A collection of Browder joint spectra

Derek Kitson
Trinity College Dublin

10-14 August 2009
Multivariate operator theory workshop
Fields Institute

Overview

- Introduction
- Browder essential spectrum
- Ascent and descent
- Sets of operators
- Browder joint spectra
- Spectral mapping theorem

Introduction: Browder operators

X Banach space
$B(X)$ bounded operators on X
A bounded operator $a \in B(X)$ is called a Browder operator if a is Fredholm with finite ascent and finite descent.

Introduction: Browder operators

X Banach space
$B(X)$ bounded operators on X
A bounded operator $a \in B(X)$ is called a Browder operator if a is Fredholm with finite ascent and finite descent.

Equivalently,

- there exist closed a-invariant subspaces X_{0}, X_{1} with $X=X_{0} \oplus X_{1}$ such that X_{0} is finite dimensional, $\left.a\right|_{X_{0}}$ is nilpotent and $\left.a\right|_{X_{1}}$ is invertible.
- $a=c+s$ where c is a compact operator, s is invertible and $c s=s c$.

Also known as Riesz-Schauder operators.
(Caradus, Pfaffenberger, Yood, 1977)

Introduction: Browder essential spectrum

The Browder essential spectrum of $a \in B(X)$ is

$$
\sigma_{b}(a)=\{\lambda \in \mathbb{C}: a-\lambda \text { is not Browder }\}
$$

Introduction: Browder essential spectrum

The Browder essential spectrum of $a \in B(X)$ is

$$
\sigma_{b}(a)=\{\lambda \in \mathbb{C}: a-\lambda \text { is not Browder }\}
$$

Equivalently...

- $\sigma_{b}(a)=\operatorname{acc}(\sigma(a)) \cup \sigma_{e}(a)$
$a c c=$ accumulation points
$\sigma=$ spectrum
$\sigma_{e}=$ essential spectrum

Introduction: Browder essential spectrum

The Browder essential spectrum of $a \in B(X)$ is

$$
\sigma_{b}(a)=\{\lambda \in \mathbb{C}: a-\lambda \text { is not Browder }\}
$$

Equivalently...

- $\sigma_{b}(a)=\operatorname{acc}(\sigma(a)) \cup \sigma_{e}(a)$
$a c c=$ accumulation points
$\sigma=$ spectrum
$\sigma_{e}=$ essential spectrum
- $\sigma_{b}(a)=\sigma(a) \backslash\{$ Riesz points $\}$

Riesz points $=$ eigenvalues with finite multiplicity which are poles of the resolvent.
(F.E. Browder, 1961)

Introduction: Browder essential spectrum

Spectral mapping theorem: (Gramsch and Lay, 1972)
If a function $f(z)$ is analytic on a neighbourhood of the spectrum
$\sigma(a)$ then

$$
\sigma_{b}(f(a))=f\left(\sigma_{b}(a)\right)
$$

Introduction: Browder essential spectrum

Let $a \in B(X)$.
Proposition
Denote by $\mathcal{C}(a)$ the set of compact operators c with $a c=c a$. Then

$$
\sigma_{b}(a)=\bigcap_{c \in \mathcal{C}(a)} \sigma(a+c)
$$

(D.C. Lay, 1968)

Introduction: Browder essential spectrum

Let $a \in B(X)$.
Proposition
Denote by $\mathcal{C}(a)$ the set of compact operators c with $a c=c a$. Then

$$
\sigma_{b}(a)=\bigcap_{c \in \mathcal{C}(a)} \sigma(a+c)
$$

(D.C. Lay, 1968)

Proposition
Denote by $\mathcal{Q}(a)$ the set of finite rank projections $q \in B(X)$ with $a q=q a$.

$$
\sigma_{b}(a)=\bigcap_{q \in \mathcal{Q}(a)} \sigma\left(\left.a\right|_{(I-q) X}\right)
$$

(J. Zemánek, 1986)

Introduction

Question: To what extent can the single variable theory of the Browder essential spectrum be extended to a multivariable setting?

Introduction: Browder joint spectra

There are a number of different types of Browder joint spectrum in the literature...

- M. Snow (1975)
- bicommutant Browder joint spectrum
- J.J. Buoni, A.T. Dash, B.L. Wadhwa (1981)
- polynomial Browder joint spectrum
- R.E. Curto, A.T. Dash (1988)
- Browder spectral systems
- V. Kordula, V. Müller, V. Rakočević (1997)
- semi-Browder spectra

Introduction

We will construct a new Browder joint spectrum by extending the notions of ascent and descent for an operator.

Ascent and Descent: single operator case

X vector space $L(X)$ linear operators on X

If $a \in L(X)$ then...

