A collection of Browder joint spectra

Derek Kitson Trinity College Dublin

10-14 August 2009 Multivariate operator theory workshop Fields Institute

Overview

- ► Introduction
 - Browder essential spectrum
- Ascent and descent
 - Sets of operators
- ► Browder joint spectra
 - Spectral mapping theorem

Introduction: Browder operators

X Banach space B(X) bounded operators on X

A bounded operator $a \in B(X)$ is called a Browder operator if a is Fredholm with finite ascent and finite descent.

Introduction: Browder operators

X Banach space B(X) bounded operators on X

A bounded operator $a \in B(X)$ is called a Browder operator if a is Fredholm with finite ascent and finite descent.

Equivalently,

- ▶ there exist closed *a*-invariant subspaces X_0, X_1 with $X = X_0 \oplus X_1$ such that X_0 is finite dimensional, $a|_{X_0}$ is nilpotent and $a|_{X_1}$ is invertible.
- ▶ a = c + s where c is a compact operator, s is invertible and cs = sc.

Also known as Riesz-Schauder operators. (Caradus, Pfaffenberger, Yood, 1977)

The Browder essential spectrum of $a \in B(X)$ is

$$\sigma_b(a) = \{\lambda \in \mathbb{C} : a - \lambda \text{ is not Browder}\}$$

The Browder essential spectrum of $a \in B(X)$ is

$$\sigma_b(a) = \{\lambda \in \mathbb{C} : a - \lambda \text{ is not Browder}\}$$

Equivalently...

▶ $\sigma_b(a) = acc(\sigma(a)) \cup \sigma_e(a)$ acc = accumulation points $\sigma =$ spectrum $\sigma_e =$ essential spectrum

The Browder essential spectrum of $a \in B(X)$ is

$$\sigma_b(a) = \{\lambda \in \mathbb{C} : a - \lambda \text{ is not Browder}\}$$

Equivalently...

- ▶ $\sigma_b(a) = acc(\sigma(a)) \cup \sigma_e(a)$ acc = accumulation points $\sigma = spectrum$ $\sigma_e = essential spectrum$
- ▶ $\sigma_b(a) = \sigma(a) \setminus \{\text{Riesz points}\}$ Riesz points = eigenvalues with finite multiplicity which are

poles of the resolvent.

(F.E. Browder, 1961)

Spectral mapping theorem: (Gramsch and Lay, 1972) If a function f(z) is analytic on a neighbourhood of the spectrum $\sigma(a)$ then

$$\sigma_b(f(a)) = f(\sigma_b(a))$$

Let $a \in B(X)$.

Proposition

Denote by C(a) the set of compact operators c with ac=ca. Then

$$\sigma_b(a) = \bigcap_{c \in \mathcal{C}(a)} \sigma(a+c)$$

(D.C. Lay, 1968)

Let $a \in B(X)$.

Proposition

Denote by C(a) the set of compact operators c with ac=ca. Then

$$\sigma_b(a) = \bigcap_{c \in \mathcal{C}(a)} \sigma(a+c)$$

(D.C. Lay, 1968)

Proposition

Denote by Q(a) the set of finite rank projections $q \in B(X)$ with aq = qa.

$$\sigma_b(a) = \bigcap_{q \in \mathcal{Q}(a)} \sigma(a|_{(I-q)X})$$

(J. Zemánek, 1986)

Introduction

Question: To what extent can the single variable theory of the Browder essential spectrum be extended to a multivariable setting?

Introduction: Browder joint spectra

There are a number of different types of Browder joint spectrum in the literature...

- ► M. Snow (1975)
 - bicommutant Browder joint spectrum
- J.J. Buoni, A.T. Dash, B.L. Wadhwa (1981)
 - polynomial Browder joint spectrum
- ► R.E. Curto, A.T. Dash (1988)
 - Browder spectral systems
- V. Kordula, V. Müller, V. Rakočević (1997)
 - semi-Browder spectra

Introduction

We will construct a new Browder joint spectrum by extending the notions of ascent and descent for an operator.

X vector space L(X) linear operators on X If $a \in L(X)$ then...

```
X vector space L(X) linear operators on X If a \in L(X) then... \{0\} \subseteq \operatorname{Ker} a
```

```
X vector space L(X) linear operators on X If a \in L(X) then... \{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^2
```

```
X vector space L(X) linear operators on X If a \in L(X) then... \{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^2 \subseteq \operatorname{Ker} a^3
```

```
X vector space L(X) linear operators on X If a \in L(X) then... \{0\} \subseteq \operatorname{Ker} \ a \subseteq \operatorname{Ker} \ a^2 \subseteq \operatorname{Ker} \ a^3 \subseteq \operatorname{Ker} \ a^4
```

```
X vector space L(X) linear operators on X If a \in L(X) then... \{0\} \subseteq \operatorname{Ker} \ a \subseteq \operatorname{Ker} \ a^2 \subseteq \operatorname{Ker} \ a^3 \subseteq \operatorname{Ker} \ a^4 \subseteq \operatorname{Ker} \ a^5 \subseteq \cdots
```

```
X vector space L(X) linear operators on X If a \in L(X) then... \{0\} \subset \operatorname{Ker} a \subset \operatorname{Ker} a^2 \subset \operatorname{Ker} a^3 \subset \operatorname{Ker} a^4 \subset \operatorname{Ker} a^5 \subset \cdots
```

