$\begin{array}{c} {\rm Introduction}\\ {\rm The \ class \ } \mathfrak{B}_1(\Omega)\\ {\rm The \ sheaf \ construction}\\ {\rm New \ Invariants}\\ {\rm References}\end{array}$

Invariants for Semi-Fredholm Hilbert Modules

Shibananda Biswas

Indian Statistical Institute, India

Multivariate Operator Theory Workshop Fields Institute, Toronto, Canada

August, 2009

Introduction

The class $\mathfrak{B}_1(\Omega)$ The sheaf construction New Invariants References The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

A (1) > A (2) > A

Notations

- Let $M_i : \mathcal{M} \to \mathcal{M}$ be the operator defined by $f \mapsto z_i \cdot f$, where $z_i \cdot f$ is the module multiplication.
- Let $D_{M^*}: \mathcal{M} \to \mathcal{M} \oplus \cdots \oplus \mathcal{M}$ be the *m*-tuple operators $f \mapsto (M_1^*f, \ldots, M_m^*f).$
- ker $D_{(M-w)^*} = \cap_{j=1}^m \ker(M_j w_j)^*$ for $w \in \mathbb{C}^m$.

Introduction

The class $\mathfrak{B}_1(\Omega)$ The sheaf construction New Invariants References The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

Image: A image: A

Definition

A Hilbert module \mathcal{M} over the polynomial ring \mathcal{C}_m ; = $\mathbb{C}[z_1, \ldots, z_m]$ is said to be in the class $B_n(\Omega)$ if

- The range of $D_{(M-w)^*}$ is closed in $\mathcal{M} \oplus \cdots \oplus \mathcal{M}$ for all $w \in \Omega$;
- $\operatorname{span}_{w \in \Omega} \ker D_{(M-w)^*}$ is dense in \mathcal{M} ; and
- dim ker $D_{(M-w)^*} = n$ for all $w \in \Omega$.

 $\begin{array}{c} \text{Introduction} \\ \text{The class } \mathfrak{B}_1(\Omega) \\ \text{The sheaf construction} \\ \text{New Invariants} \\ \text{References} \end{array}$

The Class $B_n(\Omega)$ **Example of modules in B_n(\Omega)** Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

Example of modules in $B_n(\Omega)$

Examples of modules in $B_1(\mathbb{D}^n)$:

• Hardy module

- Bergmann module
- Dirichlet module.

 $\begin{array}{c} \text{Introduction} \\ \text{The class } \mathfrak{B}_1(\Omega) \\ \text{The sheaf construction} \\ \text{New Invariants} \\ \text{References} \end{array}$

The Class $B_n(\Omega)$ **Example of modules in B_n(\Omega)** Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

Example of modules in $B_n(\Omega)$

Examples of modules in $B_1(\mathbb{D}^n)$:

• Hardy module

- Bergmann module
- Dirichlet module.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{The class } \mathfrak{B}_1(\Omega) \\ \mbox{The sheaf construction} \\ \mbox{New Invariants} \\ \mbox{References} \end{array}$

The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

< A > < 3

Equivalence of modules in $B_n(\Omega)$

$$E_{\mathcal{M}} := \{(w, f) \in \Omega imes \mathcal{M} : f \in \ker D_{(M-w)^*}\} \text{ and } \pi(w, f) = w$$

defines a holomorphic Hermitian vector bundle on the open set Ω .

Theorem (Cowen - Douglas)

Two Hilbert modules \mathcal{M} and $\tilde{\mathcal{M}}$ in $B_n(\Omega)$ iff the vector bundles $E_{\mathcal{M}}$ and $E_{\tilde{\mathcal{M}}}$ are equivalent as holomorphic Hermitian vector bundle.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{The class } \mathfrak{B}_1(\Omega) \\ \mbox{The sheaf construction} \\ \mbox{New Invariants} \\ \mbox{References} \end{array}$

The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

Equivalence of modules in $B_n(\Omega)$

$$\mathcal{E}_{\mathcal{M}} := \{(w, f) \in \Omega imes \mathcal{M} : f \in \ker D_{(M-w)^*}\} ext{ and } \pi(w, f) = w$$

defines a holomorphic Hermitian vector bundle on the open set Ω .

