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Overview: Quantized Function Theory

Domain:
G ={z:||Fk(2)|| <1V k € I} — open subset of CN.

where [ is some indexing set and R = {Fx: G~ — Mp, », k€ l}isa
set of analytic functions.
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Overview: Quantized Function Theory

Domain:
G ={z:||Fk(2)|| <1V k € I} — open subset of CN.

where [ is some indexing set and R = {Fx: G~ — Mp, », k€ l}isa
set of analytic functions.
Quantized version of a domain:

Q(G)={T:0(T)C G and |F(T)| <1Vkel}

where T = (Ty, Ty, ..., Ty) is a commuting N-tuple of operators on
some Hilbert space.
Algebra:

HZ(G) = {f € H®(G) : ||f|lr < oo} where

Ifllr = sup{||f(T)||: T € Q(G)}. Similarly, define norm on
M (Hz (G))-
An example of ” Abstract Operator Algebras of Functions.”
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Goal of the talk

1. Is H¥(G) a dual operator algebra?

2. Is it possible to sup over only commuting matrices and
achieve the same norm?(RFD)

3. Is H¥(G) a multiplier algebra of some RKHS?

4. |s it possible to give a unified proof of Agler-type factorization
result for HY(G)?

The last question or rather slight variant of it has been partially
answered. For finite indexing set I, it has been considered by
Ambrozie-Timotin, Ball-Bolotnikov when F,is are matrix-valued
polynomials.
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Operator Algebras of Functions, General Theory

Definition
Given set X, A is an operator algebra of functions on X if
1. A is a subalgebra of the algebra of functions on X,

2. A separates the points of X and contains the constant
functions,

3. for each n Mp(A) is equipped with a norm ||.|[p,(.4), such
that the set of norms satisfy the BRS axioms to be an
abstract operator algebra,

4. for each x € X, the evaluation functional, my : A — C, given
by mx(f) = f(x) is bounded.

Proposition

Let A be an operator algebra of functions on X, then A C (*°(X),
and for every n and every (f; ;) € Mp(A), we have

1)l < [1(Fip)lImn(ay and [[7x]lep = 1
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General theory

Definition

A function f : X — C is called a BPW limit of A, if there exists a
net fy € A, fy — f ptw and ||f,|| < C We let A denote the set of
functions that are BPW limits from A.
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General theory

Definition

A function f : X — C is called a BPW limit of A, if there exists a
net fy € A, fy — f ptw and ||f,|| < C We let A denote the set of
functions that are BPW limits from A.

An operator algebra of functions A is called BPW complete if

A=A, as sets.

Theorem

If we equip A with the family of norms given by y

|(fi)|| = inf{C: ||(fU)‘)||A <C, fU)‘ — fij ptw }, then A is a BPW
complete local operator algebra of functions.

We call A the BPW completion of A.
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Theorem
If A is an operator algebra of functions on the set X, then

1. A is RFD operator algebra.
2. A is a dual operator algebra and /f(fU)‘) is a bounded net in
wk*
A, then (£ ™ (£) & () — (f;) ptw on X.
3. E|~a Hilbert space, H and H-valued RKHS, L such that
A = M(L) complete isometric, wk*-isomorphism.
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Quantized Function Theory, Redux

Definition

Let G C CN be an open set. If there exists a set of matrix-valued
functions, Fi = (fiij) : G~ — Mm, n., k € | whose components
are analytic functions on G, and

G ={zeCVN:||F(2)|]| <1,k €I} then we call G a analytically
presented domain,

Meghna Mittal (University of Houston) Operator Algebras of Functions



Quantized Function Theory, Redux

Definition

Let G C CN be an open set. If there exists a set of matrix-valued
functions, Fi = (fiij) : G~ — Mm, n., k € | whose components
are analytic functions on G, and

G ={zeCVN:||F(2)|]| <1,k €I} then we call G a analytically
presented domain, we call the set of functions

R ={Fxk: G~ — Mpn,n, k €1} aanalytic presentation of G,

Meghna Mittal (University of Houston) Operator Algebras of Functions



Quantized Function Theory, Redux

Definition

Let G C CN be an open set. If there exists a set of matrix-valued
functions, Fi = (fiij) : G~ — Mm, n., k € | whose components
are analytic functions on G, and

G ={zeCVN:||F(2)|]| <1,k €I} then we call G a analytically
presented domain, we call the set of functions

R ={Fxk: G~ — Mpn,n, k €1} aanalytic presentation of G,
and we call the algebra, A generated by the component functions
and the constant function, the algebra of the presentation.

Meghna Mittal (University of Houston) Operator Algebras of Functions



Quantized Function Theory, Redux

Definition

Let G C CN be an open set. If there exists a set of matrix-valued
functions, Fi = (fiij) : G~ — Mm, n., k € | whose components
are analytic functions on G, and

G ={zeCVN:||F(2)|]| <1,k €I} then we call G a analytically
presented domain, we call the set of functions

R ={Fxk: G~ — Mpn,n, k €1} aanalytic presentation of G,
and we call the algebra, A generated by the component functions
and the constant function, the algebra of the presentation.

