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Introduction: Browder operators

X Banach space
B(X ) bounded operators on X

A bounded operator a ∈ B(X ) is called a Browder operator if a is
Fredholm with finite ascent and finite descent.

Equivalently,

I there exist closed a-invariant subspaces X0,X1 with
X = X0 ⊕ X1 such that X0 is finite dimensional, a|X0 is
nilpotent and a|X1 is invertible.

I a = c + s where c is a compact operator, s is invertible and
cs = sc .

Also known as Riesz-Schauder operators.
(Caradus, Pfaffenberger, Yood, 1977)
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Introduction: Browder essential spectrum

The Browder essential spectrum of a ∈ B(X ) is

σb(a) = {λ ∈ C : a− λ is not Browder}

Equivalently...

I σb(a) = acc(σ(a)) ∪ σe(a)

acc = accumulation points
σ = spectrum
σe= essential spectrum

I σb(a) = σ(a)\{Riesz points}

Riesz points = eigenvalues with finite multiplicity which are
poles of the resolvent.

(F.E. Browder, 1961)
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Introduction: Browder essential spectrum

Spectral mapping theorem: (Gramsch and Lay, 1972)
If a function f (z) is analytic on a neighbourhood of the spectrum
σ(a) then

σb(f (a)) = f (σb(a))



Introduction: Browder essential spectrum

Let a ∈ B(X ).

Proposition

Denote by C(a) the set of compact operators c with ac = ca. Then

σb(a) =
⋂

c∈C(a)

σ(a + c)

(D.C. Lay, 1968)

Proposition

Denote by Q(a) the set of finite rank projections q ∈ B(X ) with
aq = qa.

σb(a) =
⋂

q∈Q(a)

σ(a|(I−q)X )

(J. Zemánek, 1986)
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Introduction

Question: To what extent can the single variable theory of the
Browder essential spectrum be extended to a multivariable setting?



Introduction: Browder joint spectra

There are a number of different types of Browder joint spectrum in
the literature...

I M. Snow (1975)
I bicommutant Browder joint spectrum

I J.J. Buoni, A.T. Dash, B.L. Wadhwa (1981)
I polynomial Browder joint spectrum

I R.E. Curto, A.T. Dash (1988)
I Browder spectral systems

I V. Kordula, V. Müller, V. Rakočević (1997)
I semi-Browder spectra



Introduction

We will construct a new Browder joint spectrum by extending the
notions of ascent and descent for an operator.



Ascent and Descent: single operator case

X vector space
L(X ) linear operators on X

If a ∈ L(X ) then...

{0} ⊆ Ker a ⊆ Ker a2 ⊆ Ker a3 ⊆ Ker a4 ⊆ Ker a5 ⊆ · · ·

The ascent of a is the length of this ascending chain of null spaces,
denoted α(a).

Similarly,

X ⊇ Ran a ⊇ Ran a2 ⊇ Ran a3 ⊇ Ran a4 ⊇ Ran a5 ⊇ · · ·

The descent of a is the length of this descending chain of range
spaces, denoted δ(a).

If a has finite ascent and finite descent then they must be equal.
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Ascent and Descent: single operator case

Let a ∈ B(X ).
The following are equivalent:

(i) a has finite ascent and descent with r = α(a) = δ(a)

(ii) X = Ker ar ⊕ Ran ar but X 6= Ker ar−1 ⊕ Ran ar−1

(iii) 0 ∈ C is a pole of the resolvent of a of order r

(iv) a has a Drazin inverse with index r (i.e. there exists
d ∈ B(X ) such that ad = da, d = ad2 and ar = ar+1d but
ar−1 6= ar d)



Brief history of ascent and descent

I F. Riesz (1916) - compact operators

I A.F. Ruston (1954) - Riesz operators

I H. Heuser (1956) - ascent, descent, nullity and defect

I A.E. Taylor (1958/66) - poles of the resolvent

I S. Grabiner (1978) - compact perturbations

I Mbekhta, Müller (1996) - essential ascent and descent

I Grunenfelder, Omladič (1999) - commuting module
endomorphisms



Ascent and Descent: sets of operators

For each set A ⊆ L(X ) of operators define

N(A) =
⋂
a∈A

Ker a R(A) = span(
⋃
a∈A

Ran a).