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^2 \subseteq \operatorname{Ker} a^3 \subseteq \operatorname{Ker} a^4 \subseteq \operatorname{Ker} a^5 \subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

$$X \supseteq \mathsf{Ran}\ a$$

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^2 \subseteq \operatorname{Ker} a^3 \subseteq \operatorname{Ker} a^4 \subseteq \operatorname{Ker} a^5 \subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

$$X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^2$$

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^2 \subseteq \operatorname{Ker} a^3 \subseteq \operatorname{Ker} a^4 \subseteq \operatorname{Ker} a^5 \subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

$$X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^2 \supseteq \operatorname{Ran} a^3$$

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\}\subseteq \operatorname{Ker} a\subseteq \operatorname{Ker} a^2\subseteq \operatorname{Ker} a^3\subseteq \operatorname{Ker} a^4\subseteq \operatorname{Ker} a^5\subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

$$X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^2 \supseteq \operatorname{Ran} a^3 \supseteq \operatorname{Ran} a^4$$

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\}\subseteq \operatorname{Ker} a\subseteq \operatorname{Ker} a^2\subseteq \operatorname{Ker} a^3\subseteq \operatorname{Ker} a^4\subseteq \operatorname{Ker} a^5\subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

$$X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^2 \supseteq \operatorname{Ran} a^3 \supseteq \operatorname{Ran} a^4 \supseteq \operatorname{Ran} a^5 \supseteq \cdots$$

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\} \subseteq \operatorname{Ker} a \subseteq \operatorname{Ker} a^2 \subseteq \operatorname{Ker} a^3 \subseteq \operatorname{Ker} a^4 \subseteq \operatorname{Ker} a^5 \subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^2 \supseteq \operatorname{Ran} a^3 \supseteq \operatorname{Ran} a^4 \supseteq \operatorname{Ran} a^5 \supseteq \cdots$$

The descent of a is the length of this descending chain of range spaces, denoted $\delta(a)$.

X vector space L(X) linear operators on X If $a \in L(X)$ then...

$$\{0\}\subseteq \operatorname{Ker} a\subseteq \operatorname{Ker} a^2\subseteq \operatorname{Ker} a^3\subseteq \operatorname{Ker} a^4\subseteq \operatorname{Ker} a^5\subseteq \cdots$$

The ascent of a is the length of this ascending chain of null spaces, denoted $\alpha(a)$.

Similarly,

$$X \supseteq \operatorname{Ran} a \supseteq \operatorname{Ran} a^2 \supseteq \operatorname{Ran} a^3 \supseteq \operatorname{Ran} a^4 \supseteq \operatorname{Ran} a^5 \supseteq \cdots$$

The descent of a is the length of this descending chain of range spaces, denoted $\delta(a)$.

If a has finite ascent and finite descent then they must be equal.

Let $a \in B(X)$.

The following are equivalent:

- (i) a has finite ascent and descent with $r = \alpha(a) = \delta(a)$
- (ii) $X = \operatorname{Ker} a^r \oplus \operatorname{Ran} a^r$ but $X \neq \operatorname{Ker} a^{r-1} \oplus \operatorname{Ran} a^{r-1}$
- (iii) $0 \in \mathbb{C}$ is a pole of the resolvent of a of order r
- (iv) a has a Drazin inverse with index r (i.e. there exists $d \in B(X)$ such that ad = da, $d = ad^2$ and $a^r = a^{r+1}d$ but $a^{r-1} \neq a^rd$)

Brief history of ascent and descent

- ▶ F. Riesz (1916) compact operators
- ▶ A.F. Ruston (1954) Riesz operators
- ▶ H. Heuser (1956) ascent, descent, nullity and defect
- ▶ A.E. Taylor (1958/66) poles of the resolvent
- ▶ S. Grabiner (1978) compact perturbations
- ▶ Mbekhta, Müller (1996) essential ascent and descent
- ► Grunenfelder, Omladič (1999) commuting module endomorphisms

Ascent and Descent: sets of operators

For each set $A \subseteq L(X)$ of operators define

$$N(A) = \bigcap_{a \in A} \operatorname{Ker} a$$
 $R(A) = \operatorname{span}(\bigcup_{a \in A} \operatorname{Ran} a).$

$$A^k = \{a_1 \dots a_k : a_1, \dots, a_k \in A\} \qquad A^0 = \{I\}$$

Ascent and Descent: sets of operators

For each set $A \subseteq L(X)$ of operators define

$$N(A) = \bigcap_{a \in A} \operatorname{Ker} a$$
 $R(A) = \operatorname{span}(\bigcup_{a \in A} \operatorname{Ran} a).$

$$A^k = \{a_1 \dots a_k : a_1, \dots, a_k \in A\} \qquad A^0 = \{I\}$$

The ascending chain length of A, denoted acl(A), is the length of the chain

$$\{0\}\subseteq N(A)\subseteq N(A^2)\subseteq N(A^3)\subseteq N(A^4)\subseteq N(A^5)\subseteq\cdots$$

The descending chain length of A, denoted dcl(A), is the length of the chain

$$X \supseteq R(A) \supseteq R(A^2) \supseteq R(A^3) \supseteq R(A^4) \supseteq R(A^5) \supseteq \cdots$$

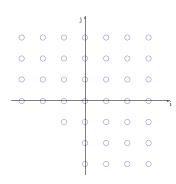
Chain lengths are not enough to extend single variable theory...