Theorem (Cowen - Douglas)

Two Hilbert modules \mathcal{M} and $\tilde{\mathcal{M}}$ in $B_n(\Omega)$ iff the vector bundles $E_{\mathcal{M}}$ and $E_{\tilde{\mathcal{M}}}$ are equivalent as holomorphic Hermitian vector bundle.

Introduction

The class $\mathfrak{B}_1(\Omega)$ The sheaf construction New Invariants References

Model

The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

Any Hilbert module \mathcal{M} in $B_n(\Omega)$ is isomorphic to a Hilbert module $\mathcal{M}_{\Gamma} \subseteq \mathcal{O}(\Omega)$ possessing a reproducing kernel on Ω .

Conversely, the adjoint of the *m*-tuple of multiplication operators on the reproducing kernel Hilbert space associated with a kernel *K* on Ω belongs to $B_n(\Omega^*)$ if certain additional conditions are imposed on *K*.

Introduction

The class $\mathfrak{B}_1(\Omega)$ The sheaf construction New Invariants References The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

Model

Any Hilbert module \mathcal{M} in $B_n(\Omega)$ is isomorphic to a Hilbert module $\mathcal{M}_{\Gamma} \subseteq \mathcal{O}(\Omega)$ possessing a reproducing kernel on Ω .

Conversely, the adjoint of the *m*-tuple of multiplication operators on the reproducing kernel Hilbert space associated with a kernel *K* on Ω belongs to $B_n(\Omega^*)$ if certain additional conditions are imposed on *K*. $\begin{array}{c} \text{Introduction} \\ \text{The class } \mathfrak{B}_1(\Omega) \\ \text{The sheaf construction} \\ \text{New Invariants} \\ \text{References} \end{array}$

The Class $B_n(\Omega)$ Example of modules in $B_n(\Omega)$ Equivalence of modules in $B_n(\Omega)$ Natural examples of modules that fail to be in $B_1(\Omega)$

< /i>

Natural example of module fails to be in $B_1(\Omega)$

Let
$$H_0^2(\mathbb{D}^2) := \{ f \in H^2(\mathbb{D}^2) : f(0) = 0 \}.$$

dim ker
$$D_{(\mathbf{M}-w)^*} = \dim H^2_0(\mathbb{D}^2) \otimes_{\mathcal{C}_2} \mathbb{C}_w = \begin{cases} 1 & \text{if } w \neq (0,0) \\ 2 & \text{if } w = (0,0). \end{cases}$$

 \mathbb{C}_w is the one dimensional module over the polynomial ring \mathcal{C}_2 , where the module action is given by the map $(f, \lambda) \mapsto f(w)\lambda$ for $f \in \mathcal{C}_2$ and $\lambda \in \mathbb{C}_w \cong \mathbb{C}$.

< /i>

We consider the class of Hilbert modules where the the dimension of the joint kernel is no longer assumed to be constant.

Definition

```
\mathcal{M}\in\mathfrak{B}_1(\Omega) iff
```

- $\mathcal M$ is a submodule of $\mathcal H$ for some $\mathcal H\in \mathrm{B}_1(\Omega)$ and
- dim ker $D_{(\mathsf{M}-w)^*} < \infty$ for all $w \in \Omega$ }

Clearly Hilbert modules in $\mathfrak{B}_1(\Omega)$

- possess a reproducing kernel K (we don't rule out the possibility: K(w, w) = 0 for w in some closed subset X of Ω) and
- the range of $D_{(M-w)^*}$ is closed.

< □ > < 同 > < 三 >

We consider the class of Hilbert modules where the the dimension of the joint kernel is no longer assumed to be constant.

