Noncommutative Semialgebraic sets
 Multivariable operator theory workshop
 Fields Institute

Terry A. Loring Joint work with Tatiana Shulman

August 10-14, 2009

Lifting against Star-Homomorphisms

Lifting against Star-Homomorphisms

Theorem (Olsen 1971, Olsen-Pedersen 1989, Shulman 2008)

Suppose $\rho: B \rightarrow C$ is a surjective $*$-homomorphism between C^{*}-algebras. Given x in C with

$$
\|x\| \leq 1 \text { and } x^{n}=0
$$

there exists \dot{x} in B with $\rho(\dot{x})=x$ and

$$
\|\dot{x}\| \leq 1 \text { and } \dot{x}^{n}=0 .
$$

C*-Lifting, Ad Hoc Methods

C*-Lifting, Ad Hoc Methods

Relations		C^{*}-algebra	Liftable		Credit		
$x^{*} x \leq 1$ $x^{n}=0$	$? ?$	Yes	Olsen, Pedersen, Shulman				
$x^{*} x \leq 1$ $\left\\|x^{n}\right\\| \leq \epsilon$	$? ?$	Yes	Olsen, Akemann, Pedersen				
$x^{*} x=y^{*} y \leq 1$ $x^{*} y=y^{*} x=0$	$? ?$	Yes	Loring, Pedersen				
$x^{*} x=y^{*} y \leq 1$ $x^{*} y=y^{*} x=0$ $x^{2}=y^{2}=0$	$C_{0}\left((0,1], \mathbf{M}_{3}\right)$	Yes	Loring				
$x^{2}+y^{2} \leq 1$ $x^{*}=x, y^{*}=y$ $x y=0$	$C_{0}\left((0,1], \mathbb{C}^{4}\right)$	Yes	Loring				
$x^{*} x=x x^{*} \leq 1$	$C_{0}(\mathbb{D} \backslash\{\mathbf{0}\})$	No	Fredholm				

Extension Problems in Topology

Extension Problems in Topology

The situation in topology is more generic.

Extension Problems in Topology

The situation in topology is more generic.
Theorem (Lojasiewicz plus Borsuk)
Every contractible, compact semialgebraic set in finite-dimensional Euclidean space is an absolute retract.

Extension Problems in Topology

The situation in topology is more generic.

Theorem (Lojasiewicz plus Borsuk)

Every contractible, compact semialgebraic set in finite-dimensional Euclidean space is an absolute retract.

Semialgebraic means sets like

$$
\left\{(x, y) \in \mathbb{R}^{2}| | x^{3}+y^{2}|\leq 1,|x y-x| \leq \epsilon\}\right.
$$

and exact relations, unions, complements are also allowed.

Extension Problems in Topology

The situation in topology is more generic.

Theorem (Lojasiewicz plus Borsuk)

Every contractible, compact semialgebraic set in finite-dimensional Euclidean space is an absolute retract.

Semialgebraic means sets like

$$
\left\{(x, y) \in \mathbb{R}^{2}| | x^{3}+y^{2}|\leq 1,|x y-x| \leq \epsilon\}\right.
$$

and exact relations, unions, complements are also allowed. contractibility will follow if we stick with homogeneous inequalities:

$$
X=\left\{(x, y) \in \mathbb{R}^{2}| | x^{2}+y^{2}\left|\leq 1,\left|x^{2} y-x y^{2}\right| \leq \epsilon\right\}\right.
$$

A Lifting Result in the Commutative Category

A Lifting Result in the Commutative Category

We can translate the fact that X is an AR into a lifting problem.