Example

 $H = \text{Hilbert space with orthonormal basis } (e_{i,j}) \text{ indexed by } (\mathbb{Z}^+ \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{Z}^+) \cup \{(-1,-1)\}.$ $A = \{a_1,a_2\} \text{ where } a_1(e_{i,j}) = e_{i+1,j} \text{ and } a_2(e_{i,j}) = e_{i,j+1}.$

- ▶ a₁ is a right shift
- ► a₂ is an upward shift
- ascending chain length of A is 0
- descending chain length of A is 1

No decomposition of space.



Alternative description of ascent and descent

In the case of a single operator a there are isomorphisms

$$\operatorname{Ker} a^{r+1}/\operatorname{Ker} a^r \cong \operatorname{Ker} a \cap \operatorname{Ran} a^r$$

$$\operatorname{\mathsf{Ran}}\ a^r/\operatorname{\mathsf{Ran}}\ a^{r+1}\cong X/(\operatorname{\mathsf{Ker}}\ a^r+\operatorname{\mathsf{Ran}}\ a)$$

Alternative description of ascent and descent

In the case of a single operator a there are isomorphisms

$$\operatorname{\mathsf{Ker}} a^{r+1}/\operatorname{\mathsf{Ker}} a^r \cong \operatorname{\mathsf{Ker}} a \cap \operatorname{\mathsf{Ran}} a^r$$

$$\operatorname{\mathsf{Ran}}\ a^r/\operatorname{\mathsf{Ran}}\ a^{r+1}\cong X/(\operatorname{\mathsf{Ker}}\ a^r+\operatorname{\mathsf{Ran}}\ a)$$

So the ascent of a is the smallest r such that

$$Ker \ a \cap Ran \ a^r = \{0\}$$

and the descent of a is the smallest r such that

$$Ker a^r + Ran a = X.$$

Ascent and descent for sets of operators

This motivates the following definition for a set A of operators.

The ascent of A, denoted $\alpha(A)$, is the smallest r such that

$$N(A) \cap R(A^r) = \{0\}$$

The descent of A, denoted $\delta(A)$, is the smallest r such that

$$N(A^r) + R(A) = X$$

Ascent and descent for sets of operators

This motivates the following definition for a set A of operators.

The ascent of A, denoted $\alpha(A)$, is the smallest r such that

$$N(A) \cap R(A^r) = \{0\}$$

The descent of A, denoted $\delta(A)$, is the smallest r such that

$$N(A^r) + R(A) = X$$

Proposition

- (i) $acl(A) \leq \alpha(A)$ and $dcl(A) \leq \delta(A)$
- (ii) if $\alpha(A) < \infty$ then $\alpha(A) \leq dcl(A)$
- (iii) if $\delta(A) < \infty$ then $\delta(A) \le acl(A)$
- (iv) if $\alpha(A)$, $\delta(A) < \infty$ then $\alpha(A) = acl(A) = dcl(A) = \delta(A)$

Main Decomposition Theorem

Let A be a set of operators on a vector space X.

Theorem

A has finite ascent and finite descent if and only if there exist A-invariant subspaces X_1, X_2 of X such that

- (i) $X = X_1 \oplus X_2$,
- (ii) $A^k|_{X_1} = \{0\}$ some k (nilpotent),
- (iii) $N(A|_{X_2}) = 0$ and $R(A|_{X_2}) = X_2$ (bijective).

Moreover, the spaces X_1 and X_2 are given uniquely by $X_1 = N(A^r)$ and $X_2 = R(A^r)$, where r is the common value of the ascent and descent of A.

$$A \subset B(X)$$

▶ Let $B \subseteq \text{commutant}(A)$. If A and B both have finite ascent and finite descent then $A \cup B$ has finite ascent and finite descent.

$A \subset B(X)$

- Let B ⊆ commutant(A). If A and B both have finite ascent and finite descent then A ∪ B has finite ascent and finite descent.
- ▶ If $\langle A \rangle$ is the algebra generated by A then
 - (i) $acl(A) = acl(\langle A \rangle)$ and $dcl(A) = dcl(\langle A \rangle)$,
 - (ii) $\alpha(A) = \alpha(\langle A \rangle)$ and $\delta(A) = \delta(\langle A \rangle)$.

$A \subset B(X)$

- Let B ⊆ commutant(A). If A and B both have finite ascent and finite descent then A ∪ B has finite ascent and finite descent.
- ▶ If $\langle A \rangle$ is the algebra generated by A then
 - (i) $acl(A) = acl(\langle A \rangle)$ and $dcl(A) = dcl(\langle A \rangle)$,
 - (ii) $\alpha(A) = \alpha(\langle A \rangle)$ and $\delta(A) = \delta(\langle A \rangle)$.
- ▶ If $R(A^k)$ is closed for all k then
 - (i) $acl(A) = acl(\overline{A})$ and $dcl(A) = dcl(\overline{A})$,
 - (ii) $\alpha(A) = \alpha(\overline{A})$ and $\delta(A) = \delta(\overline{A})$.