Definition
We say R is separating analytic presentation of G if A
separates points of G.
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Definition
The quantized version of G is defined to be

Q(G)={T:0(T)C G and |Fu(T)| <1,k € I},

where T = (Ty, Ty, ..., Tn) is a commuting N-tuple of operators
on some Hilbert space.
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Definition
The quantized version of G is defined to be

Q(G)={T:0(T)C G and |Fu(T)| <1,k € I},

where T = (Ty, Ty, ..., Tn) is a commuting N-tuple of operators
on some Hilbert space.

Definition

Let m: A — B(H) be the homomorphism of the algebra of the
presentation. Then we call m an admissible representation
provided that ||(7(fxi;))|| <1 forall k € 1.
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Let (fj) € Mn(A), set
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Let (fij) € Mo(H>(G)), set
1(fp)ll= = sup{lI(F(T)I - T € Q(G)}-
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Definition
Let (fj) € Mn(A), set

|(fi)llu = sup{||(=(f;))|| : m an admissible representation}
Let (fij) € Mo(H>(G)), set
1(fp)ll= = sup{lI(F(T)I - T € Q(G)}-
We denote HY(G) = {f € H*(G) : ||f||r < oo}.

Remark
Note that ||.|[r < ||.||u and consequently, A C HZ(G) completely
contractively.
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Theorem

Let G be an analytically presented domain with presentation

R ={Fk = (fxij): G = Mm, n.k €1}, let A be the algebra of the

presentation and let P = (pjj) € M n(A), where m, n are arbitrary. Then

the following are equivalent:

(i) IIPllu <1,

(i) there exists an integer |, matrices of scalars C;, 1 < j < | with
IGill <1 and admissible block diagonal matrices Dj(z),1 < j <,
which are of compatible sizes and are such that

P(Z) = C1D1(Z) s C/D/(Z).

(iii) there exists a positive, invertible matrix R € M, and matrices
Po, Pk € M. (A), k € K, where K C | is a finite set, such that

Im—P(2)P(w)* = R+Po(2)Po(w)*+> _ Pi(2)(I—Fi(2) Fie(w)*) {9 Py (w)*
keK

where ry = qxmy and z = (z1, ..., zy), w = (w1, ..., wy) € G.
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Theorem

Let G be an analytically presented domain with a separating analytic
presentation R = {Fi : G — M, n, : k € I}, let A be the algebra of
the presentation and let A be the BPW-completion of A. Then
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1. A = H¥(G), completely isometrically, and hence H3(G) is a local
dual operator algebra.
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Theorem
Let G be an analytically presented domain with a separating analytic
presentation R = {Fi : G — M, n, : k € I}, let A be the algebra of
the presentation and let A be the BPW-completion of A. Then
1. A = H¥(G), completely isometrically, and hence H3(G) is a local
dual operator algebra.
2. Norms the same if we use finite dimensional representations, since
HZ(G) is RFD.
3. 3 H-valued RKHS, L such that H¥(G) = M(L) complete
lsometr/c wk*-isomorphism.
4. P =(pij) € Mmn(HZ(G)) and |P||r < 1 if and only if there
exists K operator-valued analytic functions
Ri: G — B(Hk ® C™,C™) such that

I — P(2)P Z Ri(2)[(In — Fi(2)Fe(w)*) @ by, ]Ri(w)*.

when | = {1,--- | K}.
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Goals accomplished

> Is HZY(G) a dual operator algebra? YES

» Is it possible to sup over only commuting matrices and
achieve the same norm? YES

> Is HY(G) a multiplier algebra of some RKHS? YES

» Is it possible to give a unified proof of Agler-type factorization
result for HY(G)? YES
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Goals accomplished

> Is HZY(G) a dual operator algebra? YES

» Is it possible to sup over only commuting matrices and
achieve the same norm? YES but with some mild hypotheses.

> Is HY(G) a multiplier algebra of some RKHS? YES

» Is it possible to give a unified proof of Agler-type factorization
result for HY(G)? YES
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1. Polydisk: G =DV, ={1,---,N}. For 1 < k < N, define
Fr: G — Cvia Fk(z) = 7y, where z = (Zl, e 7ZN)
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1. Polydisk: G =DV, ={1,---,N}. For 1 < k < N, define
Fx : G — C via Fy(z) = zx, where z = (z1,--- ,zy) and

OMM) ={T:o(T)CD and | Ti|| <1V 1<i<N}.

The algebra of the presentation is the algebra of polynomials
and clearly separates points of G.
HZ(G) : Schur-Agler algebra.
In this case,
Iz =sup{||f(T)||: Ti € M, and T € Q(D")}

where T = (Ty,---, Ty) is a commuting tuple of matrices.
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1. Polydisk: G =DV, ={1,---,N}. For 1 < k < N, define
Fx : G — C via Fy(z) = zx, where z = (z1,--- ,zy) and

OMM) ={T:o(T)CD and | Ti|| <1V 1<i<N}.