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^{2}
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3}
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3} \subseteq \operatorname{Ker} a^{4}
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3} \subseteq \operatorname{Ker} a^{4} \subseteq \operatorname{Ker} a^{5} \subseteq \cdots
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3} \subseteq \operatorname{Ker} a^{4} \subseteq \operatorname{Ker} a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3} \subseteq \operatorname{Ker} a^{4} \subseteq \operatorname{Ker} a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3} \subseteq \operatorname{Ker} a^{4} \subseteq \operatorname{Ker} a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^{2}
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \text { Ker } a^{2} \subseteq \text { Ker } a^{3} \subseteq \text { Ker } a^{4} \subseteq \text { Ker } a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^{2} \supseteq \operatorname{Ran} a^{3}
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \text { Ker } a^{2} \subseteq \text { Ker } a^{3} \subseteq \text { Ker } a^{4} \subseteq \text { Ker } a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^{2} \supseteq \operatorname{Ran} a^{3} \supseteq \operatorname{Ran} a^{4}
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \operatorname{Ker} a^{2} \subseteq \operatorname{Ker} a^{3} \subseteq \operatorname{Ker} a^{4} \subseteq \operatorname{Ker} a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^{2} \supseteq \operatorname{Ran} a^{3} \supseteq \operatorname{Ran} a^{4} \supseteq \operatorname{Ran} a^{5} \supseteq \cdots
$$

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \text { Ker } a^{2} \subseteq \text { Ker } a^{3} \subseteq \text { Ker } a^{4} \subseteq \text { Ker } a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^{2} \supseteq \operatorname{Ran} a^{3} \supseteq \operatorname{Ran} a^{4} \supseteq \operatorname{Ran} a^{5} \supseteq \cdots
$$

The descent of a is the length of this descending chain of range spaces, denoted $\delta(a)$.

Ascent and Descent: single operator case

X vector space
$L(X)$ linear operators on X
If $a \in L(X)$ then...

$$
\{0\} \subseteq \text { Ker } a \subseteq \text { Ker } a^{2} \subseteq \text { Ker } a^{3} \subseteq \text { Ker } a^{4} \subseteq \text { Ker } a^{5} \subseteq \cdots
$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$
X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^{2} \supseteq \operatorname{Ran} a^{3} \supseteq \operatorname{Ran} a^{4} \supseteq \operatorname{Ran} a^{5} \supseteq \cdots
$$

The descent of a is the length of this descending chain of range spaces, denoted $\delta(a)$.

If a has finite ascent and finite descent then they must be equal.

Ascent and Descent: single operator case

Let $a \in B(X)$.
The following are equivalent:
(i) a has finite ascent and descent with $r=\alpha(a)=\delta(a)$
(ii) $X=\operatorname{Ker} a^{r} \oplus \operatorname{Ran} a^{r}$ but $X \neq \operatorname{Ker} a^{r-1} \oplus \operatorname{Ran} a^{r-1}$
(iii) $0 \in \mathbb{C}$ is a pole of the resolvent of a of order r
(iv) a has a Drazin inverse with index r (i.e. there exists $d \in B(X)$ such that $a d=d a, d=a d^{2}$ and $a^{r}=a^{r+1} d$ but $\left.a^{r-1} \neq a^{r} d\right)$

Brief history of ascent and descent

- F. Riesz (1916) - compact operators
- A.F. Ruston (1954) - Riesz operators
- H. Heuser (1956) - ascent, descent, nullity and defect
- A.E. Taylor (1958/66) - poles of the resolvent
- S. Grabiner (1978) - compact perturbations
- Mbekhta, Müller (1996) - essential ascent and descent
- Grunenfelder, Omladič (1999) - commuting module endomorphisms

Ascent and Descent: sets of operators

For each set $A \subseteq L(X)$ of operators define

$$
\begin{array}{cc}
N(A)=\bigcap_{a \in A} \text { Ker } a & R(A)=\operatorname{span}\left(\bigcup_{a \in A} \operatorname{Ran} a\right) . \\
A^{k}=\left\{a_{1} \ldots a_{k}: a_{1}, \ldots, a_{k} \in A\right\} & A^{0}=\{I\}
\end{array}
$$

Ascent and Descent: sets of operators

For each set $A \subseteq L(X)$ of operators define

$$
N(A)=\bigcap_{a \in A} \operatorname{Ker} a \quad R(A)=\operatorname{span}\left(\bigcup_{a \in A} \operatorname{Ran} a\right) .
$$

$A^{k}=\left\{a_{1} \ldots a_{k}: a_{1}, \ldots, a_{k} \in A\right\} \quad A^{0}=\{I\}$
The ascending chain length of A, denoted $\operatorname{acl}(A)$, is the length of the chain

$$
\{0\} \subseteq N(A) \subseteq N\left(A^{2}\right) \subseteq N\left(A^{3}\right) \subseteq N\left(A^{4}\right) \subseteq N\left(A^{5}\right) \subseteq \cdots
$$

The descending chain length of A, denoted $\operatorname{dcl}(A)$, is the length of the chain

$$
X \supseteq R(A) \supseteq R\left(A^{2}\right) \supseteq R\left(A^{3}\right) \supseteq R\left(A^{4}\right) \supseteq R\left(A^{5}\right) \supseteq \cdots
$$

Chain lengths are not enough to extend single variable theory...