A Lifting Result in the Commutative Category

We can translate the fact that X is an AR into a lifting problem.
Suppose $\rho: B \rightarrow C$ is a surjective $*$-homomorphism between commutative C^{*}-algebras. Given x and y in C with

$$
x^{*}=x, y^{*}=y,\left\|x^{2}+y^{2}\right\| \leq 1 \text { and }\left\|x^{2} y-x y^{2}\right\| \leq \epsilon
$$

there exists \dot{x} and \dot{y} in B with $\rho(\dot{x})=x, \rho(\dot{y})=y$, and

$$
\dot{x}^{*}=\dot{x}, \dot{y}^{*}=\dot{y},\left\|\dot{x}^{2}+\dot{y}^{2}\right\| \leq 1 \text { and }\left\|\dot{x}^{2} \dot{y}-\dot{x} \dot{y}^{2}\right\| \leq \epsilon .
$$

A Lifting Result in the Commutative Category

We can translate the fact that X is an AR into a lifting problem.
Suppose $\rho: B \rightarrow C$ is a surjective $*$-homomorphism between commutative C^{*}-algebras. Given x and y in C with

$$
x^{*}=x, y^{*}=y,\left\|x^{2}+y^{2}\right\| \leq 1 \text { and }\left\|x^{2} y-x y^{2}\right\| \leq \epsilon
$$

there exists \dot{x} and \dot{y} in B with $\rho(\dot{x})=x, \rho(\dot{y})=y$, and

$$
\dot{x}^{*}=\dot{x}, \dot{y}^{*}=\dot{y},\left\|\dot{x}^{2}+\dot{y}^{2}\right\| \leq 1 \text { and }\left\|\dot{x}^{2} \dot{y}-\dot{x} \dot{y}^{2}\right\| \leq \epsilon .
$$

We could also discuss (normal) contractions with spectrum in X :

C*-Lifting-Our First Surprise

C*-Lifting-Our First Surprise

Suppose $\rho: B \rightarrow C$ is a surjective $*$-homomorphism between C^{*}-algebras. Given x in C with

$$
\|x\| \leq 1 \text { and }\left\|x^{*} x-x x^{*}\right\| \leq \epsilon
$$

there exists \dot{x} in B with $\rho(\dot{x})=x$, and

$$
\|\dot{x}\| \leq 1 \text { and }\left\|\dot{x}^{*} \dot{x}-\dot{x} \dot{x}^{*}\right\| \leq \epsilon
$$

C*-Lifting-Our First Surprise

Suppose $\rho: B \rightarrow C$ is a surjective $*$-homomorphism between C^{*}-algebras. Given x in C with

$$
\|x\| \leq 1 \text { and }\left\|x^{*} x-x x^{*}\right\| \leq \epsilon
$$

there exists \dot{x} in B with $\rho(\dot{x})=x$, and

$$
\|\dot{x}\| \leq 1 \text { and }\left\|\dot{x}^{*} \dot{x}-\dot{x} \dot{x}^{*}\right\| \leq \epsilon
$$

Therefore

$$
C_{0}(\mathbb{D} \backslash\{0\}) \cong \lim _{\rightarrow} C^{*}\left\langle x \left\lvert\,\left\|x^{*} x-x x^{*}\right\| \leq \frac{1}{n}\right.,\|x\| \leq 1\right\rangle
$$

C*-Lifting-Our First Surprise

Suppose $\rho: B \rightarrow C$ is a surjective $*$-homomorphism between C^{*}-algebras. Given x in C with

$$
\|x\| \leq 1 \text { and }\left\|x^{*} x-x x^{*}\right\| \leq \epsilon
$$

there exists \dot{x} in B with $\rho(\dot{x})=x$, and

$$
\|\dot{x}\| \leq 1 \text { and }\left\|\dot{x}^{*} \dot{x}-\dot{x} \dot{x}^{*}\right\| \leq \epsilon
$$

Therefore

$$
C_{0}(\mathbb{D} \backslash\{0\}) \cong \lim _{\rightarrow} C^{*}\left\langle x \left\lvert\,\left\|x^{*} x-x x^{*}\right\| \leq \frac{1}{n}\right.,\|x\| \leq 1\right\rangle
$$

is a limit of projective C^{*}-algebras.

Projective C^{*}-algebras (NC Absolute Retracts)

Projective C*-algebras (NC Absolute Retracts)

Definition

A is a projective C^{*}-algebra if we can always solve the *-homomorphism lifting problem:

Projective C*-algebras (NC Absolute Retracts)

Definition

A is a projective C^{*}-algebra if we can always solve the *-homomorphism lifting problem:

After adding units (A can't have a unit) this is a translation of absolute extensor.