Ak = {a1 . . . ak : a1, . . . , ak ∈ A} A0 = {I}

The ascending chain length of A, denoted acl(A), is the length of
the chain

{0} ⊆ N(A) ⊆ N(A2) ⊆ N(A3) ⊆ N(A4) ⊆ N(A5) ⊆ · · ·

The descending chain length of A, denoted dcl(A), is the length of
the chain

X ⊇ R(A) ⊇ R(A2) ⊇ R(A3) ⊇ R(A4) ⊇ R(A5) ⊇ · · ·

Chain lengths are not enough to extend single variable theory...
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Example

H = Hilbert space with orthonormal basis (ei ,j) indexed by
(Z+ × Z) ∪ (Z× Z+) ∪ {(−1,−1)}.
A = {a1, a2} where a1(ei ,j) = ei+1,j and a2(ei ,j) = ei ,j+1.

I a1 is a right shift

I a2 is an upward shift

I ascending chain
length of A is 0

I descending chain
length of A is 1

No decomposition of
space.

Introduction
Browder Joint Spectrum

! a1 is a right shift

! a2 is an upward shift

! ascending chain
length of a is 0

! descending chain
length of a is 1.
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Alternative description of ascent and descent

In the case of a single operator a there are isomorphisms

Ker ar+1/Ker ar ∼= Ker a ∩ Ran ar

Ran ar/Ran ar+1 ∼= X/(Ker ar + Ran a)

So the ascent of a is the smallest r such that

Ker a ∩ Ran ar = {0}

and the descent of a is the smallest r such that

Ker ar + Ran a = X .
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Ascent and descent for sets of operators

This motivates the following definition for a set A of operators.

The ascent of A, denoted α(A), is the smallest r such that

N(A) ∩ R(Ar ) = {0}

The descent of A, denoted δ(A), is the smallest r such that

N(Ar ) + R(A) = X

Proposition

(i) acl(A) ≤ α(A) and dcl(A) ≤ δ(A)

(ii) if α(A) <∞ then α(A) ≤ dcl(A)

(iii) if δ(A) <∞ then δ(A) ≤ acl(A)

(iv) if α(A), δ(A) <∞ then α(A) = acl(A) = dcl(A) = δ(A)
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Main Decomposition Theorem

Let A be a set of operators on a vector space X .

Theorem
A has finite ascent and finite descent if and only if there exist
A-invariant subspaces X1,X2 of X such that

(i) X = X1 ⊕ X2,

(ii) Ak |X1 = {0} some k (nilpotent),

(iii) N(A|X2) = 0 and R(A|X2) = X2 (bijective).

Moreover, the spaces X1 and X2 are given uniquely by X1 = N(Ar )
and X2 = R(Ar ), where r is the common value of the ascent and
descent of A.



Some remarks

A ⊂ B(X )

I Let B ⊆ commutant(A). If A and B both have finite ascent
and finite descent then A ∪ B has finite ascent and finite
descent.

I If 〈A〉 is the algebra generated by A then

(i) acl(A) = acl(〈A〉) and dcl(A) = dcl(〈A〉),
(ii) α(A) = α(〈A〉) and δ(A) = δ(〈A〉).

I If R(Ak) is closed for all k then

(i) acl(A) = acl(A) and dcl(A) = dcl(A),
(ii) α(A) = α(A) and δ(A) = δ(A).

I If A is countable with finite ascent and finite descent then

(i) R(Ar ) is closed where r = α(A) = δ(A)
(ii) the closed algebra generated by A has finite ascent and

descent r
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Ascent and descent for tuples of operators

Let a = (a1, . . . , an) be an n-tuple of operators on X .

We write...
α(a) = α(A) δ(a) = δ(A) where A =

⋃n
j=1{aj}.

ak = (ai1 . . . aik )n
i1,...,ik=1 (lexicographic order)

row(a) : X n → X (x1, . . . , xn) 7→ a1x1 + · · ·+ anxn

col(a) : X → X n x 7→ (a1x , . . . , anx)

Proposition

(i) α(a) = min{r ∈ N0 : Ker row(ar ) = Ker col(a) ◦ row(ar )}
(ii) δ(a) = min{r ∈ N0 : Ran col(ar ) = Ran col(ar ) ◦ row(a)}
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Remarks for m-tuples of operators

Let a = (a1, . . . , am) be an m-tuple of operators on X .