Example

$H=$ Hilbert space with orthonormal basis $\left(e_{i, j}\right)$ indexed by $\left(\mathbb{Z}^{+} \times \mathbb{Z}\right) \cup\left(\mathbb{Z} \times \mathbb{Z}^{+}\right) \cup\{(-1,-1)\}$.
$A=\left\{a_{1}, a_{2}\right\}$ where $a_{1}\left(e_{i, j}\right)=e_{i+1, j}$ and $a_{2}\left(e_{i, j}\right)=e_{i, j+1}$.

- a_{1} is a right shift
- a_{2} is an upward shift
- ascending chain length of A is 0
- descending chain length of A is 1
No decomposition of space.

Alternative description of ascent and descent

In the case of a single operator a there are isomorphisms

$$
\text { Ker } a^{r+1} / \operatorname{Ker} a^{r} \cong \operatorname{Ker} a \cap \operatorname{Ran} a^{r}
$$

$$
\operatorname{Ran} a^{r} / \operatorname{Ran} a^{r+1} \cong X /\left(\operatorname{Ker} a^{r}+\operatorname{Ran} a\right)
$$

Alternative description of ascent and descent

In the case of a single operator a there are isomorphisms

$$
\begin{gathered}
\operatorname{Ker} a^{r+1} / \operatorname{Ker} a^{r} \cong \operatorname{Ker} a \cap \operatorname{Ran} a^{r} \\
\operatorname{Ran} a^{r} / \operatorname{Ran} a^{r+1} \cong X /\left(\operatorname{Ker} a^{r}+\operatorname{Ran} a\right)
\end{gathered}
$$

So the ascent of a is the smallest r such that

$$
\text { Ker } a \cap \operatorname{Ran} a^{r}=\{0\}
$$

and the descent of a is the smallest r such that

$$
\operatorname{Ker} a^{r}+\operatorname{Ran} a=X
$$

Ascent and descent for sets of operators

This motivates the following definition for a set A of operators.
The ascent of A, denoted $\alpha(A)$, is the smallest r such that

$$
N(A) \cap R\left(A^{r}\right)=\{0\}
$$

The descent of A, denoted $\delta(A)$, is the smallest r such that

$$
N\left(A^{r}\right)+R(A)=X
$$

Ascent and descent for sets of operators

This motivates the following definition for a set A of operators.
The ascent of A, denoted $\alpha(A)$, is the smallest r such that

$$
N(A) \cap R\left(A^{r}\right)=\{0\}
$$

The descent of A, denoted $\delta(A)$, is the smallest r such that

$$
N\left(A^{r}\right)+R(A)=X
$$

Proposition

(i) $\operatorname{acl}(A) \leq \alpha(A)$ and $d c l(A) \leq \delta(A)$
(ii) if $\alpha(A)<\infty$ then $\alpha(A) \leq d c /(A)$
(iii) if $\delta(A)<\infty$ then $\delta(A) \leq \operatorname{acl}(A)$
(iv) if $\alpha(A), \delta(A)<\infty$ then $\alpha(A)=\operatorname{acl}(A)=d c l(A)=\delta(A)$

Main Decomposition Theorem

Let A be a set of operators on a vector space X.
Theorem
A has finite ascent and finite descent if and only if there exist A-invariant subspaces X_{1}, X_{2} of X such that
(i) $X=X_{1} \oplus X_{2}$,
(ii) $\left.A^{k}\right|_{X_{1}}=\{0\}$ some k (nilpotent),
(iii) $N\left(\left.A\right|_{X_{2}}\right)=0$ and $R\left(\left.A\right|_{X_{2}}\right)=X_{2}$ (bijective).

Moreover, the spaces X_{1} and X_{2} are given uniquely by $X_{1}=N\left(A^{r}\right)$ and $X_{2}=R\left(A^{r}\right)$, where r is the common value of the ascent and descent of A.

Some remarks

$A \subset B(X)$

- Let $B \subseteq \operatorname{commutant}(A)$. If A and B both have finite ascent and finite descent then $A \cup B$ has finite ascent and finite descent.

Some remarks

$A \subset B(X)$

- Let $B \subseteq \operatorname{commutant}(A)$. If A and B both have finite ascent and finite descent then $A \cup B$ has finite ascent and finite descent.
- If $\langle A\rangle$ is the algebra generated by A then
(i) $\operatorname{acl}(A)=\operatorname{acl}(\langle A\rangle)$ and $d c l(A)=d c l(\langle A\rangle)$,
(ii) $\alpha(A)=\alpha(\langle A\rangle)$ and $\delta(A)=\delta(\langle A\rangle)$.

Some remarks

$A \subset B(X)$

- Let $B \subseteq \operatorname{commutant}(A)$. If A and B both have finite ascent and finite descent then $A \cup B$ has finite ascent and finite descent.
- If $\langle A\rangle$ is the algebra generated by A then
(i) $\operatorname{acl}(A)=\operatorname{acl}(\langle A\rangle)$ and $d c l(A)=d c l(\langle A\rangle)$,
(ii) $\alpha(A)=\alpha(\langle A\rangle)$ and $\delta(A)=\delta(\langle A\rangle)$.
- If $R\left(A^{k}\right)$ is closed for all k then
(i) $\operatorname{acl}(A)=\operatorname{acl}(\bar{A})$ and $d c l(A)=d c l(\bar{A})$,
(ii) $\alpha(A)=\alpha(\bar{A})$ and $\delta(A)=\delta(\bar{A})$.