$A \subset B(X)$

- Let B ⊆ commutant(A). If A and B both have finite ascent and finite descent then A ∪ B has finite ascent and finite descent.
- ▶ If $\langle A \rangle$ is the algebra generated by A then
 - (i) $acl(A) = acl(\langle A \rangle)$ and $dcl(A) = dcl(\langle A \rangle)$,
 - (ii) $\alpha(A) = \alpha(\langle A \rangle)$ and $\delta(A) = \delta(\langle A \rangle)$.
- ▶ If $R(A^k)$ is closed for all k then
 - (i) $acl(A) = acl(\overline{A})$ and $dcl(A) = dcl(\overline{A})$,
 - (ii) $\alpha(A) = \alpha(\overline{A})$ and $\delta(A) = \delta(\overline{A})$.
- ▶ If A is countable with finite ascent and finite descent then
 - (i) $R(A^r)$ is closed where $r = \alpha(A) = \delta(A)$
 - (ii) the closed algebra generated by A has finite ascent and descent r

Let $\mathbf{a} = (a_1, \dots, a_n)$ be an *n*-tuple of operators on X.

We write...

$$\alpha(\mathbf{a}) = \alpha(A)$$
 $\delta(\mathbf{a}) = \delta(A)$ where $A = \bigcup_{j=1}^{n} \{a_j\}.$

Let $\mathbf{a}=(a_1,\ldots,a_n)$ be an n-tuple of operators on X. We write... $\alpha(\mathbf{a})=\alpha(A)$ $\delta(\mathbf{a})=\delta(A)$ where $A=\bigcup_{j=1}^n\{a_j\}$. $\mathbf{a}^k=(a_{i_1}\ldots a_{i_k})_{i_1,\ldots,i_k=1}^n$ (lexicographic order)

Let $\mathbf{a} = (a_1, \dots, a_n)$ be an n-tuple of operators on X. We write... $\alpha(\mathbf{a}) = \alpha(A)$ $\delta(\mathbf{a}) = \delta(A)$ where $A = \bigcup_{j=1}^n \{a_j\}$. $\mathbf{a}^k = (a_{i_1} \dots a_{i_k})_{i_1,\dots,i_k=1}^n$ (lexicographic order) $\mathrm{row}(\mathbf{a}) : X^n \to X$ $(x_1,\dots,x_n) \mapsto a_1x_1 + \dots + a_nx_n$ $\mathrm{col}(\mathbf{a}) : X \to X^n$ $x \mapsto (a_1x,\dots,a_nx)$

Let $\mathbf{a} = (a_1, \dots, a_n)$ be an n-tuple of operators on X. We write... $\alpha(\mathbf{a}) = \alpha(A)$ $\delta(\mathbf{a}) = \delta(A)$ where $A = \bigcup_{j=1}^n \{a_j\}$. $\mathbf{a}^k = (a_{i_1} \dots a_{i_k})_{i_1, \dots, i_k = 1}^n$ (lexicographic order) $\operatorname{row}(\mathbf{a}) : X^n \to X$ $(x_1, \dots, x_n) \mapsto a_1 x_1 + \dots + a_n x_n$ $\operatorname{col}(\mathbf{a}) : X \to X^n$ $x \mapsto (a_1 x, \dots, a_n x)$

Proposition

- (i) $\alpha(\mathbf{a}) = \min\{r \in \mathbb{N}_0 : Ker \ row(\mathbf{a}^r) = Ker \ col(\mathbf{a}) \circ row(\mathbf{a}^r)\}$
- (ii) $\delta(\mathbf{a}) = \min\{r \in \mathbb{N}_0 : Ran\ col(\mathbf{a}^r) = Ran\ col(\mathbf{a}^r) \circ row(\mathbf{a})\}$

Let $\mathbf{a} = (a_1, \dots, a_m)$ be an *m*-tuple of operators on X.

- ▶ If $n(\mathbf{a}) = \dim N(\mathbf{a})$ and $d(\mathbf{a}) = \operatorname{codim} R(\mathbf{a})$ then
 - (i) $n(\mathbf{a}^k) < (1+m+\cdots+m^{k-1})n(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (ii) $d(\mathbf{a}^k) \leq (1 + m + \dots + m^{k-1})d(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (iii) If $n(\mathbf{a}) < \infty$ and $\delta(\mathbf{a}) < \infty$ then $d(\mathbf{a}) < \infty$,
 - (iv) If $d(\mathbf{a}) < \infty$ and $\alpha(\mathbf{a}) < \infty$ then $n(\mathbf{a}) < \infty$.

Let $\mathbf{a} = (a_1, \dots, a_m)$ be an *m*-tuple of operators on X.