I If n(a) = dim N(a) and d(a) = codim R(a) then

(i) n(ak) ≤ (1 + m + · · ·+ mk−1)n(a) for all k ∈ N,
(ii) d(ak) ≤ (1 + m + · · ·+ mk−1)d(a) for all k ∈ N,
(iii) If n(a) <∞ and δ(a) <∞ then d(a) <∞,
(iv) If d(a) <∞ and α(a) <∞ then n(a) <∞.

I If a′ = (a′1, . . . , a
′
m) is the m-tuple of transpose operators

acting on the algebraic conjugate X ′ then

(i) acl(a) = dcl(a′) and dcl(a) = acl(a′)
(ii) α(a) = δ(a′) and δ(a) = α(a′)

I If a1, . . . , am pairwise commute and X is finite dimensional
then a = (a1, . . . , am) has finite ascent and finite descent.

This last result does not hold for non-commuting tuples:
eg. if a = (a1, a2) where a1 =

[
0 1
0 0

]
and a2 =

[
0 0
0 1

]
. Then

δ(a) = 0 and α(a) =∞.
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Fredholm Tuples

Let a = (a1, . . . , an) be a tuple of bounded operators on a Banach
space X .

a is called upper semi-Fredholm if col(a) is upper semi-Fredholm.
a is called lower semi-Fredholm if row(a) is lower semi-Fredholm.
a is called Fredholm if it is both upper and lower semi-Fredholm.

The upper Fredholm spectrum of a is

σπe(a) = {λ ∈ Cn : a− λ is not upper semi-Fredholm}.

The lower Fredholm spectrum of a is

σδe(a) = {λ ∈ Cn : a− λ is not lower semi-Fredholm}.

(J. Buoni, R. Harte, T. Wickstead, 1977)
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A Browder joint spectrum

Let a = (a1, . . . , an) be a commuting tuple of bounded operators
on a Banach space X .

Definition
a is called a Browder tuple on X if a is Fredholm with finite ascent
and finite descent.

The Browder joint spectrum of a is

σb(a) = {λ ∈ Cn : a− λ is not Browder}.



Properties of Browder joint spectrum

Proposition

If X is infinite dimensional then σb(a) is non-empty and compact.

If X is finite dimensional then σb(a) = ∅.

Inclusions (which can be strict):

σB−(a) ∪ σB+(a) ⊆ σb(a) ⊆ σTb(a)

(Kordula, Müller, Rakočević) (Curto, Dash)



Adjoints

Let a = (a1, . . . , an) be a tuple of bounded operators on a Banach
space X and let a∗ = (a∗1, . . . , a

∗
n) be the tuple of adjoint operators

on the dual space X ∗.

Proposition

If a = (a1, . . . , an) is Fredholm then

(i) acl(a) = dcl(a∗) and dcl(a) = acl(a∗),

(ii) α(a) = δ(a∗) and δ(a) = α(a∗).

Corollary

σb(a) = σb(a∗).



Projection Property

Proposition

σb(a) satisfies the projection property.

i.e. for all coordinate projections p : Cn → Ck we have

p(σb(a)) = σb(p(a)).

Proof
Let p : Cn → Ck be the projection p(z1, . . . , zn) = (zi1 , . . . , zik ).
Write p(a) = (ai1 , . . . , aik ).
We will show p(σb(a)) ⊇ σb(p(a)).
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Suppose 0 ∈ σb(p(a)). Need to find λ ∈ σb(a) with p(λ) = 0.

Three cases to consider...

(i) p(a) is not Fredholm

(ii) p(a) is Fredholm but has infinite ascent

(iii) p(a) is Fredholm but has infinite descent

(i) If p(a) is not upper (lower) semi-Fredholm then we can use the
projection property for the upper (lower) Fredholm spectrum to
find λ ∈ σb(a) with p(λ) = 0.
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(ii) Suppose p(a) is Fredholm with infinite ascent.
Then for each r , Y (r) = N(p(a)) ∩ R(p(a)r ) is non-zero and finite
dimensional.