Some remarks

$A \subset B(X)$

- Let $B \subseteq \operatorname{commutant}(A)$. If A and B both have finite ascent and finite descent then $A \cup B$ has finite ascent and finite descent.
- If $\langle A\rangle$ is the algebra generated by A then
(i) $\operatorname{acl}(A)=\operatorname{acl}(\langle A\rangle)$ and $d c l(A)=d c l(\langle A\rangle)$,
(ii) $\alpha(A)=\alpha(\langle A\rangle)$ and $\delta(A)=\delta(\langle A\rangle)$.
- If $R\left(A^{k}\right)$ is closed for all k then
(i) $\operatorname{acl}(A)=\operatorname{acl}(\bar{A})$ and $d c l(A)=d c l(\bar{A})$,
(ii) $\alpha(A)=\alpha(\bar{A})$ and $\delta(A)=\delta(\bar{A})$.
- If A is countable with finite ascent and finite descent then
(i) $R\left(A^{r}\right)$ is closed where $r=\alpha(A)=\delta(A)$
(ii) the closed algebra generated by A has finite ascent and descent r

Ascent and descent for tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of operators on X.
We write...

$$
\alpha(\mathbf{a})=\alpha(A) \quad \delta(\mathbf{a})=\delta(A) \quad \text { where } A=\bigcup_{j=1}^{n}\left\{a_{j}\right\}
$$

Ascent and descent for tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of operators on X.
We write...

$$
\begin{aligned}
& \alpha(\mathbf{a})=\alpha(A) \quad \delta(\mathbf{a})=\delta(A) \quad \text { where } A=\bigcup_{j=1}^{n}\left\{a_{j}\right\} . \\
& \mathbf{a}^{k}=\left(a_{i_{1}} \ldots a_{i_{k}}\right)_{i_{1}, \ldots, i_{k}=1}^{n} \quad \text { (lexicographic order) }
\end{aligned}
$$

Ascent and descent for tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of operators on X.
We write...

$$
\begin{aligned}
& \alpha(\mathbf{a})=\alpha(A) \quad \delta(\mathbf{a})=\delta(A) \quad \text { where } A=\bigcup_{j=1}^{n}\left\{a_{j}\right\} . \\
& \mathbf{a}^{k}=\left(a_{i_{1}} \ldots a_{i_{k}}\right)_{i_{1}, \ldots, i_{k}=1}^{n} \quad \text { (lexicographic order) } \\
& \operatorname{row}(\mathbf{a}): X^{n} \rightarrow X \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto a_{1} x_{1}+\cdots+a_{n} x_{n} \\
& \operatorname{col}(\mathbf{a}): X \rightarrow X^{n} \quad x \mapsto\left(a_{1} x, \ldots, a_{n} x\right)
\end{aligned}
$$

Ascent and descent for tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of operators on X.
We write...

$$
\begin{aligned}
& \alpha(\mathbf{a})=\alpha(A) \quad \delta(\mathbf{a})=\delta(A) \quad \text { where } A=\bigcup_{j=1}^{n}\left\{a_{j}\right\} . \\
& \mathbf{a}^{k}=\left(a_{i_{1}} \ldots a_{i_{k}}\right)_{i_{1}, \ldots, i_{k}=1}^{n} \quad \text { (lexicographic order) } \\
& \operatorname{row}(\mathbf{a}): X^{n} \rightarrow X \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto a_{1} x_{1}+\cdots+a_{n} x_{n} \\
& \operatorname{col}(\mathbf{a}): X \rightarrow X^{n} \quad x \mapsto\left(a_{1} x, \ldots, a_{n} x\right)
\end{aligned}
$$

Proposition

(i) $\alpha(\mathbf{a})=\min \left\{r \in \mathbb{N}_{0}: \operatorname{Ker} \operatorname{row}\left(\mathbf{a}^{r}\right)=\operatorname{Ker} \operatorname{col}(\mathbf{a}) \circ \operatorname{row}\left(\mathbf{a}^{r}\right)\right\}$
(ii) $\delta(\mathbf{a})=\min \left\{r \in \mathbb{N}_{0}: \operatorname{Ran} \operatorname{col}\left(\mathbf{a}^{r}\right)=\operatorname{Ran} \operatorname{col}\left(\mathbf{a}^{r}\right) \circ \operatorname{row}(\mathbf{a})\right\}$

Remarks for m-tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ be an m-tuple of operators on X.

- If $n(\mathbf{a})=\operatorname{dim} N(\mathbf{a})$ and $d(\mathbf{a})=\operatorname{codim} R(\mathbf{a})$ then
(i) $n\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) n(\mathbf{a})$ for all $k \in \mathbb{N}$,
(ii) $d\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) d(\mathbf{a})$ for all $k \in \mathbb{N}$,
(iii) If $n(\mathbf{a})<\infty$ and $\delta(\mathbf{a})<\infty$ then d (a) $<\infty$,
(iv) If $d(\mathbf{a})<\infty$ and $\alpha(\mathbf{a})<\infty$ then $n(\mathbf{a})<\infty$.

