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Free semigroup algebras

De�nition
A free semigroup algebra is the weakly closed (non-self-adjoint)
algebra generated by n isometries S1, ...,Sn with pairwise orthogonal
ranges, i.e. such that

S∗i Sj = δij I .

.

The n-tuple [S1, ...,Sn] is called a row isometry, since the row operator
[S1 · · · Sn] is an isometry from Hn to H.
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Non-commutative dilation theory

De�nition
A tuple [A1,A2, ...] is called a row contraction if the row operator
[A1A2 · · · ] is contractive, or equivalently, if

∑
AiA

∗
i ≤ I .

Theorem (Frahzo, Bunce, Popescu)
A row contraction A = [A1A2 · · · ] dilates to a row isometry [S1S2 · · · ],
where

Si =

(
Ai 0

∗ ∗

)
.
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The non-commutative analytic Toeplitz algebra

De�nition (Popescu)
Let F+

n denote the free semigroup algebra in n non-commuting letters
{1, ..., n}, and let F denote the �Fock� space `2(F+

n ) with orthonormal
basis {ξw : w ∈ F+

n } consisting of words in F+
n .

De�ne n isometries L1, ..., Ln on F by

Liξw = ξiw , w ∈ F+
n .

These isometries have pairwise orthogonal ranges. The free semigroup
algebra they generate is the non-commutative analytic Toeplitz algebra
(sometimes called the left regular representation algebra), which we
denote by Ln.
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The non-commutative analytic Toeplitz algebra (2)
When n = 1, Ln is the familiar analytic Toeplitz algebra generated by
the unilateral shift. For n = 2 we have the following diagram:

Figure:

L1 L2

ф

1 2

11 21 12 22

For a word w = w1 · · ·wk in F+
n , write Lw = Lw1

· · · Lwk
. An element A

of Ln is completely determined by its Fourier series

A ∼
∑
w∈F+

n

awLw ,

the Cesaro sums of which converge strongly to A.
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Wandering spaces and Beurling's Theorem

De�nition
A subspace W is said to be wandering for a free semigroup algebra S
if the subspaces SwW are pairwise orthogonal for distinct words in F+

n .
A vector w is said to be wandering if the subspace Cw is wandering.

For n = 1 we have the following classical result.

Theorem (Beurling's Theorem)
Every invariant subspace of the unilateral shift is generated by a
wandering vector.

For n ≥ 2 we have the following generalization.

Theorem (Popescu)
Every invariant subspace of Ln is a direct sum of cyclic subspaces
generated by wandering vectors.
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The right regular representation algebra
De�nition
Once again, let F denote the �Fock� space `2(F+

n ), and de�ne n
isometries R1, ...,Rn on F by

Riξw = ξwi , w ∈ F+
n .

The free semigroup algebra generated by these isometries is the right
regular representation algebra, which we denote by Rn.

Theorem (Davidson, Pitts)
The free semigroup algebra Rn is unitarily equivalent to Ln, and is the
commutant of Ln.

Figure:

R1 R2

ф

1 2

11 21 12 22
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The structure of free semigroup algebras

De�nition
For a free semigroup algebra S, let S0 denote the weakly closed ideal
generated by S1, ...,Sn.

Note
Either S0 = S or S/S0 ∼= C.

Theorem (Dichotomy)
We have the following dichotomy:

1. If S0 = S, then S is a Von Neumann algebra.

2. Otherwise, S0 is a proper idea, and there is a unique weakly
continuous homomorphism Φ of S onto Ln such that Φ(Si ) = Li .
In this case, S/ ker Φ ∼= Ln.

The �rst case can occur:

Example (Read)
B(H) is a free semigroup algebra.
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The structure of free semigroup algebras (2)

De�nition
A free semigroup algebra is said to be of type L if it is (algebraically)
isomorphic to Ln.

Note
If S has a wandering vector w then the restriction of S to S[w ] is
isomorphic (in fact, unitarily equivalent) to Ln.