Definition

 $\mathcal{M}\in\mathfrak{B}_1(\Omega)$ iff

- $\mathcal M$ is a submodule of $\mathcal H$ for some $\mathcal H\in {
 m B}_1(\Omega)$ and
- dim ker $D_{(M-w)^*} < \infty$ for all $w \in \Omega$ }

Clearly Hilbert modules in $\mathfrak{B}_1(\Omega)$

- possess a reproducing kernel K (we don't rule out the possibility: K(w, w) = 0 for w in some closed subset X of Ω) and
- the range of $D_{(M-w)^*}$ is closed.

< □ > < 同 > < 三 >

We consider the class of Hilbert modules where the the dimension of the joint kernel is no longer assumed to be constant.

Definition

 $\mathcal{M}\in\mathfrak{B}_1(\Omega)$ iff

- $\mathcal M$ is a submodule of $\mathcal H$ for some $\mathcal H\in {
 m B}_1(\Omega)$ and
- dim ker $D_{(M-w)^*} < \infty$ for all $w \in \Omega$ }

Clearly Hilbert modules in $\mathfrak{B}_1(\Omega)$

- possess a reproducing kernel K (we don't rule out the possibility: K(w, w) = 0 for w in some closed subset X of Ω) and
- the range of $D_{(\mathbf{M}-w)^*}$ is closed.

Introduction The class $\mathfrak{B}_1(\Omega)$ The sheaf construction New Invariants References

Definition Relation between $\mathfrak{B}_1(\Omega)$ and $\mathrm{B}_1(\Omega)$

< ∰ ▶ < ≡ ▶</p>

Relation between $\mathfrak{B}_1(\Omega)$ and $B_1(\Omega)$

The following Lemma isolates a very large class of elements from $\mathfrak{B}_1(\Omega)$ which belong to $B_1(\Omega_0)$ for some open subset $\Omega_0 \subseteq \Omega$.

Lemma

Suppose $\mathcal{M} \in \mathfrak{B}_1(\Omega)$ is the closure of a polynomial ideal \mathcal{I} . Then \mathcal{M} is in $B_1(\Omega)$ if the ideal \mathcal{I} is singly generated while if it is generated by the polynomials p_1, p_2, \ldots, p_t , then \mathcal{M} is in $B_1(\Omega \setminus X)$ for $X = \{z : p_1(z) = \ldots = p_t(z) = 0\}$.

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Definition

- Analogous to the correspondence of a vector bundle with a locally free sheaf, we construct a sheaf S^M(Ω) for the Hilbert module M.
- The sheaf S^M(Ω) is the subsheaf of the sheaf of holomorphic functions O(Ω) whose stalk at w ∈ Ω is

$$\{(f_1)_w \mathcal{O}_w + \cdots + (f_n)_w \mathcal{O}_w : f_1, \ldots, f_n \in \mathcal{M}\}$$

 $\begin{array}{c} {\rm Introduction}\\ {\rm The \ class \ } \mathfrak{B}_1(\Omega)\\ \hline {\rm The \ sheaf \ construction}\\ {\rm New \ Invariants}\\ {\rm References} \end{array}$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Definition

- Analogous to the correspondence of a vector bundle with a locally free sheaf, we construct a sheaf S^M(Ω) for the Hilbert module M.
- The sheaf S^M(Ω) is the subsheaf of the sheaf of holomorphic functions O(Ω) whose stalk at w ∈ Ω is

$$\{(f_1)_w \mathcal{O}_w + \cdots + (f_n)_w \mathcal{O}_w : f_1, \ldots, f_n \in \mathcal{M}\}$$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

< 67 ▶

A property of $\mathcal{S}^{\mathcal{M}}(\Omega)$

Proposition

For any Hilbert module \mathcal{M} in $\mathfrak{B}_1(\Omega)$, the sheaf $\mathcal{S}^{\mathcal{M}}(\Omega)$ is coherent analytic.

Key ingredient in the proof:

• Noether's stationary lemma.