Remarks for m-tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ be an m-tuple of operators on X.

- If $n(\mathbf{a})=\operatorname{dim} N(\mathbf{a})$ and $d(\mathbf{a})=\operatorname{codim} R(\mathbf{a})$ then
(i) $n\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) n(\mathbf{a})$ for all $k \in \mathbb{N}$,
(ii) $d\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) d(\mathbf{a})$ for all $k \in \mathbb{N}$,
(iii) If $n(\mathbf{a})<\infty$ and $\delta(\mathbf{a})<\infty$ then d (a) $<\infty$,
(iv) If $d(\mathbf{a})<\infty$ and $\alpha(\mathbf{a})<\infty$ then $n(\mathbf{a})<\infty$.
- If $\mathbf{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)$ is the m-tuple of transpose operators acting on the algebraic conjugate X^{\prime} then
(i) $\operatorname{acl}(\mathbf{a})=\operatorname{dcl}\left(\mathbf{a}^{\prime}\right)$ and $\operatorname{dcl}(\mathbf{a})=\operatorname{acl}\left(\mathbf{a}^{\prime}\right)$
(ii) $\alpha(\mathbf{a})=\delta\left(\mathbf{a}^{\prime}\right)$ and $\delta(\mathbf{a})=\alpha\left(\mathbf{a}^{\prime}\right)$

Remarks for m-tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ be an m-tuple of operators on X.

- If $n(\mathbf{a})=\operatorname{dim} N(\mathbf{a})$ and $d(\mathbf{a})=\operatorname{codim} R(\mathbf{a})$ then
(i) $n\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) n(\mathbf{a})$ for all $k \in \mathbb{N}$,
(ii) $d\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) d(\mathbf{a})$ for all $k \in \mathbb{N}$,
(iii) If $n(\mathbf{a})<\infty$ and $\delta(\mathbf{a})<\infty$ then d (a) $<\infty$,
(iv) If $d(\mathbf{a})<\infty$ and $\alpha(\mathbf{a})<\infty$ then $n(\mathbf{a})<\infty$.
- If $\mathbf{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)$ is the m-tuple of transpose operators acting on the algebraic conjugate X^{\prime} then
(i) $\operatorname{acl}(\mathbf{a})=\operatorname{dcl}\left(\mathbf{a}^{\prime}\right)$ and $\operatorname{dcl}(\mathbf{a})=\operatorname{acl}\left(\mathbf{a}^{\prime}\right)$
(ii) $\alpha(\mathbf{a})=\delta\left(\mathbf{a}^{\prime}\right)$ and $\delta(\mathbf{a})=\alpha\left(\mathbf{a}^{\prime}\right)$
- If a_{1}, \ldots, a_{m} pairwise commute and X is finite dimensional then $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ has finite ascent and finite descent.

Remarks for m-tuples of operators

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ be an m-tuple of operators on X.

- If $n(\mathbf{a})=\operatorname{dim} N(\mathbf{a})$ and $d(\mathbf{a})=\operatorname{codim} R(\mathbf{a})$ then
(i) $n\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) n(\mathbf{a})$ for all $k \in \mathbb{N}$,
(ii) $d\left(\mathbf{a}^{k}\right) \leq\left(1+m+\cdots+m^{k-1}\right) d(\mathbf{a})$ for all $k \in \mathbb{N}$,
(iii) If $n(\mathbf{a})<\infty$ and $\delta(\mathbf{a})<\infty$ then d (a) $<\infty$,
(iv) If $d(\mathbf{a})<\infty$ and $\alpha(\mathbf{a})<\infty$ then $n(\mathbf{a})<\infty$.
- If $\mathbf{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)$ is the m-tuple of transpose operators acting on the algebraic conjugate X^{\prime} then
(i) $\operatorname{acl}(\mathbf{a})=\operatorname{dcl}\left(\mathbf{a}^{\prime}\right)$ and $\operatorname{dcl}(\mathbf{a})=\operatorname{acl}\left(\mathbf{a}^{\prime}\right)$
(ii) $\alpha(\mathbf{a})=\delta\left(\mathbf{a}^{\prime}\right)$ and $\delta(\mathbf{a})=\alpha\left(\mathbf{a}^{\prime}\right)$
- If a_{1}, \ldots, a_{m} pairwise commute and X is finite dimensional then $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ has finite ascent and finite descent.

This last result does not hold for non-commuting tuples: eg. if $\mathbf{a}=\left(a_{1}, a_{2}\right)$ where $a_{1}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $a_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $\delta(\mathbf{a})=0$ and $\alpha(\mathbf{a})=\infty$.

Fredholm Tuples

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a tuple of bounded operators on a Banach space X.
\mathbf{a} is called upper semi-Fredholm if $\operatorname{col}(\mathbf{a})$ is upper semi-Fredholm. a is called lower semi-Fredholm if row(\mathbf{a}) is lower semi-Fredholm. \mathbf{a} is called Fredholm if it is both upper and lower semi-Fredholm.