Theorem (Davidson, Katsoulis, Pitts)
If S is of type L then there is a canonical map Φ : S → Ln taking
Φ(Si ) = Li which is a completely isometric isomorphism and a
weak*-weak* homeomorphism.

If S is non-self-adjoint, then it has a type L part:

Theorem (DKP)
Let S be a free semigroup algebra. Then S contains a largest
projection P such that PSP is self-adjoint, the range of P⊥ is
invariant for S, and SP⊥(= P⊥SP) is type L.
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Wandering vectors and re�exivity
De�nition
An operator algebra A is re�exive if it can be recovered from its
invariant subspace lattice Lat(A) as the set of all operators
Alg(Lat(A)) leaving each subspace invariant.

Theorem (DKP)
A free semigroup algebra is re�exive if and only if its type L part is
re�exive.

Theorem (Davidson, Li, Pitts)
A type L free semigroup algebra is re�exive if it has a wandering
vector.

Theorem (Davidson, Kribs, Shpigel)
A free semigroup algebra without a wandering vector is reductive.
Hence a type L free semigroup algebra is re�exive if and only if it has
a wandering vector.

Question (DKP)
Is every free semigroup algebra re�exive? Equivalently, does every
type L free semigroup algebra have a wandering vector? 10 / 26



Hyper-re�exivity

De�nition (Hyper-re�exivity)
An operator algebra A hyper-re�exive if the semi-norms

β(T ) = sup
Lat(A)

‖P⊥TP‖

and dist(T ,Alg(A)) are comparable. In this case, the hyper-re�exivity
constant is the smallest C such that

β(T ) ≤ C dist(T ,Alg(A)), T ∈ B(H).

Note
It is always the case that

dist(T ,Alg(A)) ≤ β(T ),

and β(T ) = 0 precisely when T belongs to Alg(A). If A is
hyper-re�exive, then it is re�exive, but the converse is not true.
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Hyper-re�exivity (2)

Theorem (Davidson)
The analytic Toeplitz algebra is hyper-re�exive with constant 19.

Theorem (DP)
For n ≥ 2, Ln is hyper-re�exive with constant 51.

This was later improved:

Theorem (Bercovici)
For n ≥ 2, Ln is hyper-re�exive with constant 3.

Theorem (DLP)
If S is a type L free semigroup algebra with a wandering vector, then
S is hyper-re�exive with constant 55.
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Dual algebras techniques

De�nition
A dual algebra is a unital weak*-closed subalgebra of B(H), the
predual of which can be identi�ed with a quotient of the trace class
operators.

The term �dual algebra techniques� refers to a collection of ideas
which have been used to, among other things, prove the existence of
the invariant subspaces of certain dual algebras. Roughly, the idea is
to show that the predual of the algebra is small in a certain sense.

First introduced by Scott Brown (and often referred to as the �Scott
Brown Technique�):

Theorem (Brown)
Subnormal operators have invariant subspaces.

Dual algebra techniques have been utilized, with a great deal of
success, in both single operator theory and the theory of commuting
contractions.
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Dual algebra techniques (2)

De�nition
Let A be a weak*-closed subspace of B(H). Then A is said to have
property A1 (A1(1)) if, for every weak*-continuous linear functional ϕ
on A and ε > 0, there are vectors x and y in H (with
‖x‖‖y‖ < (1 + ε)‖ϕ‖) such that

ϕ(A) = (Ax , y) A ∈ A.

Theorem (Davidson, Katsoulis, Pitts)
Ln has property A1(1).

Corollary
The weak and weak* topologies agree on Ln.
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Dual algebra techniques for free semigroup algebras

Setup
Let S be a free semigroup algebra which is non-self-adjoint (so that
I /∈ S0).

Idea
Suppose S has property A1. Let ϕ be the weak*-continuous linear
functional which annihilates S0 and satis�es ϕ(I ) = 1. Then we can
�nd vectors x and y (necessarily nonzero) such that

ϕ(A) = (Ax , y), A ∈ S.