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

A property of $\mathcal{S}^{\mathcal{M}}(\Omega)$

Proposition

For any Hilbert module \mathcal{M} in $\mathfrak{B}_1(\Omega)$, the sheaf $\mathcal{S}^{\mathcal{M}}(\Omega)$ is coherent analytic.

Key ingredient in the proof:

• Noether's stationary lemma.

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

The decomposition theorem

Theorem

Suppose g_i^0 , $1 \le i \le d$, be a minimal set of generators for the stalk $S_{w_0}^{\mathcal{M}}$. Then

• there exists a open neighborhood Ω_0 of w_0 such that

$$\mathcal{K}(\cdot,w):=\mathcal{K}_w=g_1^0(w)\mathcal{K}_w^{(1)}+\cdots+g_n^0(w)\mathcal{K}_w^{(d)},\ w\in\Omega_0$$

for some choice of anti-holomorphic functions $K^{(1)}, \ldots, K^{(d)}: \Omega_0 \to \mathcal{M}$,

 the vectors K⁽ⁱ⁾_w, 1 ≤ i ≤ d, are linearly independent in M for w in some small neighborhood of w₀,

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Image: A image: A

Theorem continued

Theorem (contd.)

- the vectors $\{K_{w_0}^{(i)} \mid 1 \le i \le d\}$ are uniquely determined by these generators g_1^0, \ldots, g_d^0 ,
- the linear span of the set of vectors {K⁽ⁱ⁾_{W0} | 1 ≤ i ≤ d} in M is independent of the generators g⁰₁,...,g⁰_d, and
- the vectors K⁽ⁱ⁾_{w₀}, 1 ≤ i ≤ d, are eigenvectors for the adjoint of the action of C_m on the Hilbert module M at w₀.

Definition and property The decomposition theorem **Outline of the proof** An Inequality Class of examples where equality holds

Outline of the proof of the Theorem

Key ingredients:

- Every function in a submodule of \mathcal{O}_{w_0} decomposes in terms of its generator on a small neighbourhood of w_0 , with coefficients satisfying some norm bounds in a even smaller compact neighbourhood of 0.
- \mathcal{O}_{w_0} is a local ring and the Nakayama's lemma

Definition and property The decomposition theorem **Outline of the proof** An Inequality Class of examples where equality holds

Outline of the proof of the Theorem

Key ingredients:

- Every function in a submodule of \mathcal{O}_{w_0} decomposes in terms of its generator on a small neighbourhood of w_0 , with coefficients satisfying some norm bounds in a even smaller compact neighbourhood of 0.
- \mathcal{O}_{w_0} is a local ring and the Nakayama's lemma

Definition and property The decomposition theorem **Outline of the proof** An Inequality Class of examples where equality holds

Outline of the proof of the Theorem

Key ingredients:

- Every function in a submodule of \mathcal{O}_{w_0} decomposes in terms of its generator on a small neighbourhood of w_0 , with coefficients satisfying some norm bounds in a even smaller compact neighbourhood of 0.
- \mathcal{O}_{w_0} is a local ring and the Nakayama's lemma

Introduction The class $\mathfrak{B}_1(\Omega)$ The sheaf construction New Invariants References Definition and property The decomposition theorem Outline of the proof **An Inequality** Class of examples where equality holds

(日)

글▶ 글

An Inequality

The following is evident from previous theorem:

$$\dim \ker D_{(\mathbf{M}-w_0)^*} \geq \#\{ \min \text{ minimal generators for } S_{w_0}^{\mathcal{M}} \} \\ \geq \dim S_{w_0}^{\mathcal{M}} / \mathfrak{m}(\mathcal{O}_{w_0}) S_{w_0}^{\mathcal{M}}.$$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{The class } \mathfrak{B}_1(\Omega) \\ \mbox{The sheaf construction} \\ \mbox{New Invariants} \\ \mbox{References} \end{array}$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

・ (日本)

Analytic Hilbert modules

Definition

A Hilbert module \mathcal{M} over the polynomial ring \mathcal{C}_m is said to be an *analytic Hilbert module* if we assume that