Fredholm Tuples

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a tuple of bounded operators on a Banach space X.
\mathbf{a} is called upper semi-Fredholm if $\operatorname{col}(\mathbf{a})$ is upper semi-Fredholm. a is called lower semi-Fredholm if row($\mathbf{(a)}$) is lower semi-Fredholm. \mathbf{a} is called Fredholm if it is both upper and lower semi-Fredholm.

The upper Fredholm spectrum of \mathbf{a} is

$$
\sigma_{\pi e}(\mathbf{a})=\left\{\lambda \in \mathbb{C}^{n}: \mathbf{a}-\lambda \text { is not upper semi-Fredholm }\right\}
$$

The lower Fredholm spectrum of \mathbf{a} is

$$
\sigma_{\delta e}(\mathbf{a})=\left\{\lambda \in \mathbb{C}^{n}: \mathbf{a}-\lambda \text { is not lower semi-Fredholm }\right\}
$$

(J. Buoni, R. Harte, T. Wickstead, 1977)

A Browder joint spectrum

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a commuting tuple of bounded operators on a Banach space X.

Definition
\mathbf{a} is called a Browder tuple on X if \mathbf{a} is Fredholm with finite ascent and finite descent.

The Browder joint spectrum of \mathbf{a} is

$$
\sigma_{b}(\mathbf{a})=\left\{\lambda \in \mathbb{C}^{n}: \mathbf{a}-\lambda \text { is not Browder }\right\}
$$

Properties of Browder joint spectrum

Proposition
If X is infinite dimensional then $\sigma_{b}(\mathbf{a})$ is non-empty and compact.
If X is finite dimensional then $\sigma_{b}(\mathbf{a})=\emptyset$.

Inclusions (which can be strict):

$$
\sigma_{B-}(\mathbf{a}) \cup \sigma_{B+}(\mathbf{a}) \quad \subseteq \sigma_{b}(\mathbf{a}) \subseteq \quad \sigma_{T b}(\mathbf{a})
$$

(Kordula, Müller, Rakočević)
(Curto, Dash)

Adjoints

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a tuple of bounded operators on a Banach space X and let $\mathbf{a}^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$ be the tuple of adjoint operators on the dual space X^{*}.

Proposition

If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is Fredholm then
(i) $\operatorname{acl}(\mathbf{a})=d c l\left(\mathbf{a}^{*}\right)$ and $d c l(\mathbf{a})=\operatorname{acl}\left(\mathbf{a}^{*}\right)$,
(ii) $\alpha(\mathbf{a})=\delta\left(\mathbf{a}^{*}\right)$ and $\delta(\mathbf{a})=\alpha\left(\mathbf{a}^{*}\right)$.

Corollary
$\sigma_{b}(\mathbf{a})=\sigma_{b}\left(\mathbf{a}^{*}\right)$.

Projection Property

Proposition

$\sigma_{b}(\mathbf{a})$ satisfies the projection property.
i.e. for all coordinate projections $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ we have

$$
p\left(\sigma_{b}(\mathbf{a})\right)=\sigma_{b}(p(\mathbf{a}))
$$

Projection Property

Proposition

$\sigma_{b}(\mathbf{a})$ satisfies the projection property.
i.e. for all coordinate projections $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ we have

$$
p\left(\sigma_{b}(\mathbf{a})\right)=\sigma_{b}(p(\mathbf{a}))
$$

Proof
Let $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ be the projection $p\left(z_{1}, \ldots, z_{n}\right)=\left(z_{i_{1}}, \ldots, z_{i_{k}}\right)$. Write $p(\mathbf{a})=\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$.
We will show $p\left(\sigma_{b}(\mathbf{a})\right) \supseteq \sigma_{b}(p(\mathbf{a}))$.

Suppose $0 \in \sigma_{b}(p(\mathbf{a}))$. Need to find $\lambda \in \sigma_{b}(\mathbf{a})$ with $p(\lambda)=0$.

Suppose $0 \in \sigma_{b}(p(\mathbf{a}))$. Need to find $\lambda \in \sigma_{b}(\mathbf{a})$ with $p(\lambda)=0$.
Three cases to consider...
(i) $p(\mathbf{a})$ is not Fredholm
(ii) $p(\mathbf{a})$ is Fredholm but has infinite ascent
(iii) $p(\mathbf{a})$ is Fredholm but has infinite descent

Suppose $0 \in \sigma_{b}(p(\mathbf{a}))$. Need to find $\lambda \in \sigma_{b}(\mathbf{a})$ with $p(\lambda)=0$.
Three cases to consider...
(i) $p(\mathbf{a})$ is not Fredholm
(ii) $p(\mathbf{a})$ is Fredholm but has infinite ascent
(iii) $p(\mathbf{a})$ is Fredholm but has infinite descent
(i) If $p(\mathbf{a})$ is not upper (lower) semi-Fredholm then we can use the projection property for the upper (lower) Fredholm spectrum to find $\lambda \in \sigma_{b}(\mathbf{a})$ with $p(\lambda)=0$.
(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent. Then for each $r, Y^{(r)}=N(p(\mathbf{a})) \cap R\left(p(\mathbf{a})^{r}\right)$ is non-zero and finite dimensional.
(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent. Then for each $r, Y^{(r)}=N(p(\mathbf{a})) \cap R\left(p(\mathbf{a})^{r}\right)$ is non-zero and finite dimensional.
Also $Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$. Write $Y=\bigcap_{r} Y^{(r)}$.
(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.