- ▶ If $n(\mathbf{a}) = \dim N(\mathbf{a})$ and $d(\mathbf{a}) = \operatorname{codim} R(\mathbf{a})$ then
 - (i) $n(\mathbf{a}^k) \leq (1+m+\cdots+m^{k-1})n(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (ii) $d(\mathbf{a}^k) \leq (1+m+\cdots+m^{k-1})d(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (iii) If $n(\mathbf{a}) < \infty$ and $\delta(\mathbf{a}) < \infty$ then $d(\mathbf{a}) < \infty$,
 - (iv) If $d(\mathbf{a}) < \infty$ and $\alpha(\mathbf{a}) < \infty$ then $n(\mathbf{a}) < \infty$.
- If $\mathbf{a}' = (a'_1, \dots, a'_m)$ is the *m*-tuple of transpose operators acting on the algebraic conjugate X' then
 - (i) $acl(\mathbf{a}) = dcl(\mathbf{a}')$ and $dcl(\mathbf{a}) = acl(\mathbf{a}')$
 - (ii) $\alpha(\mathbf{a}) = \delta(\mathbf{a}')$ and $\delta(\mathbf{a}) = \alpha(\mathbf{a}')$

Let $\mathbf{a} = (a_1, \dots, a_m)$ be an *m*-tuple of operators on X.

- ▶ If $n(\mathbf{a}) = \dim N(\mathbf{a})$ and $d(\mathbf{a}) = \operatorname{codim} R(\mathbf{a})$ then
 - (i) $n(\mathbf{a}^k) \leq (1+m+\cdots+m^{k-1})n(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (ii) $d(\mathbf{a}^k) \leq (1+m+\cdots+m^{k-1})d(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (iii) If $n(\mathbf{a}) < \infty$ and $\delta(\mathbf{a}) < \infty$ then $d(\mathbf{a}) < \infty$,
 - (iv) If $d(\mathbf{a}) < \infty$ and $\alpha(\mathbf{a}) < \infty$ then $n(\mathbf{a}) < \infty$.
- If $\mathbf{a}' = (a_1', \dots, a_m')$ is the *m*-tuple of transpose operators acting on the algebraic conjugate X' then
 - (i) $acl(\mathbf{a}) = dcl(\mathbf{a}')$ and $dcl(\mathbf{a}) = acl(\mathbf{a}')$
 - (ii) $\alpha(\mathbf{a}) = \delta(\mathbf{a}')$ and $\delta(\mathbf{a}) = \alpha(\mathbf{a}')$
- ▶ If $a_1, ..., a_m$ pairwise commute and X is finite dimensional then $\mathbf{a} = (a_1, ..., a_m)$ has finite ascent and finite descent.

Let $\mathbf{a} = (a_1, \dots, a_m)$ be an *m*-tuple of operators on X.

- ▶ If $n(\mathbf{a}) = \dim N(\mathbf{a})$ and $d(\mathbf{a}) = \operatorname{codim} R(\mathbf{a})$ then
 - (i) $n(\mathbf{a}^k) \leq (1+m+\cdots+m^{k-1})n(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (ii) $d(\mathbf{a}^k) \leq (1+m+\cdots+m^{k-1})d(\mathbf{a})$ for all $k \in \mathbb{N}$,
 - (iii) If $n(\mathbf{a}) < \infty$ and $\delta(\mathbf{a}) < \infty$ then $d(\mathbf{a}) < \infty$,
 - (iv) If $d(\mathbf{a}) < \infty$ and $\alpha(\mathbf{a}) < \infty$ then $n(\mathbf{a}) < \infty$.
- ▶ If $\mathbf{a}' = (a_1', \dots, a_m')$ is the *m*-tuple of transpose operators acting on the algebraic conjugate X' then
 - (i) $acl(\mathbf{a}) = dcl(\mathbf{a}')$ and $dcl(\mathbf{a}) = acl(\mathbf{a}')$
 - (ii) $\alpha(\mathbf{a}) = \delta(\mathbf{a}')$ and $\delta(\mathbf{a}) = \alpha(\mathbf{a}')$
- ▶ If $a_1, ..., a_m$ pairwise commute and X is finite dimensional then $\mathbf{a} = (a_1, ..., a_m)$ has finite ascent and finite descent.

This last result does not hold for non-commuting tuples: eg. if $\mathbf{a}=(a_1,a_2)$ where $a_1=\left[\begin{smallmatrix}0&&1\\0&&0\end{smallmatrix}\right]$ and $a_2=\left[\begin{smallmatrix}0&&0\\0&&1\end{smallmatrix}\right]$. Then $\delta(\mathbf{a})=0$ and $\alpha(\mathbf{a})=\infty$.

Fredholm Tuples

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a tuple of bounded operators on a Banach space X.

- a is called upper semi-Fredholm if col(a) is upper semi-Fredholm.
 a is called lower semi-Fredholm if row(a) is lower semi-Fredholm.
- a is called Fredholm if it is both upper and lower semi-Fredholm.

Fredholm Tuples

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a tuple of bounded operators on a Banach space X.

a is called upper semi-Fredholm if col(a) is upper semi-Fredholm.
a is called lower semi-Fredholm if row(a) is lower semi-Fredholm.
a is called Fredholm if it is both upper and lower semi-Fredholm.

