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Lifting against Star-Homomorphisms

Theorem (Olsen 1971, Olsen-Pedersen 1989, Shulman 2008)

Suppose ρ : B → C is a surjective ∗-homomorphism between
C ∗-algebras. Given x in C with

‖x‖ ≤ 1 and xn = 0

there exists ẋ in B with ρ(ẋ) = x and

‖ẋ‖ ≤ 1 and ẋn = 0.
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C ∗-Lifting, Ad Hoc Methods

Relations C ∗-algebra Liftable Credit

x∗x ≤ 1
xn = 0

?? Yes Olsen, Pedersen,
Shulman

x∗x ≤ 1
‖xn‖ ≤ ε ?? Yes Olsen, Akemann,

Pedersen

x∗x = y∗y ≤ 1
x∗y = y∗x = 0

?? Yes Loring, Pedersen

x∗x = y∗y ≤ 1
x∗y = y∗x = 0
x2 = y2 = 0

C0 ((0, 1],M3) Yes Loring

x2 + y2 ≤ 1
x∗ = x , y∗ = y

xy = 0
C0

(
(0, 1],C4

)
Yes Loring

x∗x = xx∗ ≤ 1 C0 (D \ {0}) No Fredholm
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Extension Problems in Topology

The situation in topology is more generic.

Theorem (Lojasiewicz plus Borsuk)

Every contractible, compact semialgebraic set in finite-dimensional
Euclidean space is an absolute retract.

Semialgebraic means sets like{
(x , y) ∈ R2

∣∣ ∣∣x3 + y2
∣∣ ≤ 1, |xy − x | ≤ ε

}
and exact relations, unions, complements are also allowed.
contractibility will follow if we stick with homogeneous inequalities:

X =
{

(x , y) ∈ R2
∣∣ ∣∣x2 + y2

∣∣ ≤ 1,
∣∣x2y − xy2

∣∣ ≤ ε} .
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A Lifting Result in the Commutative Category

We can translate the fact that X is an AR into a lifting problem.

Suppose ρ : B → C is a surjective ∗-homomorphism between
commutative C ∗-algebras. Given x and y in C with

x∗ = x , y∗ = y ,
∥∥x2 + y2

∥∥ ≤ 1 and
∥∥x2y − xy2

∥∥ ≤ ε
there exists ẋ and ẏ in B with ρ(ẋ) = x , ρ(ẏ) = y , and

ẋ∗ = ẋ , ẏ∗ = ẏ ,
∥∥ẋ2 + ẏ2

∥∥ ≤ 1 and
∥∥ẋ2ẏ − ẋ ẏ2

∥∥ ≤ ε.
We could also discuss (normal) contractions with spectrum in X :
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C ∗-Lifting—Our First Surprise

Suppose ρ : B → C is a surjective ∗-homomorphism between
C ∗-algebras. Given x in C with

‖x‖ ≤ 1 and ‖x∗x − xx∗‖ ≤ ε

there exists ẋ in B with ρ(ẋ) = x , and

‖ẋ‖ ≤ 1 and ‖ẋ∗ẋ − ẋ ẋ∗‖ ≤ ε.

Therefore

C0(D \ {0}) ∼= lim
→

C ∗
〈

x

∣∣∣∣ ‖x∗x − xx∗‖ ≤ 1

n
, ‖x‖ ≤ 1

〉

is a limit of projective C ∗-algebras.
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Projective C ∗-algebras (NC Absolute Retracts)

Definition

A is a projective C ∗-algebra if we can always solve the
∗-homomorphism lifting problem:

B

ρ

��
A ϕ

//

∃ ϕ
??�

�
�

�
C

After adding units (A can’t have a unit) this is a translation of
absolute extensor. For X a compact metric space,

X is an absolute extensor ⇐⇒ X is an absolute retract

Theorem

If A is projective then A is residually finite dimensional.
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A Disconcerting Comparison

Consider f and the middle-thirds Cantor set

X =
⋂

Xn.

We have

C0(X \ {0}) ∼= lim
→

C ∗
〈

x

∣∣∣∣ 0 ≤ x ≤ 1, ‖f (x)‖ ≤ 1

3n

〉



A Disconcerting Comparison

Consider f and the middle-thirds Cantor set

X =
⋂

Xn.

We have

C0(X \ {0}) ∼= lim
→

C ∗
〈

x

∣∣∣∣ 0 ≤ x ≤ 1, ‖f (x)‖ ≤ 1

3n

〉



A Disconcerting Comparison

Consider f and the middle-thirds Cantor set

X =
⋂

Xn.