Conclusion (Wandering Vector)
Since S0[x ] is orthogonal to y , it is a proper invariant subspace for S.
But S[x ]	 S0[x ] is nonzero since (x , y) = 1. Any unit vector z in
S[x ]	 S0[x ] is a wandering vector, since S0[z ] ⊆ S0[x ] means S0[z ] is
orthogonal to z , giving

(Suz , Svz) = (S∗v Suz , z) = δuv .
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Dual algebra techniques for free semigroup algebras (2)

Goal
Prove that every type L free semigroup algebra S has property A1.

De�nition
For vectors x and y , let [x ⊗ y ] denote the linear functional mapping
A→ (Ax , y).

The following technical �trick� is often employed to show that a dual
algebra has property A1.

Goal
Let ϕ be a weak*-continuous linear functional on S. We want to �nd
convergent sequences (xk) and (yk) such that

‖ϕ− [xk ⊗ yk ]‖ → 0,

since this will give ϕ = [x ⊗ y ], where x = lim xk and y = lim yk .
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Dual algebra techniques for free semigroup algebras (3)

Idea
Fix xk and yk . Suppose we can �nd vectors u and v such that

1. [u ⊗ v ] approximates the error ϕ− [xk ⊗ yk ] arbitrarily closely,

2. ‖[xk ⊗ v ]‖ and ‖[u ⊗ yk ]‖ are arbitrarily small, and

3. ‖u‖ and ‖v‖ are arbitrarily close to the size of the error
‖ϕ− [xk ⊗ yk ]‖.

Set xk+1 = x − u, yk+1 = yk − v . Then

‖ϕ− [xk+1⊗ yk+1]‖ ≤ ‖ϕ− [xk ⊗ yk ]− [u⊗ v ]‖+ ‖[xk ⊗ v ]‖+ ‖[u⊗ yk ]‖,

so [xk+1 ⊗ yk+1] is a better approximation to ϕ, and the sequences
(xn) and (yn) can be made Cauchy.

17 / 26



Intertwining operators

In the context of a commutative algebra, arguments of this type
typically rely on function and measure-theoretic tools which are not
obviously available in our non-commutative setting. We rely instead
on certain intertwining operators.

De�nition
Let S be a free semigroup algebra on H. An operator X : F → H is
said to intertwine Ln and S if

XLw = XLw , w ∈ F+
n .

Theorem (DKP)
If S is type L, then every vector in H is in the range of such an
intertwining operator.
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Intertwining operators (2)

Theorem (DKP)
If S is type L, then for some m ≥ 1, the ampliation S(m) has a
wandering vector.

Construction
Suppose m ≥ 1, S(m) has a wandering vector w = (w1, ...,wm). The
restriction of S(m) to S(m)[w ] is unitarily equivalent to Ln. Compose
this equivalence with a projection to get a bounded operator
X : F → H satisfying

Lwξ0 → Sww1, w ∈ F+
n .

The operator X intertwines S and Ln.
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L-Toeplitz operators

Recall that the Toeplitz operators are precisely the operators T
satisfying S∗TS = T , where S is the unilateral shift. This motivates:

De�nition
An operator T is said to be an L-Toeplitz Operator if

R∗i TRi = T for 1 ≤ i ≤ n.

The L-Toeplitz operators are precisely the weak-operator closure of
the operator system Ln + L∗n. Popescu showed that every L-Toeplitz
operator T is completely determined by its Fourier series

T ∼
∑
w∈F+

n

awLw +
∑

w∈F+
n \∅

bwL
∗
w .
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Intertwining operators and L-Toeplitz operators

Lemma
If X intertwines S and Ln, then X ∗X is an L-Toeplitz operator.

Proof.
We have

LiX
∗XLi = X ∗S∗i SiX = X ∗X , 1 ≤ i ≤ n.

Theorem (Popescu)
A positive L-Toeplitz operator T which is bounded below can be
factored as T = A∗A for some A ∈ Rn.