Projective C^{*}-algebras (NC Absolute Retracts)

Definition

A is a projective C^{*}-algebra if we can always solve the *-homomorphism lifting problem:

After adding units (A can't have a unit) this is a translation of absolute extensor. For X a compact metric space,
X is an absolute extensor $\Longleftrightarrow X$ is an absolute retract

Projective C*-algebras (NC Absolute Retracts)

Definition

A is a projective C^{*}-algebra if we can always solve the *-homomorphism lifting problem:

After adding units (A can't have a unit) this is a translation of absolute extensor. For X a compact metric space,
X is an absolute extensor $\Longleftrightarrow X$ is an absolute retract

Theorem

If A is projective then A is residually finite dimensional.

A Disconcerting Comparison

A Disconcerting Comparison

A Disconcerting Comparison

Consider f and the middle-thirds Cantor set

$$
X=\bigcap X_{n}
$$

A Disconcerting Comparison

Consider f and the middle-thirds Cantor set

$$
X=\bigcap X_{n}
$$

We have

$$
C_{0}(X \backslash\{0\}) \cong \lim _{\rightarrow} C^{*}\left\langle x \mid 0 \leq x \leq 1,\|f(x)\| \leq \frac{1}{3^{n}}\right\rangle
$$

Borrowing from Akemann and Pedersen

Borrowing from Akemann and Pedersen

To show that for any $\epsilon>0$ the set of relations

$$
\|x\| \leq 1 \text { and }\left\|x^{*} x-x x^{*}\right\| \leq \epsilon
$$

is a liftable, we went back to the proof that

$$
\|x\| \leq 1 \text { and }\left\|x^{n}\right\| \leq \epsilon
$$

is liftable.

Borrowing from Akemann and Pedersen

To show that for any $\epsilon>0$ the set of relations

$$
\|x\| \leq 1 \text { and }\left\|x^{*} x-x x^{*}\right\| \leq \epsilon
$$

is a liftable, we went back to the proof that

$$
\|x\| \leq 1 \text { and }\left\|x^{n}\right\| \leq \epsilon
$$

is liftable. A given lift is repeatedly improved using a quasicentral approximate unit.

Key Technical Lemma

Key Technical Lemma

Lemma

Suppose A is a separable C^{*}-algebra and I is an ideal in A. Let π be the quotient map, and suppose u_{n} is a sequential quasi-central approximate unit for I relative to A. Then for a in A and $0 \leq \delta \leq 1$,

$$
\lim \sup \left\|a\left(1-\delta u_{n}\right)\right\| \leq \max (\|\pi(a)\|,(1-\delta)\|a\|)
$$

Overall Strategy

Overall Strategy

Suppose $\rho: B \rightarrow C$ and

$$
\|\rho(x)\| \leq 1 \text { and }\left\|\rho(x)^{*} \rho(x)-\rho(x) \rho(x)^{*}\right\| \leq \epsilon
$$

Then $x_{1}=\left(1-u_{n_{1}}\right) x$ is a better lift of $\rho(x)$.

Overall Strategy

Suppose $\rho: B \rightarrow C$ and

$$
\|\rho(x)\| \leq 1 \text { and }\left\|\rho(x)^{*} \rho(x)-\rho(x) \rho(x)^{*}\right\| \leq \epsilon
$$

Then $x_{1}=\left(1-u_{n_{1}}\right) x$ is a better lift of $\rho(x)$. It is better because

$$
\lim _{n}\left\|x_{1}\right\|=\|\rho(x)\|
$$

and

$$
\begin{aligned}
\limsup _{n}\left\|x_{1}^{*} x_{1}-x_{1}^{*} x_{1}\right\| & \leq \limsup _{n}\left\|\left(x^{*} x-x x^{*}\right)\left(1-u_{n}\right)\right\| \\
& =\left\|\rho(x)^{*} \rho(x)-\rho(x) \rho(x)^{*}\right\|
\end{aligned}
$$