- it consists of holomorphic functions on a bounded domain $\Omega \subseteq \mathbb{C}^m$ and possesses a reproducing kernel K,
- the polynomial ring \mathcal{C}_m is dense in it,
- the set of virtual points, which is $\{w \in \mathbb{C}^m : p \mapsto p(w), p \in \mathcal{C}_m \text{ is continuous}\}, \text{ is } \Omega.$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Class of examples where equality holds

Proposition

Let $\mathcal{M} = [\mathcal{I}]$ be a submodule of an analytic Hilbert module over \mathcal{C}_m , where \mathcal{I} is an ideal in the polynomial ring \mathcal{C}_m . Then

 $\sharp\{\text{minimal set of generators for } S_{w_0}^{\mathcal{M}}\} = \dim \ker D_{(\mathbf{M}-w_0)^*}.$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Outline of the proof of the Proposition

Key ingredient:

• dim ker $D_{(\mathbf{M}-w_0)^*} = \dim \mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}$.

Main step of the proof:

• To show that a map

$$\mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I} \longrightarrow \mathcal{S}^{\mathcal{M}}_{w_0}/\mathfrak{m}(\mathcal{O}_{w_0})\mathcal{S}^{\mathcal{M}}_{w_0},$$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Outline of the proof of the Proposition

Key ingredient:

• dim ker $D_{(\mathbf{M}-w_0)^*} = \dim \mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}$.

Main step of the proof:

• To show that a map

$$\mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}\longrightarrow \mathcal{S}^{\mathcal{M}}_{w_0}/\mathfrak{m}(\mathcal{O}_{w_0})\mathcal{S}^{\mathcal{M}}_{w_0},$$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Outline of the proof of the Proposition

Key ingredient:

• dim ker $D_{(\mathbf{M}-w_0)^*} = \dim \mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}$.

Main step of the proof:

• To show that a map

$$\mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}\longrightarrow \mathcal{S}^{\mathcal{M}}_{w_0}/\mathfrak{m}(\mathcal{O}_{w_0})\mathcal{S}^{\mathcal{M}}_{w_0},$$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

Outline of the proof of the Proposition

Key ingredient:

• dim ker $D_{(\mathbf{M}-w_0)^*} = \dim \mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}$.

Main step of the proof:

• To show that a map

$$\mathcal{I}/\mathfrak{m}_{w_0}\mathcal{I}\longrightarrow \mathcal{S}^{\mathcal{M}}_{w_0}/\mathfrak{m}(\mathcal{O}_{w_0})\mathcal{S}^{\mathcal{M}}_{w_0},$$

 $\begin{array}{c} {\rm Introduction}\\ {\rm The \ class \ } \mathfrak{B}_1(\Omega)\\ \hline {\rm The \ sheaf \ construction}\\ {\rm New \ Invariants}\\ {\rm References} \end{array}$

Definition and property The decomposition theorem Outline of the proof An Inequality Class of examples where equality holds

An important corollary

Corollary

If $\mathcal{M} = [\mathcal{I}]$ be a submodule of an analytic Hilbert module over \mathcal{C}_m , where \mathcal{I} is an ideal in the polynomial ring \mathcal{C}_m and $w_0 \in V(\mathcal{I})$ is a smooth point, then

$$\begin{array}{l} \dim \ker D_{(\mathbf{M} - w_0)^*} \\ = & \left\{ \begin{array}{ll} 1 & \text{for } w_0 \notin V(\mathcal{I}) \cap \Omega; \\ \text{codimension of } V(\mathcal{I}) & \text{for } w_0 \in V(\mathcal{I}) \cap \Omega. \end{array} \right. \end{array}$$

Construction of a vector bundle Outline of the proof Calculation of the invariant

Constancy of dimension in a neighbourhood

Let \mathbb{P}_0 be the orthogonal projection onto $\operatorname{ranD}_{(\mathbf{M}-w_0)^*}$.