We have

C0(X \ {0}) ∼= lim
→

C ∗
〈

x

∣∣∣∣ 0 ≤ x ≤ 1, ‖f (x)‖ ≤ 1

3n

〉



A Disconcerting Comparison

Consider f and the middle-thirds Cantor set

X =
⋂

Xn.

We have

C0(X \ {0}) ∼= lim
→

C ∗
〈

x

∣∣∣∣ 0 ≤ x ≤ 1, ‖f (x)‖ ≤ 1

3n

〉



Borrowing from Akemann and Pedersen

To show that for any ε > 0 the set of relations

‖x‖ ≤ 1 and ‖x∗x − xx∗‖ ≤ ε

is a liftable, we went back to the proof that

‖x‖ ≤ 1 and ‖xn‖ ≤ ε

is liftable. A given lift is repeatedly improved using a quasicentral
approximate unit.
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Key Technical Lemma

Lemma

Suppose A is a separable C ∗-algebra and I is an ideal in A. Let π
be the quotient map, and suppose un is a sequential quasi-central
approximate unit for I relative to A. Then for a in A and 0 ≤ δ ≤ 1,

lim sup
n
‖a(1− δun)‖ ≤ max (‖π(a)‖ , (1− δ) ‖a‖) .
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Overall Strategy

Suppose ρ : B � C and

‖ρ(x)‖ ≤ 1 and ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ ≤ ε.

Then x1 = (1− un1)x is a better lift of ρ(x). It is better because

lim
n
‖x1‖ = ‖ρ(x)‖

and

lim sup
n
‖x∗1x1 − x∗1x1‖ ≤ lim sup

n
‖(x∗x − xx∗) (1− un)‖

= ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ .

Even better will be (1− δ2un2)(1− un1)x and so on.



Overall Strategy

Suppose ρ : B � C and

‖ρ(x)‖ ≤ 1 and ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ ≤ ε.

Then x1 = (1− un1)x is a better lift of ρ(x).

It is better because

lim
n
‖x1‖ = ‖ρ(x)‖

and

lim sup
n
‖x∗1x1 − x∗1x1‖ ≤ lim sup

n
‖(x∗x − xx∗) (1− un)‖

= ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ .

Even better will be (1− δ2un2)(1− un1)x and so on.



Overall Strategy

Suppose ρ : B � C and

‖ρ(x)‖ ≤ 1 and ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ ≤ ε.

Then x1 = (1− un1)x is a better lift of ρ(x). It is better because

lim
n
‖x1‖ = ‖ρ(x)‖

and

lim sup
n
‖x∗1x1 − x∗1x1‖ ≤ lim sup

n
‖(x∗x − xx∗) (1− un)‖

= ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ .

Even better will be (1− δ2un2)(1− un1)x and so on.



Overall Strategy

Suppose ρ : B � C and

‖ρ(x)‖ ≤ 1 and ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ ≤ ε.

Then x1 = (1− un1)x is a better lift of ρ(x). It is better because

lim
n
‖x1‖ = ‖ρ(x)‖

and

lim sup
n
‖x∗1x1 − x∗1x1‖ ≤ lim sup

n
‖(x∗x − xx∗) (1− un)‖

= ‖ρ(x)∗ρ(x)− ρ(x)ρ(x)∗‖ .

Even better will be (1− δ2un2)(1− un1)x and so on.



Fattened Varieties Intersected with the NC Unit Ball

Theorem

Suppose p is a NC ∗-polynomial in x1, . . . , xr that is homogeneous
of degree greater than one and C is a positive constant. Then the
universal C ∗-algebra

C ∗

〈
x1, . . . , xr

∣∣∣∣∣∣ ‖p (x1, . . . , xr )‖ ≤ ε,
r∑

j=1

xjx
∗
j ≤ C

〉

is projective. (These relations are liftable.)
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Other NC Unit Balls

We can define “nonstandard noncommutative unit balls” that are
all projective and form a continuous field of C ∗-algebras. For
0 < p <∞ define

Bp = C ∗

〈
x1, . . . , xn

∣∣∣∣∣∣
n∑

j=1

(
xjx
∗
j

) p
2 ≤ 1

〉

and
B∞ = C ∗

〈
x1, . . . , xn

∣∣ xjx
∗
j ≤ 1∀j

〉
.

Question

Are all the Bp isomorphic?
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