Overall Strategy

Suppose $\rho: B \rightarrow C$ and

$$
\|\rho(x)\| \leq 1 \text { and }\left\|\rho(x)^{*} \rho(x)-\rho(x) \rho(x)^{*}\right\| \leq \epsilon
$$

Then $x_{1}=\left(1-u_{n_{1}}\right) x$ is a better lift of $\rho(x)$. It is better because

$$
\lim _{n}\left\|x_{1}\right\|=\|\rho(x)\|
$$

and

$$
\begin{aligned}
\limsup _{n}\left\|x_{1}^{*} x_{1}-x_{1}^{*} x_{1}\right\| & \leq \underset{n}{\lim \sup }\left\|\left(x^{*} x-x x^{*}\right)\left(1-u_{n}\right)\right\| \\
& =\left\|\rho(x)^{*} \rho(x)-\rho(x) \rho(x)^{*}\right\|
\end{aligned}
$$

Even better will be $\left(1-\delta_{2} u_{n_{2}}\right)\left(1-u_{n_{1}}\right) x$ and so on.

Fattened Varieties Intersected with the NC Unit Ball

Fattened Varieties Intersected with the NC Unit Ball

Theorem

Suppose p is a NC $*$-polynomial in x_{1}, \ldots, x_{r} that is homogeneous of degree greater than one and C is a positive constant. Then the universal C^{*}-algebra

$$
C^{*}\left\langle x_{1}, \ldots, x_{r} \mid\left\|p\left(x_{1}, \ldots, x_{r}\right)\right\| \leq \epsilon, \sum_{j=1}^{r} x_{j} x_{j}^{*} \leq C\right\rangle
$$

is projective.

Fattened Varieties Intersected with the NC Unit Ball

Theorem

Suppose p is a NC $*$-polynomial in x_{1}, \ldots, x_{r} that is homogeneous of degree greater than one and C is a positive constant. Then the universal C^{*}-algebra

$$
C^{*}\left\langle x_{1}, \ldots, x_{r} \mid\left\|p\left(x_{1}, \ldots, x_{r}\right)\right\| \leq \epsilon, \sum_{j=1}^{r} x_{j} x_{j}^{*} \leq C\right\rangle
$$

is projective. (These relations are liftable.)

Other NC Unit Balls

Other NC Unit Balls

We can define "nonstandard noncommutative unit balls" that are all projective and form a continuous field of C^{*}-algebras.

Other NC Unit Balls

We can define "nonstandard noncommutative unit balls" that are all projective and form a continuous field of C^{*}-algebras. For $0<p<\infty$ define

$$
B_{p}=C^{*}\left\langle x_{1}, \ldots, x_{n} \left\lvert\, \sum_{j=1}^{n}\left(x_{j} x_{j}^{*}\right)^{\frac{p}{2}} \leq 1\right.\right\rangle
$$

Other NC Unit Balls

We can define "nonstandard noncommutative unit balls" that are all projective and form a continuous field of C^{*}-algebras. For $0<p<\infty$ define

$$
B_{p}=C^{*}\left\langle x_{1}, \ldots, x_{n} \left\lvert\, \sum_{j=1}^{n}\left(x_{j} x_{j}^{*}\right)^{\frac{p}{2}} \leq 1\right.\right\rangle
$$

and

$$
B_{\infty}=C^{*}\left\langle x_{1}, \ldots, x_{n} \mid x_{j} x_{j}^{*} \leq 1 \forall j\right\rangle .
$$

Other NC Unit Balls

We can define "nonstandard noncommutative unit balls" that are all projective and form a continuous field of C^{*}-algebras. For $0<p<\infty$ define

$$
B_{p}=C^{*}\left\langle x_{1}, \ldots, x_{n} \left\lvert\, \sum_{j=1}^{n}\left(x_{j} x_{j}^{*}\right)^{\frac{p}{2}} \leq 1\right.\right\rangle
$$

and

$$
B_{\infty}=C^{*}\left\langle x_{1}, \ldots, x_{n} \mid x_{j} x_{j}^{*} \leq 1 \forall j\right\rangle .
$$

Question

Are all the B_{p} isomorphic?