The upper Fredholm spectrum of a is

$$\sigma_{\pi e}(\mathbf{a}) = \{\lambda \in \mathbb{C}^n : \mathbf{a} - \lambda \text{ is not upper semi-Fredholm}\}.$$

The lower Fredholm spectrum of a is

$$\sigma_{\delta e}(\mathbf{a}) = \{\lambda \in \mathbb{C}^n : \mathbf{a} - \lambda \text{ is not lower semi-Fredholm}\}.$$

(J. Buoni, R. Harte, T. Wickstead, 1977)

A Browder joint spectrum

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a commuting tuple of bounded operators on a Banach space X.

Definition

a is called a Browder tuple on *X* if **a** is Fredholm with finite ascent and finite descent.

The Browder joint spectrum of a is

$$\sigma_b(\mathbf{a}) = \{\lambda \in \mathbb{C}^n : \mathbf{a} - \lambda \text{ is not Browder}\}.$$

Properties of Browder joint spectrum

Proposition

If X is infinite dimensional then $\sigma_b(\mathbf{a})$ is non-empty and compact. If X is finite dimensional then $\sigma_b(\mathbf{a}) = \emptyset$.

Inclusions (which can be strict):

$$\sigma_{B-}(\mathbf{a}) \cup \sigma_{B+}(\mathbf{a}) \subseteq \sigma_b(\mathbf{a}) \subseteq \sigma_{Tb}(\mathbf{a})$$

(Kordula, Müller, Rakočević) (Curto, Dash)

Adjoints

Let $\mathbf{a}=(a_1,\ldots,a_n)$ be a tuple of bounded operators on a Banach space X and let $\mathbf{a}^*=(a_1^*,\ldots,a_n^*)$ be the tuple of adjoint operators on the dual space X^* .

Proposition

If $\mathbf{a} = (a_1, \dots, a_n)$ is Fredholm then

(i)
$$acl(\mathbf{a}) = dcl(\mathbf{a}^*)$$
 and $dcl(\mathbf{a}) = acl(\mathbf{a}^*)$,

(ii)
$$\alpha(\mathbf{a}) = \delta(\mathbf{a}^*)$$
 and $\delta(\mathbf{a}) = \alpha(\mathbf{a}^*)$.

Corollary

$$\sigma_b(\mathbf{a}) = \sigma_b(\mathbf{a}^*).$$

Projection Property

Proposition

 $\sigma_b(\mathbf{a})$ satisfies the projection property.

i.e. for all coordinate projections $p:\mathbb{C}^n \to \mathbb{C}^k$ we have

$$p(\sigma_b(\mathbf{a})) = \sigma_b(p(\mathbf{a})).$$

Projection Property

Proposition

 $\sigma_b(\mathbf{a})$ satisfies the projection property.

i.e. for all coordinate projections $p:\mathbb{C}^n \to \mathbb{C}^k$ we have

$$p(\sigma_b(\mathbf{a})) = \sigma_b(p(\mathbf{a})).$$

Proof

Let $p: \mathbb{C}^n \to \mathbb{C}^k$ be the projection $p(z_1, \ldots, z_n) = (z_{i_1}, \ldots, z_{i_k})$. Write $p(\mathbf{a}) = (a_{i_1}, \ldots, a_{i_k})$. We will show $p(\sigma_b(\mathbf{a})) \supseteq \sigma_b(p(\mathbf{a}))$. Suppose $0 \in \sigma_b(p(\mathbf{a}))$. Need to find $\lambda \in \sigma_b(\mathbf{a})$ with $p(\lambda) = 0$.

Suppose $0 \in \sigma_b(p(\mathbf{a}))$. Need to find $\lambda \in \sigma_b(\mathbf{a})$ with $p(\lambda) = 0$.

Three cases to consider...

- (i) $p(\mathbf{a})$ is not Fredholm
- (ii) $p(\mathbf{a})$ is Fredholm but has infinite ascent
- (iii) $p(\mathbf{a})$ is Fredholm but has infinite descent

Suppose $0 \in \sigma_b(p(\mathbf{a}))$. Need to find $\lambda \in \sigma_b(\mathbf{a})$ with $p(\lambda) = 0$.

Three cases to consider...

- (i) $p(\mathbf{a})$ is not Fredholm
- (ii) $p(\mathbf{a})$ is Fredholm but has infinite ascent
- (iii) $p(\mathbf{a})$ is Fredholm but has infinite descent
- (i) If $p(\mathbf{a})$ is not upper (lower) semi-Fredholm then we can use the projection property for the upper (lower) Fredholm spectrum to find $\lambda \in \sigma_b(\mathbf{a})$ with $p(\lambda) = 0$.

(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent. Then for each r, $Y^{(r)} = N(p(\mathbf{a})) \cap R(p(\mathbf{a})^r)$ is non-zero and finite dimensional.

(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.

Then for each r, $Y^{(r)} = N(p(\mathbf{a})) \cap R(p(\mathbf{a})^r)$ is non-zero and finite dimensional.

Also
$$Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$$
. Write $Y = \bigcap_r Y^{(r)}$.

- (ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.
- Then for each r, $Y^{(r)} = N(p(\mathbf{a})) \cap R(p(\mathbf{a})^r)$ is non-zero and finite dimensional.

