dots, T_N)$ is a commuting tuple of operators on a Hilbert space.

$$G = \mathbb{H} = \{z \in C^N : Re(z_k) > 0 \ \forall \ k \in I\}, \text{ where } z = (z_1, \dots, z_N) \text{ and } I = \{1, \dots, N\}.$$

Define
$$F_k: G \to \mathbb{C}$$
 via $F_k(z) = \frac{z_k-1}{z_k+1}$ and

$$Q(G) = \{T : \ \sigma(T) \in \mathbb{H} \ \text{and} \ \|(T_k - 1)(T_k + 1)^{-1}\| \le 1 \ \forall \ k \in I\},$$

where $T = (T_1, \dots, T_N)$ is a commuting tuple of operators on a Hilbert space.

The **algebra of the presentation** is the algebra of analytic functions, $F'_k s$ and clearly separates points of G.

 $G = \mathbb{H} = \{z \in C^N : Re(z_k) > 0 \ \forall \ k \in I\}, \text{ where } z = (z_1, \dots, z_N) \text{ and } I = \{1, \dots, N\}.$ Define $F_k : G \to \mathbb{C}$ via $F_k(z) = \frac{z_k - 1}{z_k + 1}$ and

$$Q(G) = \{ T : \sigma(T) \in \mathbb{H} \text{ and } \| (T_k - 1)(T_k + 1)^{-1} \| \le 1 \ \forall \ k \in I \},$$

where $T = (T_1, \dots, T_N)$ is a commuting tuple of operators on a Hilbert space.

The **algebra of the presentation** is the algebra of analytic functions, $F'_k s$ and clearly separates points of G.

Factorization theorem: $||f||_{\mathcal{R}} \leq 1 \Leftrightarrow \exists$ positive definite functions, K_m such that

$$1 - f(z)\overline{f(w)} = \sum_{m=1}^{N} (1 - F_m(z)\overline{F_m(w)}) K_m(z, w)$$

These algebras have been studied by Kalyuzhnyi-Verbovetzkii.

$$G = \{ z \in \mathbb{C} : |\phi(z)| < 1 \}$$

$$G = \{ z \in \mathbb{C} : |\phi(z)| < 1 \}$$

and

$$Q(G) = \{T : ||\phi(T)|| \le 1 \text{ and } \sigma(T) \subseteq G\}.$$

$$G = \{ z \in \mathbb{C} : |\phi(z)| < 1 \}$$

and

$$Q(G) = \{T : \|\phi(T)\| \le 1 \text{ and } \sigma(T) \subseteq G\}.$$

The algebra of the presentation is the algebra of polynomials in ϕ and separates points of G.

$$G = \{ z \in \mathbb{C} : |\phi(z)| < 1 \}$$

and

$$Q(G) = \{T : ||\phi(T)|| \le 1 \text{ and } \sigma(T) \subseteq G\}.$$

The algebra of the presentation is the algebra of polynomials in ϕ and separates points of G.

Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists$ positive definite function, K such that

$$1 - f(z)\overline{f(w)} = (1 - \phi(z)\overline{\phi(w)})K(z, w)$$

6. One can quantize the unit disk as follows:

$$Q(\mathbb{D}) = \{ T : w(T) \leq 1 \text{ and } \sigma(T) \subseteq \mathbb{D} \}$$

with analytic presentation

$$\mathcal{R} = \{F_{\theta}(z) = \frac{z}{z - 2e^{i\theta}}: \ \theta \in I = [0, 2\pi)\}.$$

6. One can quantize the unit disk as follows:

$$Q(\mathbb{D}) = \{ T : w(T) \leq 1 \text{ and } \sigma(T) \subseteq \mathbb{D} \}$$

with analytic presentation

$$\mathcal{R} = \{F_{\theta}(z) = \frac{z}{z - 2e^{i\theta}} : \theta \in I = [0, 2\pi)\}.$$

And the list goes on ...