Lemma

The dimension of ker $\mathbb{P}_0 D_{(M-w)^*}$ is constant in a suitably small neighbourhood of $w_0 \in \Omega$, say Ω_0 .

< □ > <

Construction of a vector bundle Outline of the proof Calculation of the invariant

Constancy of dimension in a neighbourhood

Let \mathbb{P}_0 be the orthogonal projection onto $ranD_{(\mathbf{M}-w_0)^*}$.

Lemma

The dimension of ker $\mathbb{P}_0 D_{(\mathbf{M}-w)^*}$ is constant in a suitably small neighbourhood of $w_0 \in \Omega$, say Ω_0 .

Construction of a vector bundle Outline of the proof Calculation of the invariant

Construction of a vector bundle

$$\mathcal{P}_{w_0}^\mathcal{M} := \{(w, f) \in \Omega imes \mathcal{M} : f \in \ker \mathbb{P}_0 D_{(\mathsf{M} - w)^*}\} ext{ and } \pi(w, f) = w$$

defines a holomorphic Hermitian vector bundle on the open set Ω_0 .

Theorem

If any two Hilbert modules \mathcal{M} and $\tilde{\mathcal{M}}$ from $\mathfrak{B}_1(\Omega)$ are isomorphic via an unitary module map, then the corresponding holomorphic Hermitian vector bundles $\mathcal{P}_{w_0}^{\mathcal{M}}$ and $\mathcal{P}_{w_0}^{\tilde{\mathcal{M}}}$ on Ω_0 are equivalent.

Construction of a vector bundle Outline of the proof Calculation of the invariant

Construction of a vector bundle

$$\mathcal{P}_{w_0}^{\mathcal{M}} := \{(w, f) \in \Omega imes \mathcal{M} : f \in \ker \mathbb{P}_0 D_{(\mathsf{M} - w)^*}\} ext{ and } \pi(w, f) = w$$

defines a holomorphic Hermitian vector bundle on the open set Ω_0 .

Theorem

If any two Hilbert modules \mathcal{M} and $\tilde{\mathcal{M}}$ from $\mathfrak{B}_1(\Omega)$ are isomorphic via an unitary module map, then the corresponding holomorphic Hermitian vector bundles $\mathcal{P}_{w_0}^{\mathcal{M}}$ and $\mathcal{P}_{w_0}^{\tilde{\mathcal{M}}}$ on Ω_0 are equivalent.

Construction of a vector bundle **Outline of the proof** Calculation of the invariant

Outline of the proof of the Theorem

Key ingredients:

• Existence of the operator $R_{\mathsf{M}}(w)$ such that the following holds on Ω

$$\begin{aligned} R_{M}(w)D_{(M-w)^{*}} &= I - P_{\ker D_{(M-w)^{*}}} \\ D_{(M-w)^{*}}R_{M}(w) &= P_{\operatorname{ran} D_{(M-w)^{*}}}, \end{aligned}$$

Construction of the operator

$$P(\bar{w}, \bar{w}_0) = I - \{I - R_{\mathsf{M}}(w_0) D_{\bar{w} - \bar{w}_0}\}^{-1} R_{\mathsf{M}}(w_0) D_{(\mathsf{M} - w)^*},$$

for $w \in B(w_0; || R(w_0) ||^{-1})$.

Construction of a vector bundle Outline of the proof Calculation of the invariant

< □ > < 同 >

Outline of the proof of the Theorem

Key ingredients:

 Existence of the operator R_M(w) such that the following holds on Ω

• Construction of the operator

 $P(\bar{w}, \bar{w}_0) = I - \{I - R_{\mathsf{M}}(w_0) D_{\bar{w} - \bar{w}_0}\}^{-1} R_{\mathsf{M}}(w_0) D_{(\mathsf{M} - w)^*},$

for $w \in B(w_0; || R(w_0) ||^{-1})$.