Also
$$Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$$
. Write $Y = \bigcap_r Y^{(r)}$.

Let $q:\mathbb{C}^n \to \mathbb{C}^{n-k}$ be the complementary projection to p.

Choose a joint eigenvalue μ for $q(\mathbf{a})|_{Y}$.

- (ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.
- Then for each r, $Y^{(r)} = N(p(\mathbf{a})) \cap R(p(\mathbf{a})^r)$ is non-zero and finite dimensional.

Also
$$Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$$
. Write $Y = \bigcap_r Y^{(r)}$.

Let $q:\mathbb{C}^n \to \mathbb{C}^{n-k}$ be the complementary projection to p.

Choose a joint eigenvalue μ for $q(\mathbf{a})|_{Y}$.

Let
$$\lambda = (\lambda_1, \dots, \lambda_n)$$
 where $p(\lambda) = 0$ and $q(\lambda) = \mu$.

Then $N(\mathbf{a} - \lambda) \cap R((\mathbf{a} - \lambda)^r)$ is non-zero for all r.

Hence $\mathbf{a} - \lambda$ has infinite ascent and so $\lambda \in \sigma_b(\mathbf{a})$.

(ii) Suppose $p(\mathbf{a})$ is Fredholm with infinite ascent.

Then for each r, $Y^{(r)} = N(p(\mathbf{a})) \cap R(p(\mathbf{a})^r)$ is non-zero and finite dimensional.

Also
$$Y^{(1)} \supseteq Y^{(2)} \supseteq Y^{(3)} \supseteq \cdots$$
. Write $Y = \bigcap_r Y^{(r)}$.

Let $q:\mathbb{C}^n \to \mathbb{C}^{n-k}$ be the complementary projection to p.

Choose a joint eigenvalue μ for $q(\mathbf{a})|_{Y}$.

Let
$$\lambda = (\lambda_1, \dots, \lambda_n)$$
 where $p(\lambda) = 0$ and $q(\lambda) = \mu$.

Then $N(\mathbf{a} - \lambda) \cap R((\mathbf{a} - \lambda)^r)$ is non-zero for all r.

Hence $\mathbf{a} - \lambda$ has infinite ascent and so $\lambda \in \sigma_b(\mathbf{a})$.

(iii) Suppose $p(\mathbf{a})$ is Fredholm with infinite descent.

Then $p(\mathbf{a})^*$ is Fredholm with infinite ascent.

Use argument in (ii) to find $\lambda \in \sigma_b(\mathbf{a}^*) = \sigma_b(\mathbf{a})$ such that

$$p(\lambda) = 0.$$

Characterisation of Browder spectrum

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a commuting *n*-tuple of bounded operators on X.

Denote by $C_n(\mathbf{a})$ the set of commuting *n*-tuples $\mathbf{c} = (c_1, \dots, c_n)$ of compact operators such that $a_i c_j = c_j a_i$ for each i, j.

Proposition

$$\sigma_b(\mathbf{a}) = \bigcap_{\mathbf{c} \in \mathcal{C}_n(\mathbf{a})} \{ \sigma_{\pi}(\mathbf{a} + \mathbf{c}) \cup \sigma_{\delta}(\mathbf{a} + \mathbf{c}) \}$$

 $\sigma_{\pi}=$ joint approximate point spectrum $\sigma_{\delta}=$ joint defect spectrum

Characterisation of Browder spectrum

Let $\mathbf{a}=(a_1,\ldots,a_n)$ be an *n*-tuple of bounded operators on X. Denote by $\mathcal{Q}(\mathbf{a})$ the set of finite rank projections $q\in B(X)$ with such that $a_jq=qa_j$ for each $j=1,\ldots,n$.

Proposition

$$\sigma_b(\mathbf{a}) = \bigcap_{q \in \mathcal{Q}(\mathbf{a})} \{ \sigma_{\pi}(\mathbf{a}|_{(I-q)X}) \cup \sigma_{\delta}(\mathbf{a}|_{(I-q)X}) \}$$

 $\sigma_{\pi}=$ joint approximate point spectrum $\sigma_{\delta}=$ joint defect spectrum

(J. Zemánek, n=1, 1986)

Characterisation of Browder Tuples

The following are equivalent:

- $ightharpoonup a = (a_1, \ldots, a_n)$ is a Browder tuple
- ▶ there exist **a**-invariant subspaces X_1, X_2 of X such that
 - (i) $X = X_1 \oplus X_2$ where X_1 is finite dimensional and X_2 is closed,
 - (ii) $\mathbf{a}|_{X_1}$ is nilpotent,
 - (iii) $\mathbf{a}|_{X_2}$ is jointly bounded below and jointly onto.