Then for each $r, Y^{(r)}=N(p(\mathbf{a})) \cap R\left(p(\mathbf{a})^{r}\right)$ is non-zero and finite dimensional.
Also $Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$. Write $Y=\bigcap_{r} Y^{(r)}$.
Let $q: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-\bar{k}}$ be the complementary projection to p.
Choose a joint eigenvalue μ for $q(\mathbf{a}) \mid \gamma$.
(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.

Then for each $r, Y^{(r)}=N(p(\mathbf{a})) \cap R\left(p(\mathbf{a})^{r}\right)$ is non-zero and finite dimensional.
Also $Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$. Write $Y=\bigcap_{r} Y^{(r)}$.
Let $q: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-\bar{k}}$ be the complementary projection to p.
Choose a joint eigenvalue μ for $q(\mathbf{a}) \mid \gamma$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $p(\lambda)=0$ and $q(\lambda)=\mu$.
Then $N(\mathbf{a}-\lambda) \cap R\left((\mathbf{a}-\lambda)^{r}\right)$ is non-zero for all r.
Hence $\mathbf{a}-\lambda$ has infinite ascent and so $\lambda \in \sigma_{b}(\mathbf{a})$.
(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.

Then for each $r, Y^{(r)}=N(p(\mathbf{a})) \cap R\left(p(\mathbf{a})^{r}\right)$ is non-zero and finite dimensional.
Also $Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$. Write $Y=\bigcap_{r} Y^{(r)}$.
Let $q: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-\bar{k}}$ be the complementary projection to p.
Choose a joint eigenvalue μ for $\left.q(\mathbf{a})\right|_{Y}$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $p(\lambda)=0$ and $q(\lambda)=\mu$.
Then $N(\mathbf{a}-\lambda) \cap R\left((\mathbf{a}-\lambda)^{r}\right)$ is non-zero for all r.
Hence $\mathbf{a}-\lambda$ has infinite ascent and so $\lambda \in \sigma_{b}(\mathbf{a})$.
(iii) Suppose $p(\mathbf{a})$ is Fredholm with infinite descent.

Then $p(\mathbf{a})^{*}$ is Fredholm with infinite ascent.
Use argument in (ii) to find $\lambda \in \sigma_{b}\left(\mathbf{a}^{*}\right)=\sigma_{b}(\mathbf{a})$ such that $p(\lambda)=0$.

Characterisation of Browder spectrum

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a commuting n-tuple of bounded operators on X.
Denote by $\mathcal{C}_{n}(\mathbf{a})$ the set of commuting n-tuples $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ of compact operators such that $a_{i} c_{j}=c_{j} a_{i}$ for each i, j.

Proposition

$$
\sigma_{b}(\mathbf{a})=\bigcap_{\mathbf{c} \in \mathcal{C}_{n}(\mathbf{a})}\left\{\sigma_{\pi}(\mathbf{a}+\mathbf{c}) \cup \sigma_{\delta}(\mathbf{a}+\mathbf{c})\right\}
$$

$\sigma_{\pi}=$ joint approximate point spectrum
$\sigma_{\delta}=$ joint defect spectrum
(D.C. Lay, $\mathrm{n}=1,1968$)

Characterisation of Browder spectrum

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of bounded operators on X. Denote by $\mathcal{Q}(\mathbf{a})$ the set of finite rank projections $q \in B(X)$ with such that $a_{j} q=q a_{j}$ for each $j=1, \ldots, n$.

Proposition

$$
\sigma_{b}(\mathbf{a})=\bigcap_{q \in \mathcal{Q}(\mathbf{a})}\left\{\sigma_{\pi}\left(\left.\mathbf{a}\right|_{(I-q) X}\right) \cup \sigma_{\delta}\left(\left.\mathbf{a}\right|_{(I-q) X}\right)\right\}
$$

$\sigma_{\pi}=$ joint approximate point spectrum $\sigma_{\delta}=$ joint defect spectrum
(J. Zemánek, $\mathrm{n}=1$, 1986)

Characterisation of Browder Tuples

The following are equivalent:

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is a Browder tuple
- there exist a-invariant subspaces X_{1}, X_{2} of X such that
(i) $X=X_{1} \oplus X_{2}$ where X_{1} is finite dimensional and X_{2} is closed,
(ii) $\left.\mathbf{a}\right|_{X_{1}}$ is nilpotent,
(iii) $\left.\mathbf{a}\right|_{X_{2}}$ is jointly bounded below and jointly onto.