Construction of a vector bundle Outline of the proof Calculation of the invariant

Outline of the proof of the Theorem

Key ingredients:

 Existence of the operator R_M(w) such that the following holds on Ω

• Construction of the operator

$$P(\bar{w}, \bar{w}_0) = I - \{I - R_{\mathsf{M}}(w_0) D_{\bar{w} - \bar{w}_0}\}^{-1} R_{\mathsf{M}}(w_0) D_{(\mathsf{M} - w)^*},$$

for $w \in B(w_0; || R(w_0) ||^{-1})$.

Construction of a vector bundle Outline of the proof Calculation of the invariant

Calculation of the invariant for a class of Hilbert module

For
$$\lambda, \mu > 0$$
, $H_0^{(\lambda,\mu)}(\mathbb{D}^2) := \{ f \in H^{(\lambda,\mu)}(\mathbb{D}^2) : f(0,0) = 0 \}$,

where $H^{(\lambda,\mu)}(\mathbb{D}^2)$ be the reproducing kernel Hilbert space on the bi-disc determined by the positive definite kernel

$${\cal K}^{(\lambda,\mu)}(z,w)=rac{1}{(1-z_1ar w_1)^\lambda(1-z_2ar w_2)^\mu},\,\,z,w\in {\mathbb D}^2.$$

Construction of a vector bundle Outline of the proof Calculation of the invariant

Calculation of the invariant for a class of Hilbert module

The normalized metric $h_0(w, w)$, which is real analytic, is of the form

$$\begin{split} h_0(w,w) &= I + \left(\begin{array}{cc} \frac{\lambda+1}{2}|w_1|^2 + \frac{\lambda^2\mu}{(\lambda+\mu)^2}|w_2|^2 & \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2 w_1 \bar{w}_2 \\ \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2 w_2 \bar{w}_1 & \frac{\lambda\mu^2}{(\lambda+\mu)^2}|w_1|^2 + \frac{\mu+1}{2}|w_2|^2 \end{array}\right) \\ &+ O(|w|^3), \end{split}$$

where $O(|w|^3)_{i,j}$ is of degree ≥ 3 .

Construction of a vector bundle Outline of the proof Calculation of the invariant

Calculation of the invariant for a class of Hilbert module

The curvature for \mathcal{P} at (0,0) is given by the 2×2 matrices

$$\begin{pmatrix} \frac{\lambda+1}{2} & 0\\ 0 & \frac{\lambda\mu^2}{(\lambda+\mu)^2} \end{pmatrix}, \ \begin{pmatrix} 0 & \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2\\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0\\ \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2 & 0 \end{pmatrix},$$
 and
$$\begin{pmatrix} \frac{\lambda^2\mu}{(\lambda+\mu)^2} & 0\\ 0 & \frac{\mu+1}{2} \end{pmatrix}.$$

Construction of a vector bundle Outline of the proof Calculation of the invariant

Calculation of the invariant for a class of Hilbert module

Lemma

 $H_0^{(\lambda,\mu)}(\mathbb{D}^2)$ and $H_0^{(\lambda',\mu')}(\mathbb{D}^2)$ are equivalent if and only if $\lambda = \lambda'$ and $\mu = \mu'$.

Image: A = A

 $\begin{array}{c} \text{Introduction}\\ \text{The class }\mathfrak{B}_1(\Omega)\\ \text{The sheaf construction}\\ \text{New Invariants}\\ \text{References} \end{array}$

References

[1] X. Chen and K. Guo, *Analytic Hilbert modules*, Chapman and Hall/CRC Research Notes in Mathematics, **433**.

[2] M. J. Cowen and R. G. Douglas, *Complex geometry and Operator theory*, Acta Math. **141** (1978), 187 – 261.

[3] R. E. Curto and N. Salinas, *Generalized Bergman kernels and the Cowen-Douglas theory*, Amer. J. Math. **106** (1984), 447 – 488.

 $\begin{array}{c} \text{Introduction} \\ \text{The class } \mathfrak{B}_1(\Omega) \\ \text{The sheaf construction} \\ \text{New Invariants} \\ \text{References} \end{array}$

THANK YOU.

æ