Characterisation of Browder Tuples

The following are equivalent:

- $ightharpoonup a = (a_1, \ldots, a_n)$ is a Browder tuple
- ▶ there exist **a**-invariant subspaces X_1, X_2 of X such that
 - (i) $X = X_1 \oplus X_2$ where X_1 is finite dimensional and X_2 is closed,
 - (ii) $\mathbf{a}|_{X_1}$ is nilpotent,
 - (iii) $\mathbf{a}|_{X_2}$ is jointly bounded below and jointly onto.
- ightharpoonup $\mathbf{a} = \mathbf{c} + \mathbf{s}$ where
 - (i) $\mathbf{c} = (c_1, \dots, c_n)$ are commuting compact operators
 - (ii) $\mathbf{s} = (s_1, \dots, s_n)$ is a commuting *n*-tuple which is jointly bounded below and jointly onto
 - (iii) $c_i s_j = s_j c_i$ for all i, j

Extension of the spectral mapping theorem

This Browder joint spectrum concerns the first and last stages of the Koszul complex

$$0 \to \Lambda^0[X] \xrightarrow{\delta_{\mathbf{a}}^0} \Lambda^1[X] \xrightarrow{\delta_{\mathbf{a}}^1} \cdots \xrightarrow{\delta_{\mathbf{a}}^{n-2}} \Lambda^{n-1}[X] \xrightarrow{\delta_{\mathbf{a}}^{n-1}} \Lambda^n[X] \to 0$$

Let $\tilde{\sigma}$ denote any of the Slodkowski spectra which involve the first and last stages (i.e. $\sigma_{\pi,k} \cup \sigma_{\delta,l}$). Then a spectral mapping theorem holds for

$$\tilde{\sigma}_b(\mathbf{a}) = \bigcap_{\mathbf{c} \in \mathcal{C}_n(\mathbf{a})} \tilde{\sigma}(\mathbf{a} + \mathbf{c})$$

where $C_n(\mathbf{a})$ is the set of commuting *n*-tuples $\mathbf{c} = (c_1, \dots, c_n)$ of compact operators such that $a_i c_i = c_j a_i$ for each i, j.

Extension of the spectral mapping theorem

This Browder joint spectrum concerns the first and last stages of the Koszul complex

$$0 \to \Lambda^0[X] \xrightarrow{\delta_{\mathbf{a}}^0} \Lambda^1[X] \xrightarrow{\delta_{\mathbf{a}}^1} \cdots \xrightarrow{\delta_{\mathbf{a}}^{n-2}} \Lambda^{n-1}[X] \xrightarrow{\delta_{\mathbf{a}}^{n-1}} \Lambda^n[X] \to 0$$

Let $\tilde{\sigma}$ denote any of the Slodkowski spectra which involve the first and last stages (i.e. $\sigma_{\pi,k} \cup \sigma_{\delta,l}$). Then a spectral mapping theorem holds for

$$\tilde{\sigma}_b(\mathbf{a}) = \bigcap_{\mathbf{c} \in \mathcal{C}_n(\mathbf{a})} \tilde{\sigma}(\mathbf{a} + \mathbf{c})$$

where $C_n(\mathbf{a})$ is the set of commuting *n*-tuples $\mathbf{c}=(c_1,\ldots,c_n)$ of compact operators such that $a_ic_j=c_ja_i$ for each i,j.

This result fails for the one-sided Slodkowski spectra...

Example

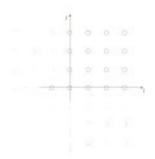
H= Hilbert space with orthonormal basis $(e_{i,j})$ indexed by $(\mathbb{N}_0 \times \mathbb{N}_0) \cup \{(-1,0)\}$.

$$\mathbf{a}=(a_1,a_2)$$
 where $a_1(e_{i,j})=\left\{egin{array}{ll} e_{i,j-1} & \mbox{if } j>0 \ 0 & \mbox{if } j=0 \ \end{array}
ight.$ and $a_2(e_{i,j})=e_{i+1,j}.$

Consider the defect spectrum σ_{δ} .

- ► a₁ is a downward shift
- ► a₂ is an right shift
- ▶ $(0,0) \in \sigma_{\delta,b}(\mathbf{a})$
- ▶ $0 \notin \sigma_{\delta,b}(a_1)$

No spectral mapping theorem in this case.



Taylor-Browder spectrum

We recover the Taylor-Browder spectrum of Curto and Dash with the formula

$$\sigma_{Tb}(\mathbf{a}) = \bigcap_{\mathbf{c} \in \mathcal{C}_n(\mathbf{a})} \sigma_T(\mathbf{a} + \mathbf{c})$$

The following are equivalent:

- ▶ $\mathbf{a} = (a_1, \dots, a_n)$ is Taylor-Browder,
- ▶ $0 \in \mathbb{C}^n$ is not an accumulation point in $\sigma_T(\mathbf{a})$ and \mathbf{a} has finite ascent, descent and nullity,
- ightharpoonup $\mathbf{a} = \mathbf{c} + \mathbf{s}$ where
 - (i) $\mathbf{c} = (c_1, \dots, c_n)$ are commuting compact operators
 - (ii) $\mathbf{s} = (s_1, \dots, s_n)$ is a commuting *n*-tuple which is Taylor invertible
 - (iii) $c_i s_j = s_j c_i$ for all i, j

Articles

- ▶ D. Kitson, Ascent and descent for sets of operators. (Studia Math., 2009)
- ► R.E. Harte, D. Kitson, *On Browder tuples*. (Acta Sci. Math. (Szeged), 2009)

Acknowledgement

Science Foundation Ireland

Thank you