Characterisation of Browder Tuples

The following are equivalent:

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is a Browder tuple
- there exist a-invariant subspaces X_{1}, X_{2} of X such that
(i) $X=X_{1} \oplus X_{2}$ where X_{1} is finite dimensional and X_{2} is closed,
(ii) $\left.\mathbf{a}\right|_{X_{1}}$ is nilpotent,
(iii) $\left.\mathbf{a}\right|_{X_{2}}$ is jointly bounded below and jointly onto.
- $\mathbf{a}=\mathbf{c}+\mathbf{s}$ where
(i) $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ are commuting compact operators
(ii) $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ is a commuting n-tuple which is jointly bounded below and jointly onto
(iii) $c_{i} s_{j}=s_{j} c_{i}$ for all i, j

Extension of the spectral mapping theorem

This Browder joint spectrum concerns the first and last stages of the Koszul complex

$$
0 \rightarrow \Lambda^{0}[X] \xrightarrow{\delta_{a}^{0}} \Lambda^{1}[X] \xrightarrow{\delta_{a}^{1}} \cdots \xrightarrow{\delta_{a}^{n-2}} \Lambda^{n-1}[X] \xrightarrow{\delta_{a}^{n-1}} \Lambda^{n}[X] \rightarrow 0
$$

Let $\tilde{\sigma}$ denote any of the Slodkowski spectra which involve the first and last stages (i.e. $\sigma_{\pi, k} \cup \sigma_{\delta, l}$). Then a spectral mapping theorem holds for

$$
\tilde{\sigma}_{b}(\mathbf{a})=\bigcap_{\mathbf{c} \in \mathcal{C}_{n}(\mathbf{a})} \tilde{\sigma}(\mathbf{a}+\mathbf{c})
$$

where $\mathcal{C}_{n}(\mathbf{a})$ is the set of commuting n-tuples $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ of compact operators such that $a_{i} c_{j}=c_{j} a_{i}$ for each i, j.

Extension of the spectral mapping theorem

This Browder joint spectrum concerns the first and last stages of the Koszul complex

$$
0 \rightarrow \Lambda^{0}[X] \xrightarrow{\delta_{a}^{0}} \Lambda^{1}[X] \xrightarrow{\delta_{a}^{1}} \cdots \xrightarrow{\delta_{a}^{n-2}} \Lambda^{n-1}[X] \xrightarrow{\delta_{a}^{n-1}} \Lambda^{n}[X] \rightarrow 0
$$

Let $\tilde{\sigma}$ denote any of the Slodkowski spectra which involve the first and last stages (i.e. $\sigma_{\pi, k} \cup \sigma_{\delta, l}$). Then a spectral mapping theorem holds for

$$
\tilde{\sigma}_{b}(\mathbf{a})=\bigcap_{\mathbf{c} \in \mathcal{C}_{n}(\mathbf{a})} \tilde{\sigma}(\mathbf{a}+\mathbf{c})
$$

where $\mathcal{C}_{n}(\mathbf{a})$ is the set of commuting n-tuples $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ of compact operators such that $a_{i} c_{j}=c_{j} a_{i}$ for each i, j.
This result fails for the one-sided Slodkowski spectra...

Example

$H=$ Hilbert space with orthonormal basis $\left(e_{i, j}\right)$ indexed by $\left(\mathbb{N}_{0} \times \mathbb{N}_{0}\right) \cup\{(-1,0)\}$.
$\mathbf{a}=\left(a_{1}, a_{2}\right)$ where $a_{1}\left(e_{i, j}\right)=\left\{\begin{array}{cl}e_{i, j-1} & \text { if } j>0 \\ 0 & \text { if } j=0\end{array}\right.$

$$
\text { and } a_{2}\left(e_{i, j}\right)=e_{i+1, j} .
$$

Consider the defect spectrum σ_{δ}.

- a_{1} is a downward shift
- a_{2} is an right shift
- $(0,0) \in \sigma_{\delta, b}(\mathbf{a})$
- $0 \notin \sigma_{\delta, b}\left(a_{1}\right)$

No spectral mapping theorem in this case.

Taylor-Browder spectrum

We recover the Taylor-Browder spectrum of Curto and Dash with the formula

$$
\sigma_{T b}(\mathbf{a})=\bigcap_{\mathbf{c} \in \mathcal{C}_{n}(\mathbf{a})} \sigma_{T}(\mathbf{a}+\mathbf{c})
$$

The following are equivalent:

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is Taylor-Browder,
- $0 \in \mathbb{C}^{n}$ is not an accumulation point in $\sigma_{T}(\mathbf{a})$ and a has finite ascent, descent and nullity,
- $\mathbf{a}=\mathbf{c}+\mathbf{s}$ where
(i) $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ are commuting compact operators
(ii) $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ is a commuting n-tuple which is Taylor invertible
(iii) $c_{i} s_{j}=s_{j} c_{i}$ for all i, j

Articles

- D. Kitson, Ascent and descent for sets of operators. (Studia Math., 2009)
- R.E. Harte, D. Kitson, On Browder tuples. (Acta Sci. Math. (Szeged), 2009)

Acknowledgement

- Science Foundation Ireland

Thank you