Corollary (DLP)
If an intertwining operator X : F → H is bounded below, then the
restriction of S to the range of X is unitarily equivalent to Ln,
meaning in particular that S has a wandering vector.
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Approximate orthogonality

For n ≥ 2, Ln has an in�nite family of pairwise orthogonal invariant
subspaces. We show that every type L free semigroup algebra has an
in�nite family of vectors (xk) which are �almost orthogonal,� in the
sense that for �xed l , [xk ⊗ xl ]→ 0 and [xl ⊗ xk ]→ 0 as k →∞.

Idea
Suppose S(m) has a wandering vector x = (x1, ..., xm). Then the cyclic

subspaces X1 and X2, generated by S
(m)
1

x and S
(m)
2

x respectively, are
orthogonal.

If we can �nd a vector u = (u1, ..., um) in X1 which is heavily

concentrated in the �rst component, then since [u ⊗ S
(m)
2

x ] = 0, the
linear functional [u1 ⊗ S2x1] is small.

Otherwise, If we can't �nd such a vector, then the projection of X
onto the last m − 1 components is bounded below, leading to an
intertwining operator which is bounded below, and hence a wandering
vector for S(m−1).
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Approximate factorization

De�nition
A free semigroup algebra S is said to have the approximate
factorization property if, for every weak*-continuous linear functional
ϕ on S and ε > 0, there are vectors x and y such that
‖ϕ− [x ⊗ y ]‖ < ε and ‖x‖‖y‖ ≤ (1 + ε)‖ϕ‖.

Observation
If X intertwines S and Ln, then so does XR, for any R in Rn.

This leads to:

Lemma
Every type L free semigroup algebra has the approximation property.

The key observation is that given operators X and Y which intertwine
S and Ln,

(SwX ξ,Y η) = (Lwξ,X
∗Y η),

so ‖[X ξ ⊗ Y η]‖ = ‖ξ ⊗ X ∗Y η‖ ≤ ‖ξ‖‖X ∗Y η‖. In particular, if
‖X ∗Y ξ − ξ‖ is small, then the linear functional ‖[X ξ ⊗ Y η‖ on S
approximates the linear functional on S which corresponds to the
linear functional ‖[ξ ⊗ η]‖ on Ln.
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Conclusion
Let S be a type L free semigroup algebra, and let ϕ be a
weak*-continuous linear functional on S. With some re�nement, a
combination of the ideas behind the notions of �approximate
orthogonality� and �approximate factorization� allows us to complete
our �dual algebras� argument and construct convergent sequences (xk)
and (yk) such that

‖ϕ− [xk ⊗ yk ]‖ → 0,

which gives ϕ = [x ⊗ y ], where x = lim xk and y = lim yk . This gives:

Theorem
Every type L free semigroup algebra has property A1.

As outlined above, this leads to:

Corollary
Every type L free semigroup algebra has a wandering vector.

Corollary
Every free semigroup algebra is re�exive, and every type L free
semigroup algebra is hyper-re�exive (with distant constant 55).
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Absolutely continuous representations

De�nition
Let S = [S1, ...,Sn] be a row isometry. The norm-closed
(non-self-adjoint) algebra generated by the Si is called the
noncommutative disk algebra An . This was introduced by Popescu,
who showed that the de�nition of An is independent of the choice row
isometry.

De�nition (DLP)
A representation σ of An on B(H) is absolutely continuous if every
linear functional on An given by a vector state on σ(An) extends to a
weak*-continuous linear functional on Ln.

Theorem (Davidson, Yang)
For n ≥ 2, if a representation σ of An is absolutely continuous, then
σ(∞) generates a type L free semigroup algebra.
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Absolutely continuous representations (2)

Question
For n ≥ 2, does an absolutely continuous representation σ generate a
type L free semigroup algebra? Equivalently, if the weak* closure of
σ(An) is isomorphic to Ln (and hence is non-self-adjoint), is the weak
closure of σ(An) also non-self-adjoint?

Our methods come close, but don't quite answer this question. We
suspect the answer is yes.
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