The algebra of the presentation is the algebra of polynomials
and clearly separates points of G.

HZ(G) : Schur-Agler algebra.

In this case,

Ifllr = supf{||f(T)||: T € Myand T € Q(]D)N)}

where T = (Ty,---, Ty) is a commuting tuple of matrices.
Factorization theorem: ||f||r < 1 < 3 positive definite functions,
K such that

N
1—f(z)f(w) = Z 1 — zyWm)Km(z, w)

m=1
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2. Unit Ball: G =BN, | = {1}. Define F: G — M y via
F(z) = (z1,- ,2n)
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=1
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=1

The algebra of the presentation is the algebra of polynomials
and separates points of G..

HZ(G) : Drury-Arveson algebra.

Again in this case,
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where T = (Ty,---, Ty) is a commuting tuple of matrices.
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2. Unit Ball: G =BN, | = {1}. Define F: G — M y via
F(z) =(z1,--- ,zn) and

N
QBN) = {T =(T1,---, Ta):o(T) S DN and Y T, 7" < 1.
=1

The algebra of the presentation is the algebra of polynomials
and separates points of G..

HZ(G) : Drury-Arveson algebra.

Again in this case,

Ifllr = sup{||f(T)||: T; € M, and T € Q(BN)}

where T = (Ty,---, Ty) is a commuting tuple of matrices.
Factorization theorem: ||f||r < 1 < 3 positive definite function, K
such that

1-f(2)f(w)=(1-(z,w))K(z,w)
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3. Annulus: G =A,, | ={1,2}. Define Fi(z) =z, F(z) =

rz_l
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rz—! and

QAN ={T:|IT| <1, [rT M <1and o(T) C A}

The algebra of the presentation is the algebra of Laurent
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rz=! and

QAN ={T:IT| <1, |rT | <1and o(T) C A}

The algebra of the presentation is the algebra of Laurent
polynomials and separates points of G.
In this case,

Ifllr =sup{||f(T)||: T €M,and T € Q(A,)}

where T = (Ty,---, Ty) is a commuting tuple of matrices.
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3. Annulus: G =A,, | ={1,2}. Define Fi(z) =z, F(z) =
rz=! and

QAN ={T:IT| <1, |rT | <1and o(T) C A}

The algebra of the presentation is the algebra of Laurent
polynomials and separates points of G.
In this case,

Ifllr =sup{||f(T)||: T €M,and T € Q(A,)}

where T = (Ty,---, Ty) is a commuting tuple of matrices.
Factorization theorem: ||f||g < 1 < 3 positive definite functions,
Ki, K such that

1—f(2)f(w) = (1 — zw)Ki(z,w) + (1 — rPz'w ) Ka(z, w)
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4. Intersection of half planes: Let

G=H={zc CN:Re(z) >0V k€l}, where z=(z, -

and [ ={1,---,N}.
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4. Intersection of half planes: Let
G=H={zc CV:Re(z) >0V k€ l}, where z=(z,--- , zy)
and [ ={1,---,N}.

Define Fy : G — C via Fi(z) = i:;i and

QG)={T: o(T)eHand ||(Tx —1)(Te +1)7 Y| <1V ke I},

where T = (Ty,---, Ty) is a commuting tuple of operators on a
Hilbert space.
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4. Intersection of half planes: Let
G:H:{ZE CN:Re(z) >0V k €1}, where z = (z1,--- , zn)
and [ ={1,---,N}.

Define Fi : G — C via Fy(z) = ZH and

QG)={T: o(T)eHand ||(Tx —1)(Te +1)7 Y| <1V ke I},

where T = (Ty,---, Ty) is a commuting tuple of operators on a
Hilbert space.

The algebra of the presentation is the algebra of analytic
functions, F; s and clearly separates points of G.

Factorization theorem: ||f||gr < 1 < 3 positive definite functions,
K., such that

N
1—f(z2)f(w :Z Fr(wW))Kim(z, w)

These algebras have been studied by Kalyuzhnyi-Verbovetzkii.
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5. Simply connected domain: Let G be a simply connected
domain in C, then 3 a biholomorphic map ¢ : G — D such that

G={zeC:l|¢9(z)| <1}
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5. Simply connected domain: Let G be a simply connected
domain in C, then 3 a biholomorphic map ¢ : G — D such that

G={zeC:l|¢9(z)| <1}

and
Q(G) ={T :[[¢(T)]| <L and o(T) € G}.

The algebra of the presentation is the algebra of polynomials in
¢ and separates points of G.

Factorization theorem: ||f||zr < 1 < 3 positive definite function,

K such that

1—f(2)f(w) = (1 = ¢(2)¢(w))K(z, w)
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6. One can quantize the unit disk as follows:
QD) ={T:w(T)<land o(T)C D}
with analytic presentation

R = {Fy(z) = L 0el=[0,2r)}

z
z —2eif "
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6. One can quantize the unit disk as follows:
QD) ={T:w(T)<land o(T)C D}
with analytic presentation

R = {Fy(z) = L 0el=[0,2r)}

z
z —2eif "

And the list goes on ...
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