Also Y (1) ⊇ Y (2) ⊇ Y (3) ⊇ · · · . Write Y =
⋂

r Y (r).
Let q : Cn → Cn−k be the complementary projection to p.
Choose a joint eigenvalue µ for q(a)|Y .
Let λ = (λ1, . . . , λn) where p(λ) = 0 and q(λ) = µ.
Then N(a− λ) ∩ R((a− λ)r ) is non-zero for all r .
Hence a− λ has infinite ascent and so λ ∈ σb(a).

(iii) Suppose p(a) is Fredholm with infinite descent.
Then p(a)∗ is Fredholm with infinite ascent.
Use argument in (ii) to find λ ∈ σb(a∗) = σb(a) such that
p(λ) = 0.
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Characterisation of Browder spectrum

Let a = (a1, . . . , an) be a commuting n-tuple of bounded operators
on X .
Denote by Cn(a) the set of commuting n-tuples c = (c1, . . . , cn) of
compact operators such that aicj = cjai for each i , j .

Proposition

σb(a) =
⋂

c∈Cn(a)

{σπ(a + c) ∪ σδ(a + c)}

σπ = joint approximate point spectrum
σδ = joint defect spectrum

(D.C. Lay, n=1, 1968)



Characterisation of Browder spectrum

Let a = (a1, . . . , an) be an n-tuple of bounded operators on X .
Denote by Q(a) the set of finite rank projections q ∈ B(X ) with
such that ajq = qaj for each j = 1, . . . , n.

Proposition

σb(a) =
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q∈Q(a)

{σπ(a|(I−q)X ) ∪ σδ(a|(I−q)X )}

σπ = joint approximate point spectrum
σδ = joint defect spectrum

(J. Zemánek, n=1, 1986)



Characterisation of Browder Tuples

The following are equivalent:

I a = (a1, . . . , an) is a Browder tuple
I there exist a-invariant subspaces X1,X2 of X such that

(i) X = X1 ⊕ X2 where X1 is finite dimensional and X2 is closed,
(ii) a|X1 is nilpotent,
(iii) a|X2 is jointly bounded below and jointly onto.

I a = c + s where

(i) c = (c1, . . . , cn) are commuting compact operators
(ii) s = (s1, . . . , sn) is a commuting n-tuple which is jointly

bounded below and jointly onto
(iii) ci sj = sjci for all i , j
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Extension of the spectral mapping theorem

This Browder joint spectrum concerns the first and last stages of
the Koszul complex

0→ Λ0[X ]
δ0
a−→ Λ1[X ]

δ1
a−→ · · · δ

n−2
a−→ Λn−1[X ]

δn−1
a−→ Λn[X ]→ 0

Let σ̃ denote any of the Slodkowski spectra which involve the first
and last stages (i.e. σπ,k ∪ σδ,l). Then a spectral mapping theorem
holds for

σ̃b(a) =
⋂

c∈Cn(a)

σ̃(a + c)

where Cn(a) is the set of commuting n-tuples c = (c1, . . . , cn) of
compact operators such that aicj = cjai for each i , j .

This result fails for the one-sided Slodkowski spectra...
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Example

H = Hilbert space with orthonormal basis (ei ,j) indexed by
(N0 × N0) ∪ {(−1, 0)}.

a = (a1, a2) where a1(ei ,j) =

{
ei ,j−1 if j > 0

0 if j = 0
and a2(ei ,j) = ei+1,j .

Consider the defect spectrum σδ.

I a1 is a downward shift

I a2 is an right shift

I (0, 0) ∈ σδ,b(a)

I 0 /∈ σδ,b(a1)

No spectral mapping
theorem in this case.



Taylor-Browder spectrum

We recover the Taylor-Browder spectrum of Curto and Dash with
the formula

σTb(a) =
⋂

c∈Cn(a)

σT (a + c)

The following are equivalent:

I a = (a1, . . . , an) is Taylor-Browder,

I 0 ∈ Cn is not an accumulation point in σT (a) and a has finite
ascent, descent and nullity,

I a = c + s where

(i) c = (c1, . . . , cn) are commuting compact operators
(ii) s = (s1, . . . , sn) is a commuting n-tuple which is Taylor

invertible
(iii) ci sj = sjci for all i , j
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